SONG Jiaqi and TAO Haihong. A fast parameter estimation algorithm for near-field non-circular signals[J]. Journal of Radars, 2020, 9(4): 632–639. doi: 10.12000/JR20053
Citation: Wang Benjing, Yi Jianxin, Wan Xianrong, Dan Yangpeng. Inter-frame Ambiguity Analysis and Suppression of LTE Signal for Passive Radar[J]. Journal of Radars, 2018, 7(4): 514-522. doi: 10.12000/JR18025

Inter-frame Ambiguity Analysis and Suppression of LTE Signal for Passive Radar

DOI: 10.12000/JR18025
Funds:  National Key Research and Development Program (2016YFB0502403), Postdoctoral Innovative Talent Support Program (BX201600117), The National Natural Science Foundation of China (61701350, 61331012), Science and Technology Support Project of Hubei Province (2015BCE075), The Natural Science Foundation of Hubei Province (2016CFA061)
  • Received Date: 2018-03-23
  • Rev Recd Date: 2018-05-21
  • Publish Date: 2018-08-28
  • Long Term Evolution (LTE) is a new type of illuminators of opportunity for passive radars, with the advantages of broad bandwidth, high coverage, and strong generality. In this paper, the ambiguity function of Frequency Division Duplexing Long Term Evolution (FDD-LTE) signal is analyzed as an illuminator of opportunity. According to the measured signal, it was found that it is necessary to suppress the inter-frame ambiguity strips in the ambiguity function. Furthermore, themechanism of these inter-frame ambiguity strips was analyzed in detail, which revealed that the LTE signal frame structure is the main factor that causes these inter-frame ambiguity strips and is the major energy source of coherent integration. Thus, a method based on Orthogonal Frequency Division Multiplexing (OFDM) symbol subcarrier coefficient normalization is proposed to suppress these inter-frame ambiguity strips. Simulation and experimental results show that the method can suppress inter-frame ambiguity strips effectively, but does not affect coherent integration, which is the foundation of target detection.

     

  • [1]
    万显荣. 基于低频段数字广播电视信号的外辐射源雷达发展现状与趋势[J]. 雷达学报, 2012, 1(2): 109–123. DOI: 10.3724/SP.J.1300.2012.20027

    Wan Xian-rong. An overview on development of passive radar based on the low frequency band digital broadcasting and TV signals[J]. Journal of Radars, 2012, 1(2): 109–123. DOI: 10.3724/SP.J.1300.2012.20027
    [2]
    Poullin D. Passive detection using digital broadcasters (DAB, DVB) with COFDM modulation[J]. IEE Proceedings - Radar,Sonar and Navigation, 2005, 152(3): 143–152. DOI: 10.1049/ip-rsn:20045017
    [3]
    Tao R, Gao Z W, and Wang Y. Side peaks interference suppression in DVB-T based passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3610–3619. DOI: 10.1109/TAES.2012.6324746
    [4]
    金威, 吕晓德, 向茂生. 基于DVB-S信号的外辐射源雷达的模糊函数及分辨特性分析[J]. 雷达学报, 2012, 1(4): 380–386. DOI: 10.3724/SP.J.1300.2012.20077

    Jin Wei, Lü Xiao-de, and Xiang Mao-sheng. Ambiguity function and resolution characteristic analysis of DVB-S signal for passive radar[J]. Journal of Radars, 2012, 1(4): 380–386. DOI: 10.3724/SP.J.1300.2012.20077
    [5]
    Wan X R, Yi J X, Zhao Z X, et al. Experimental research for CMMB-based passive radar under a multipath environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 70–85. DOI: 10.1109/TAES.2013.120737
    [6]
    万显荣, 唐慧, 王俊芳, 等. DTMB外辐射源雷达参考信号纯度对探测性能的影响分析[J]. 系统工程与电子技术, 2013, 35(4): 725–729. DOI: 10.3969/j.issn.1001-506X.2013.04.08

    Wan Xian-rong, Tang Hui, Wang Jun-fang, et al. Influence of reference signal purity on target detection performance in DTMB-based passive radar[J]. Systems Engineering and Electronics, 2013, 35(4): 725–729. DOI: 10.3969/j.issn.1001-506X.2013.04.08
    [7]
    Ma H, Antoniou M, Pastina D, et al. Maritime moving target indication using passive GNSS-based bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 115–130. DOI: 10.1109/TAES.2017.2739900
    [8]
    陈刚, 王俊, 王珏, 等. GSM信号外辐射源雷达同频干扰抑制方法[J]. 西安电子科技大学学报(自然科学版), 2017, 44(6): 37–42. DOI: 10.3969/j.issn.1001-2400.2017.06.007

    Chen Gang, Wang Jun, Wang Yu, et al. Method of co-channel interference cancellation for the GSM based PBR[J]. Journal of Xidian University(Natural Science), 2017, 44(6): 37–42. DOI: 10.3969/j.issn.1001-2400.2017.06.007
    [9]
    Wang Q, Hou C P, and Lu Y L. An experimental study of WiMAX-based passive radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(12): 3502–3510. DOI: 10.1109/TMTT.2010.2080630
    [10]
    饶云华, 朱逢园, 张修志, 等. WiFi外辐射源雷达信号模糊函数及副峰抑制分析[J]. 雷达学报, 2012, 1(3): 225–231. DOI: 10.3724/SP.J.1300.2012.20061

    Rao Yun-hua, Zhu Feng-yuan, Zhang Xiu-zhi, et al. Ambiguity function analysis and side peaks suppression of WiFi signal for passive radar[J]. Journal of Radars, 2012, 1(3): 225–231. DOI: 10.3724/SP.J.1300.2012.20061
    [11]
    汪清, 侯春萍, Lu Yi-long. 基于移动WiMAX的被动雷达信号分析及模糊函数性质研究[J]. 计算机应用研究, 2010, 27(6): 2226–2228, 2231. DOI: 10.3969/j.issn.1001-3695.2010.06.065

    Wang Qing, Hou Chun-ping, and Lu Yi-long. Signal structure and ambiguity function features of mobile WiMAX based passive radar[J]. Application Research of Computers, 2010, 27(6): 2226–2228, 2231. DOI: 10.3969/j.issn.1001-3695.2010.06.065
    [12]
    Evers A and Jackson J A. Cross-ambiguity characterization of communication waveform features for passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3440–3455. DOI: 10.1109/TAES.2015.140622
    [13]
    Evers A and Jackson J A. Analysis of an LTE waveform for radar applications[C]. Proceedings of 2014 IEEE Radar Conference, Cincinnati, OH, USA, 2014: 200–205
    [14]
    Salah A A, Abdullah R S A R, Ismail A, et al.. Feasibility study of LTE signal as a new illuminators of opportunity for passive radar applications[C]. Proceedings of 2013 IEEE International RF and Microwave Conference, Penang, Malaysia, 2016: 258–262. DOI: 10.1109/RFM.2013.6757261
    [15]
    Abdullah R S A R, Salah A A, Ismail A, et al. Experimental investigation on target detection and tracking in passive radar using long-term evolution signal[J]. IET Radar,Sonar&Navigation, 2016, 10(3): 577–585. DOI: 10.1049/iet-rsn.2015.0346
    [16]
    Salah A A, Abdullah R S A R, Ismail A, et al. Experimental study of LTE signals as illuminators of opportunity for passive bistatic radar applications[J]. Electronics Letters, 2014, 50(7): 545–547. DOI: 10.1049/el.2014.0237
    [17]
    黄威振. 基于4G基站信号的被动雷达相关技术研究[D]. [硕士论文], 电子科技大学, 2016: 27–29

    Huang Wei-zhen. Research on passive radar related technique based on 4G base station signal[D]. [Master dissertation], University of Electronic Science and Technology of China, 2016: 27–29
    [18]
    Wang Q, Huang S, Yang J Y, et al.. Waveform Analysis of LTE Signal for Passive Radar Application[M]//Zu Q H, Vargas-Vera M, and Hu B. Pervasive Computing and the Networked World. Cham: Springer, 2013: 632–642
    [19]
    万显荣, 岑博, 程丰, 等. 基于CMMB的外辐射源雷达信号模糊函数分析与处理[J]. 电子与信息学报, 2011, 33(10): 2489–2493. DOI: 10.3742/SP.J.1146.2011.00147

    Wan X R, Cen Bo, Cheng Feng, et al. Ambiguity function analysis and processing of CMMB signal based passive radar[J]. Journal of Electronics&Information Technology, 2011, 33(10): 2489–2493. DOI: 10.3742/SP.J.1146.2011.00147
    [20]
    Zyren J. Overview of the 3GPP long term evolution physical layer[R]. Austen: Freescale Semiconductor, 2007
    [21]
    ETSI. Physical Channels and Modulation[M]. 3GPP TS 36.211 V13.2.0. Nice: ETSI
    [22]
    Richard M A著. 雷达信号处理基础[M]. 邢孟道, 王彤, 李真芳, 等译. 北京: 电子工业出版社, 2008: 262–279

    Richard M A. Fundamentals of Radar Signal Processing[M]. Tran. Xing Meng-dao, Wang Tong, Li Zhen-fang, et al.. Beijing: Publishing House of Electronics Industry, 2008: 262–279
    [23]
    Petri D. Definition and analysis of homeland security systems based on software defined passive radars[D]. [Ph.D. dissertation], University of Pisa, 2011: 41–51
    [24]
    Fang L, Wan X R, Fang G, et al. Passive detection using orthogonal frequency division multiplex signals of opportunity without multipath clutter cancellation[J]. IET Radar,Sonar&Navigation, 2016, 10(3): 516–524. DOI: 10.1049/iet-rsn.2015.0238
    [25]
    Searle S, Palmer J, Davis L, et al.. Evaluation of the ambiguity function for passive radar with OFDM transmissions[C]. Proceedings of 2014 IEEE Radar Conference, Cincinnati, OH, USA, 2014: 1040–1045. DOI: 10.1109/RADAR.2014.6875747
  • Cited by

    Periodical cited type(13)

    1. 赵金奇,李宇轩,刘子蓉,安庆,宋时雨,牛玉芬. 基于相似性衡量函数优化的SAR时空极化信息一体化洪涝变化检测方法. 测绘学报. 2024(12): 2375-2390 .
    2. 庄会富,王鹏,苏亚男,张祥,范洪冬. 基于多源时序SAR数据的涿州洪涝淹没动态监测. 自然资源遥感. 2024(04): 218-228 .
    3. 赵维谚,沈志,徐真,杨亮,雷明阳. 基于增强学习机制的SAR图像水域分割方法. 计算机应用与软件. 2023(05): 262-265+337 .
    4. 王磊,连增增. 基于Sentinel-1A的2020年鄱阳湖流域洪水灾害遥感监测. 地理空间信息. 2022(06): 43-46 .
    5. 李宁,郭志顺,毋琳,赵建辉. River-Net:面向河道提取的Refined-Lee Kernel深度神经网络模型. 雷达学报. 2022(03): 324-334 . 本站查看
    6. 黄平平,段盈宏,谭维贤,徐伟. 基于融合差异图的变化检测方法及其在洪灾中的应用. 雷达学报. 2021(01): 143-158 . 本站查看
    7. 董天成,杨肖,李卉,张志,齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取. 国土资源遥感. 2021(01): 129-137 .
    8. 李宁,吕宗森,郭拯危. 联合变化检测与子带对消技术的SAR图像干扰抑制方法. 系统工程与电子技术. 2021(09): 2484-2492 .
    9. 郭山川,杜培军,蒙亚平,王欣,唐鹏飞,林聪,夏俊士. 时序Sentinel-1A数据支持的长江中下游汛情动态监测. 遥感学报. 2021(10): 2127-2141 .
    10. 李宁,牛世林. 基于局部超分辨重建的高精度SAR图像水域分割方法. 雷达学报. 2020(01): 174-184 . 本站查看
    11. 吴瑞娟,何秀凤,王静. 结合像元级与对象级的滨海湿地变化检测方法. 地球信息科学学报. 2020(10): 2078-2087 .
    12. 冀广宇,董勇伟,卜运成,李焱磊,周良将,梁兴东. 基于目标相干性表征差异的多波段SAR相干变化检测方法. 雷达学报. 2018(04): 455-464 . 本站查看
    13. 牛世林,郭拯危,李宁,毋琳,赵建辉. 星载SAR水域分割研究进展与趋势分析. 聊城大学学报(自然科学版). 2018(02): 72-86 .

    Other cited types(16)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3090) PDF downloads(295) Cited by(29)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint