Zhao Junxiang, Liang Xingdong, Li Yanlei. Change Detection in SAR CCD Based on the Likelihood Change Statistics[J]. Journal of Radars, 2017, 6(2): 186-194. doi: 10.12000/JR16065
Citation: SHI Tianyue, LIU Huixin, LIU Yanqi, et al. Bistatic synthetic aperture radar two-dimensional autofocus approach based on prior knowledge on phase structure[J]. Journal of Radars, 2020, 9(6): 1045–1055. doi: 10.12000/JR20048

Bistatic Synthetic Aperture Radar Two-dimensional Autofocus Approach Based on Prior Knowledge on Phase Structure

DOI: 10.12000/JR20048
Funds:  The National Natural Science Foundation of China (61671240), The Natural Science Foundation of Jiangsu (BK20170091), The Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics (kfjj20190410)
More Information
  • Corresponding author: MAO Xinhua, Xinhua@nuaa.edu.cn
  • Received Date: 2020-04-24
  • Rev Recd Date: 2020-07-13
  • Available Online: 2020-08-06
  • Publish Date: 2020-12-28
  • Two-Dimensional (2-D) autofocus is an important guarantee for high-resolution imaging of airborne Synthetic Aperture Radar (SAR) under high maneuvering conditions. The existing 2-D autofocus approaches for bistatic SAR blindly estimate the phase error and do not fully utilize the prior knowledge on phase structure. In this paper, a new interpretation of the Polar Format Algorithm (PFA) for general bistatic SAR imaging is presented. From the viewpoint of Residual Cell Migration (RCM), PFA is converted into 2-D decoupling. By utilizing this new formulation, we analyze the effect of range and azimuth resampling on the residual 2-D phase error and reveal the inherent structure characteristics of the residual 2-D phase error in the wavenumber domain. The 2-D phase error estimation can reduce to one dimensional azimuth phase error estimation. Based on this prior knowledge, a structure-aided 2-D autofocus approach is proposed. Meanwhile, the information of all the data is fully excavated by averaging sub-band data when the azimuth phase error is being estimated. Compared with the existing algorithms, both the parameter estimation precision and computational efficiency are significantly improved. Experimental results clearly demonstrate the correctness of the theoretical analysis and the effectiveness of the proposed method.

     

  • [1]
    邓云凯, 王宇. 先进双基SAR技术研究(英文)[J]. 雷达学报, 2014, 3(1): 1–9. doi: 10.3724/SP.J.1300.2014.14026

    DENG Yunkai and WANG R. Exploration of advanced bistatic SAR experiments (in English)[J]. Journal of Radars, 2014, 3(1): 1–9. doi: 10.3724/SP.J.1300.2014.14026
    [2]
    BRENNER A R and ENDER J H G. Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(2): 152–162. doi: 10.1049/ip-rsn:20050044
    [3]
    CANTALLOUBE H and DUBOIS-FERNANDEZ P. Airborne X-band SAR imaging with 10 cm resolution: Technical challenge and preliminary results[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(2): 163–176. doi: 10.1049/ip-rsn:20045097
    [4]
    郭江哲, 朱岱寅, 毛新华. 一种SAR两维自聚焦算法的FPGA实现[J]. 雷达学报, 2016, 5(4): 444–452. doi: 10.12000/JR15092

    GUO Jiangzhe, ZHU Daiyin, and MAO Xinhua. FPGA implementation of a SAR two-dimensional autofocus approach[J]. Journal of Radars, 2016, 5(4): 444–452. doi: 10.12000/JR15092
    [5]
    MAO Xinhua, ZHU Daiyin, and ZHU Zhaoda. Autofocus correction of APE and residual RCM in spotlight SAR polar format imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2693–2706. doi: 10.1109/TAES.2013.6621846
    [6]
    WAHL D E, EICHEL P H, GHIGLIA D C. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752
    [7]
    DING Zegang, ZENG Tao, and YAO Di. Motion measurement errors in bistatic spotlight SAR[C]. 2009 IET International Radar Conference, Guilin, China, 2009. doi: 10.1049/cp.2009.0099.
    [8]
    ZHOU Song, XING Mengdao, XIA Xianggen, et al. An Azimuth-dependent Phase Gradient Autofocus (APGA) algorithm for airborne/stationary BiSAR imagery[J]. IEEE geoscience and Remote Sensing Letters, 2013, 10(6): 1290–1294. doi: 10.1109/LGRS.2013.2237749
    [9]
    PU Wei, WU Junjie, HUANG Yulin, et al. Nonsystematic range cell migration analysis and autofocus correction for bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6556–6570. doi: 10.1109/TGRS.2018.2840424
    [10]
    MAO Xinhua and ZHU Daiyin. Two-dimensional autofocus for spotlight SAR polar format imagery[J]. IEEE Transactions on Computational Imaging, 2016, 2(4): 524–539. doi: 10.1109/TCI.2016.2612945
    [11]
    丁晶. 单/双基SAR极坐标格式算法研究[D]. [硕士论文], 南京航空航天大学, 2017: 38–44.

    DING Jing. Study on polar format algorithm for monostatic/Bistatic SAR[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2017: 38–44.
    [12]
    CARRARA W G, GOODMAN R S, and MAJEWSKI R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Norwood: Artech House, 1995: 56–89.
    [13]
    孙进平, 白霞, 毛士艺. 聚束模式双基地SAR极坐标格式成像算法研究[J]. 电子学报, 2008, 36(12): 2324–2327. doi: 10.3321/j.issn:0372-2112.2008.12.010

    SUN Jinping, BAI Xia, and MAO Shiyi. The PFA imaging algorithm for spotlight mode bistatic SAR[J]. Acta Electronica Sinica, 2008, 36(12): 2324–2327. doi: 10.3321/j.issn:0372-2112.2008.12.010
    [14]
    MAO Xinhua, ZHU Daiyin, and WU Di. A new formulation of polar format algorithm for bistatic spotlight SAR[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015. doi: 10.1109/RADAR.2015.7130972.
    [15]
    毛新华. PFA在SAR超高分辨率成像和SAR/GMTI中的应用研究[D]. [博士论文], 南京航空航天大学, 2009: 20–30.

    MAO Xinhua. Study on the application of PFA in SAR ultra-high resolution imaging and SAR/GMTI[D]. [Ph. D. dissertation], Nanjing University of Aeronautics and Astronautics, 2009: 20–30.
  • Relative Articles

    [1]FU Hongwei, ZHANG Zhang, LUO Yu, ZHOU Zhichao, CHEN Zhanye, JIAN Xin, CHA Hao. Passive Radar Using LEO Communication Satellite Signals: An Overview and Prospect[J]. Journal of Radars. doi: 10.12000/JR24219
    [2]ZHOU Zibo, ZHANG Chaowei, XIA Saiqiang, XU Daoming, GAO Yan, ZENG Xiaoshuang. Feature Extraction of Rotor Blade Targets Based on Phase Compensation in a Passive Bistatic Radar[J]. Journal of Radars, 2021, 10(6): 929-943. doi: 10.12000/JR21132
    [3]WAN Xianrong, LIU Tongtong, YI Jianxin, DAN Yangpeng, HU Xiaokai. System Design and Target Detection Experiments for LTE-based Passive Radar[J]. Journal of Radars, 2020, 9(6): 967-973. doi: 10.12000/JR18111
    [4]JIN Biao, LI Cong, ZHANG Zhenkai. Group Target Track Initiation Method Aided by Echo Amplitude Information[J]. Journal of Radars, 2020, 9(4): 723-729. doi: 10.12000/JR19088
    [5]Liu Yuqi, Yi Jianxin, Wan Xianrong, Cheng Feng, Rao Yunhua, Gong Ziping. Experimental Research on Micro-Doppler Effect of Multi-rotor Drone with Digital Television Based Passive Radar[J]. Journal of Radars, 2018, 7(5): 585-592. doi: 10.12000/JR18062
    [6]Li Yuqian, Yi Jianxin, Wan Xianrong, Liu Yuqi, Zhan Weijie. Helicopter Rotor Parameter Estimation Method for Passive Radar[J]. Journal of Radars, 2018, 7(3): 313-319. doi: 10.12000/JR17125
    [7]Wang Benjing, Yi Jianxin, Wan Xianrong, Dan Yangpeng. Inter-frame Ambiguity Analysis and Suppression of LTE Signal for Passive Radar[J]. Journal of Radars, 2018, 7(4): 514-522. doi: 10.12000/JR18025
    [8]Wan Xianrong, Sun Xuwang, Yi Jianxin, Lü Min, Rao Yunhua. Synchronous Design and Test of Distributed Passive Radar Systems Based on Digital Broadcasting and Television[J]. Journal of Radars, 2017, 6(1): 65-72. doi: 10.12000/JR16134
    [9]Rao Yunhua, Ming Yanzhen, Lin Jing, Zhu Fengyuan, Wan Xianrong, Gong Ziping. Reference Signal Reconstruction and Its Impact on Detection Performance of WiFi-based Passive Radar[J]. Journal of Radars, 2016, 5(3): 284-292. doi: 10.12000/JR15108
    [10]Jiang Tie-zhen, Xiao Wen-shu, Li Da-sheng, Liao Tong-qing. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. doi: 10.12000/JR14080
    [11]Cheng Feng, Zeng Qing-ping, Gong Zi-ping. First-order Sea Clutter Modeling and Simulation of High Frequency Passive Radar[J]. Journal of Radars, 2014, 3(6): 720-726. doi: 10.12000/JR14131
    [12]Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157
    [13]Wu Yong, Wang Jun. Application of Mixed Kalman Filter to Passive Radar Target Tracking[J]. Journal of Radars, 2014, 3(6): 652-659. doi: 10.12000/JR14113
    [14]Wan Wei, Li Huang, Hong Yang. Issues on Multi-polarization of GNSS-R for Passive Radar Detection[J]. Journal of Radars, 2014, 3(6): 641-651. doi: 10.12000/JR14095
    [15]Wan Xian-rong, Yi Jian-xin, Cheng Feng, Rao Yun-hua, Gong Zi-ping, Ke Heng-yu. Single Frequency Network Based Distributed Passive Radar Technology[J]. Journal of Radars, 2014, 3(6): 623-631. doi: 10.12000/JR14156
    [16]Zhang Qiang, Wan Xian-rong, Fu Yan, Rao Yun-hua, Gong Zi-ping. Ambiguity Function Analysis and Processing for Passive Radar Based on CDR Digital Audio Broadcasting[J]. Journal of Radars, 2014, 3(6): 702-710. doi: 10.12000/JR14050
    [17]Lu Chuan-guo, Feng Xin-xi, Kong Yun-bo, Zeng Rong, Li Hong-Ying. Track Initiation Based on Parallel Hough Transform[J]. Journal of Radars, 2013, 2(3): 292-299. doi: 10.3724/SP.J.1300.2013.13036
    [18]RAO Yun-Hua, ZHU Feng-Yuan, ZHANG Xiu-Zhi, WAN Xian-Rong, GONG Zi-Ping. Ambiguity Function Analysis and Side Peaks Suppression of WiFi Signal for Passive Radar[J]. Journal of Radars, 2012, 1(3): 225-231. doi: 10.3724/SP.J.1300.2012.20061
    [19]Wan Xian-rong. An Overview on Development of Passive Radar Based on the LowFrequency Band Digital Broadcasting and TV Signals[J]. Journal of Radars, 2012, 1(2): 109-123. doi: 10.3724/SP.J.1300.2012.20027
    [20]Wan Xian-rong, Zhao Zhi-xin, Ke Heng-yu, Cheng Feng, Rao Yun-hua, Gong Zi-ping. Experimental Research of HF Passive Radar Based on DRM Digital AM Broadcasting[J]. Journal of Radars, 2012, 1(1): 11-18. doi: 10.3724/SP.J.1300.2013.20001
  • Cited by

    Periodical cited type(12)

    1. 田正秋,何思远,蔡志灏,王筱祎. 介质粗糙地面上目标散射中心正向建模与分析. 电波科学学报. 2025(01): 12-20 .
    2. 靳明振,杨申,吴中杰,张会强,刘盛启. 基于RANSAC和三维谱峰分析的全姿态散射中心建模. 雷达学报. 2024(02): 471-484 . 本站查看
    3. 罗汝,赵凌君,何奇山,计科峰,匡纲要. SAR图像飞机目标智能检测识别技术研究进展与展望. 雷达学报. 2024(02): 307-330 . 本站查看
    4. 王粲雨,蒋李兵,任笑圆,王壮. 空间目标ISAR图像三维基元表示方法. 雷达学报. 2024(03): 682-695 . 本站查看
    5. 陆睿民,李卫东,王锐,张帆,李沐阳,胡程. 最优字典选择多频段雷达信号宽带融合. 电子与信息学报. 2024(05): 2076-2086 .
    6. 李臻,化梦博,杨泽望,刘建,何思远,边志丹. 雷达目标散射中心正向模型扩展及散射特性分析. 电讯技术. 2024(11): 1850-1857 .
    7. YIN Hongcheng,YAN Hua. Parametric modeling and applications of target scattering centers: a review. Journal of Systems Engineering and Electronics. 2024(06): 1411-1427 .
    8. 孙圣凯,何姿,管灵,董纯柱,樊振宏,丁大志,殷红成. 基于散射中心模型的目标电磁特性智能生成网络研究. 电波科学学报. 2023(05): 835-844 .
    9. 魏少明,洪文衍,王俊,耿雪胤,金明明. 基于改进矩阵束的超宽带一维散射中心提取方法. 电子与信息学报. 2022(04): 1231-1240 .
    10. 邹嘉玮,何思远,杨泽望,刘建,边志丹. 复杂目标雷达图像形成机理分析. 科学技术与工程. 2022(28): 12468-12475 .
    11. 邢孟道,谢意远,高悦欣,张金松,刘嘉铭,吴之鑫. 电磁散射特征提取与成像识别算法综述. 雷达学报. 2022(06): 921-942 . 本站查看
    12. 李高源,王晋宇,张长弓,冯博迪,高宇歌,杨海涛. SAR图像仿真方法研究综述. 计算机工程与应用. 2021(15): 62-72 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.1 %FULLTEXT: 25.1 %META: 59.1 %META: 59.1 %PDF: 15.8 %PDF: 15.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.7 %其他: 8.7 %其他: 7.3 %其他: 7.3 %Indianapolis: 0.3 %Indianapolis: 0.3 %Sceaux: 0.3 %Sceaux: 0.3 %Taichung: 0.1 %Taichung: 0.1 %Thane: 0.3 %Thane: 0.3 %上海: 1.3 %上海: 1.3 %东京: 0.4 %东京: 0.4 %东京都: 0.1 %东京都: 0.1 %东莞: 0.2 %东莞: 0.2 %临夏: 0.1 %临夏: 0.1 %伊斯兰堡: 1.4 %伊斯兰堡: 1.4 %佛罗伦萨: 0.3 %佛罗伦萨: 0.3 %保定: 0.1 %保定: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 9.7 %北京: 9.7 %十堰: 0.1 %十堰: 0.1 %南京: 2.0 %南京: 2.0 %南昌: 0.3 %南昌: 0.3 %南通: 0.2 %南通: 0.2 %厦门: 0.2 %厦门: 0.2 %合肥: 0.7 %合肥: 0.7 %呼和浩特: 1.4 %呼和浩特: 1.4 %哥伦布: 0.2 %哥伦布: 0.2 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.8 %天津: 0.8 %威海: 0.3 %威海: 0.3 %宁波: 0.3 %宁波: 0.3 %安康: 0.4 %安康: 0.4 %密蘇里城: 0.3 %密蘇里城: 0.3 %常州: 0.4 %常州: 0.4 %常德: 0.1 %常德: 0.1 %广州: 1.9 %广州: 1.9 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %开封: 0.9 %开封: 0.9 %张家口: 0.7 %张家口: 0.7 %徐州: 0.1 %徐州: 0.1 %德罕: 0.1 %德罕: 0.1 %成都: 2.0 %成都: 2.0 %扬州: 0.1 %扬州: 0.1 %新德里: 0.4 %新德里: 0.4 %无锡: 0.2 %无锡: 0.2 %昆明: 0.7 %昆明: 0.7 %本溪: 0.2 %本溪: 0.2 %杭州: 1.3 %杭州: 1.3 %枣庄: 0.1 %枣庄: 0.1 %格兰特县: 0.4 %格兰特县: 0.4 %桂林: 0.2 %桂林: 0.2 %榆林: 0.1 %榆林: 0.1 %武威: 0.1 %武威: 0.1 %武汉: 2.9 %武汉: 2.9 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.3 %济南: 0.3 %海口: 0.1 %海口: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 0.6 %深圳: 0.6 %渭南: 0.2 %渭南: 0.2 %湖州: 0.2 %湖州: 0.2 %漯河: 0.7 %漯河: 0.7 %潍坊: 0.2 %潍坊: 0.2 %烟台: 0.3 %烟台: 0.3 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.5 %石家庄: 0.5 %纽约: 0.3 %纽约: 0.3 %芒廷维尤: 21.5 %芒廷维尤: 21.5 %芝加哥: 1.9 %芝加哥: 1.9 %苏州: 0.2 %苏州: 0.2 %葫芦岛: 0.1 %葫芦岛: 0.1 %蒙特利尔: 0.2 %蒙特利尔: 0.2 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.2 %衡阳: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 8.2 %西宁: 8.2 %西安: 3.7 %西安: 3.7 %诺沃克: 3.6 %诺沃克: 3.6 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.0 %运城: 1.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %重庆: 0.8 %重庆: 0.8 %铁岭: 0.1 %铁岭: 0.1 %长沙: 1.2 %长沙: 1.2 %青岛: 1.1 %青岛: 1.1 %香港: 0.1 %香港: 0.1 %黄冈: 0.2 %黄冈: 0.2 %齐齐哈尔: 1.0 %齐齐哈尔: 1.0 %其他其他IndianapolisSceauxTaichungThane上海东京东京都东莞临夏伊斯兰堡佛罗伦萨保定兰州北京十堰南京南昌南通厦门合肥呼和浩特哥伦布唐山嘉兴天津威海宁波安康密蘇里城常州常德广州库比蒂诺开封张家口徐州德罕成都扬州新德里无锡昆明本溪杭州枣庄格兰特县桂林榆林武威武汉沈阳洛阳济南海口淮南深圳渭南湖州漯河潍坊烟台珠海石家庄纽约芒廷维尤芝加哥苏州葫芦岛蒙特利尔衡水衡阳襄阳西宁西安诺沃克贵阳运城邯郸郑州重庆铁岭长沙青岛香港黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2669) PDF downloads(160) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint