YU Wenxian. Automatic target recognition from an engineering perspective[J]. Journal of Radars, 2022, 11(5): 737–752. doi: 10.12000/JR22178
Citation: FU Hongwei, ZHANG Zhang, LUO Yu, et al. Passive radar using LEO communication satellite signals: an overview and prospect[J]. Journal of Radars, in press. doi: 10.12000/JR24219

Passive Radar Using LEO Communication Satellite Signals: An Overview and Prospect

DOI: 10.12000/JR24219 CSTR: 32380.14.JR24219
Funds:  The National Natural Science Foundation of China (U21A20448), The Fundamental Research Funds for the Central Universities (2024CDJGF-012)
More Information
  • Compared to ground-based external radiation source radar, satellite signal-based external radiation source radar (i.e., satellite signal external radiation source radar) offers advantages such as global, all-time, and all-weather coverage, which can compensate for the limitations of ground-based external radiation source radar in terms of maritime coverage. In contrast to medium and high-altitude satellite signals, Low-Earth Orbit (LEO) communication satellite signals have advantages such as strong reception power and a large number of satellites, which can provide substantial detection range and accuracy for passive detection of maritime targets. In response to future development needs, this paper provides a detailed discussion of the research status and application prospects of satellite signal external radiation source radar, and presents a feasibility analysis for constructing a low-earth orbit communication satellite signal external radiation source radar system using Iridium and Starlink, two types of LEO communication satellite systems, which integrates high and low frequencies with both wide and narrow bandwidths. Based on this, the paper summarizes the technical challenges and potential solutions in the development of low-earth orbit communication satellite signal external radiation source radar systems. The aforementioned research can serve as an important reference for wide-area external radiation source radar detection.

     

  • [1]
    KUSCHEL H. Approaching 80 years of passive radar[C]. 2013 International Conference on Radar, Adelaide, Australia, 2013: 213–217. doi: 10.1109/RADAR.2013.6651987.
    [2]
    宋杰, 何友, 蔡复青, 等. 基于非合作雷达辐射源的无源雷达技术综述[J]. 系统工程与电子技术, 2009, 31(9): 2151–2156, 2180. doi: 10.3321/j.issn:1001-506X.2009.09.028.

    SONG Jie, HE You, CAI Fuqing, et al. Overview of passive radar technology based on non-cooperative radar illuminator[J]. Systems Engineering and Electronics, 2009, 31(9): 2151–2156, 2180. doi: 10.3321/j.issn:1001-506X.2009.09.028.
    [3]
    郑恒, 王俊, 江胜利, 等. 外辐射源雷达[M]. 北京: 国防工业出版社, 2017: 1–10.

    ZHENG Heng, WANG Jun, JIANG Shengli, et al. Passive Bistatic Radar[M]. Beijing, China: National Defense Industry Press, 2017: 1–10.
    [4]
    万显荣, 易建新, 占伟杰, 等. 基于多照射源的被动雷达研究进展与发展趋势[J]. 雷达学报, 2020, 9(6): 939–958. doi: 10.12000/JR20143.

    WAN Xianrong, YI Jianxin, ZHAN Weijie, et al. Research progress and development trend of the multi-illuminator-based passive radar[J]. Journal of Radars, 2020, 9(6): 939–958. doi: 10.12000/JR20143.
    [5]
    WILLIS N J and GRIFFITHS H D. Advances in bistatic radar (Willis, NJ and Griffiths, HD, Eds.; 2007) [Book Review][J]. IEEE Aerospace and Electronic Systems Magazine, 2008, 23(7): 46–46. doi: 10.1109/MAES.2008.4579292.
    [6]
    GRIFFITHS H and WILLIS N. Klein Heidelberg-the first modern bistatic radar system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1571–1588. doi: 10.1109/TAES.2010.5595580.
    [7]
    GRIFFITHS H D and LONG N R W. Television-based bistatic radar[J]. IEE Proceedings F (Communications, Radar and Signal Processing), 1986, 133(7): 649–657. doi: 10.1049/ip-f-1.1986.0104.
    [8]
    王小谟, 吴曼青, 王政. 未来战争中的“沉默哨兵”——外辐射源目标探测与跟踪雷达[J]. 现代军事, 2000(10): 10–12.

    WANG Xiaomo, WU Manqing, and WANG Zhen. ‘Silence Sentinel’ in future wars—external radiation source target detection and tracking radar[J]. Modern Military, 2000(10): 10–12.
    [9]
    HOWLAND P E, MAKSIMIUK D, and REITSMA G. FM radio based bistatic radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(3): 107–115. doi: 10.1049/ip-rsn:20045077.
    [10]
    EDRICH M, SCHROEDER A, and MEYER F. Design and performance evaluation of a mature FM/DAB/DVB-T multi-illuminator passive radar system[J]. IET Radar, Sonar & Navigation, 2014, 8(2): 114–122. doi: 10.1049/iet-rsn.2013.0162.
    [11]
    O’HAGAN D W, KUSCHEL H, UMMENHOFER M, et al. A multi-frequency hybrid passive radar concept for medium range air surveillance[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(10): 6–15. doi: 10.1109/MAES.2012.6373907.
    [12]
    BIČÍK P. Passive radar: Here comes the new generation VERA-NG[C]. The 11-th International Radar Symposium, Vilnius, Lithuania, 2010: 1–4.
    [13]
    贾玉贵. 现代对空情报雷达[M]. 北京: 国防工业出版社, 2004: 169.

    JIA Yugui. Modern Air Surveillance Radar[M]. Beijing, China: National Defense Industry Press, 2004: 169.
    [14]
    吴翼虎. 外辐射源雷达目标检测与定位技术[D]. [硕士论文], 西安电子科技大学, 2010. doi: 10.7666/d.Y1706760.

    WU Yihu. Target detection and location technology in external illuminator based passive radar[D]. [Master dissertation], Xidian University, 2010. doi: 10.7666/d.Y1706760.
    [15]
    杨广平. 外辐射源雷达关键技术研究[J]. 现代雷达, 2008, 30(8): 5–9. doi: 10.3969/j.issn.1004-7859.2008.08.002.

    YANG Guangping. A study on key technology of passive radar[J]. Modern Radar, 2008, 30(8): 5–9. doi: 10.3969/j.issn.1004-7859.2008.08.002.
    [16]
    郑雨晴, 艾小锋, 王满喜, 等. 以全球导航卫星系统为辐射源的前向散射雷达发展综述[J]. 电子与信息学报, 2024, 46(8): 3073–3093. doi: 10.11999/JEIT231255.

    ZHENG Yuqing, AI Xiaofeng, WANG Manxi, et al. Global navigation satellite system forward scatter radar: A review[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3073–3093. doi: 10.11999/JEIT231255.
    [17]
    李中余, 黄川, 武俊杰, 等. 基于GNSS的无源雷达海面目标检测技术综述[J]. 雷达科学与技术, 2020, 18(4): 404–416. doi: 10.3969/j.issn.1672-2337.2020.04.009.

    LI Zhongyu, HUANG Chuan, WU Junjie, et al. Overview of maritime target detection techniques using GNSS-based passive radar[J]. Radar Science and Technology, 2020, 18(4): 404–416. doi: 10.3969/j.issn.1672-2337.2020.04.009.
    [18]
    HUANG Chuan, LI Zhongyu, WU Junjie, et al. A long-time integration method for GNSS-based passive radar detection of marine target with multi-stage motions[C]. IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, USA, 2020: 2815–2818. doi: 10.1109/IGARSS39084.2020.9324042.
    [19]
    陈江宁. 基于高轨卫星外辐射源微弱目标检测技术研究[D]. [硕士论文], 电子科技大学, 2021. doi: 10.27005/d.cnki.gdzku.2021.001367.

    CHEN Jiangning. Research on dim target detection technology based on external transmitter of geostationary earth orbit satellite[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021. doi: 10.27005/d.cnki.gdzku.2021.001367.
    [20]
    李唐, 王峰, 杨新宇, 等. GNSS外辐射源空中目标探测研究现状及发展[J]. 无线电工程, 2023, 53(7): 1639–1651. doi: 10.3969/j.issn.1003-3106.2023.07.018.

    LI Tang, WANG Feng, YANG Xinyu, et al. Development and status of air target detection from GNSS-based passive radar[J]. Radio Engineering, 2023, 53(7): 1639–1651. doi: 10.3969/j.issn.1003-3106.2023.07.018.
    [21]
    LYU Xiaoyong, STOVE A, GASHINOVA M, et al. Ambiguity function of Inmarsat BGAN signal for radar application[J]. Electronics Letters, 2016, 52(18): 1557–1559. doi: 10.1049/el.2016.1400.
    [22]
    FOSSA C E, RAINES R A, GUNSCH G H, et al. An overview of the IRIDIUM (R) low Earth orbit (LEO) satellite system[C]. IEEE 1998 National Aerospace and Electronics Conference. NAECON 1998. Celebrating 50 Years (Cat. No.98CH36185), Dayton, USA, 1998: 152–159. doi: 10.1109/NAECON.1998.710110.
    [23]
    梁健. 铱星STL系统定位方法研究[D]. [硕士论文], 华中科技大学, 2019. doi: 10.27157/d.cnki.ghzku.2019.002798.

    LIANG Jian. Investigation on Iridium STL positioning method[D]. [Master dissertation], Huazhong University of Science & Technology, 2019. doi: 10.27157/d.cnki.ghzku.2019.002798.
    [24]
    秦红磊, 张宇. 星链机会信号定位方法[J]. 导航定位学报, 2023, 11(1): 67–73. doi: 10.3969/j.issn.2095-4999.2023.01.010.

    QIN Honglei and ZHANG Yu. Positioning technology based on Starlink signal of opportunity[J]. Journal of Navigation and Positioning, 2023, 11(1): 67–73. doi: 10.3969/j.issn.2095-4999.2023.01.010.
    [25]
    秦红磊, 武宁, 赵超. 基于视向矢量修正的铱星机会信号多普勒差分定位技术[J]. 北京航空航天大学学报, 2024, 50(3): 748–756. doi: 10.13700/j.bh.1001-5965.2022.0378.

    QIN Honglei, WU Ning, and ZHAO Chao. Differential positioning with doppler measurements from Iridium satellite signals of opportunity based on lines of sight correction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(3): 748–756. doi: 10.13700/j.bh.1001-5965.2022.0378.
    [26]
    崔志颖, 岳富占, 田润, 等. 基于铱星突发信号的导航定位技术研究[J]. 全球定位系统, 2021, 46(2): 77–85. doi: 10.12265/j.gnss.2020121503.

    CUI Zhiying, YUE Fuzhan, TIAN Run, et al. Research on positioning technology based on Iridium burst signal[J]. GNSS World of China, 2021, 46(2): 77–85. doi: 10.12265/j.gnss.2020121503.
    [27]
    GOMEZ-DEL-HOYO P, GRONOWSKI K, and SAMCZYNSKI P. The STARLINK-based passive radar: Preliminary study and first illuminator signal measurements[C]. 2022 23rd International Radar Symposium (IRS), Gdansk, Poland, 2022: 350–355. doi: 10.23919/IRS54158.2022.9905046.
    [28]
    KHALIFE J, NEINAVAIE M, and KASSAS Z M. The first carrier phase tracking and positioning results with Starlink LEO satellite signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1487–1491. doi: 10.1109/TAES.2021.3113880.
    [29]
    KOCH V and WESTPHAL R. New approach to a multistatic passive radar sensor for air/space defense[J]. IEEE Aerospace and Electronic Systems Magazine, 1995, 10(11): 24–32. doi: 10.1109/62.473409.
    [30]
    MCINTOSH J C. Passive three dimensional track of non-cooperative targets through opportunistic use of global positioning system (GPS) and GLONASS signals[EB/OL]. https://www.freepatentsonline.com/6232922.html, 2001.
    [31]
    MOJARRABI B, HOMER J, KUBIK K, et al. Power budget study for passive target detection and imaging using secondary applications of GPS signals in bistatic radar systems[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 449–451. doi: 10.1109/IGARSS.2002.1025069.
    [32]
    BEHAR V and KABAKCHIEV C. Detectability of air targets using bistatic radar based on GPS L5 signals[C]. 2011 12th International Radar Symposium (IRS), Leipzig, Germany, 2011: 212–217.
    [33]
    MA Hui, ANTONIOU M, PASTINA D, et al. Maritime moving target indication using passive GNSS-based bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 115–130. doi: 10.1109/TAES.2017.2739900.
    [34]
    PASTINA D, SANTI F, PIERALICE F, et al. Maritime moving target long time integration for GNSS-based passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 3060–3083. doi: 10.1109/TAES.2018.2840298.
    [35]
    VEREMYEV V I, VOROBEV E N, and KOKORINA Y V. Feasibility study of air target detection by passive radar using satellite-based transmitters[C]. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Saint Petersburg and Moscow, Russia, 2019: 154–157. doi: 10.1109/EIConRus.2019.8656630.
    [36]
    NASSO I and SANTI F. A centralized approach for ship target detection and localization with multi-transmitters GNSS-based passive radar[C]. International Conference on Radar Systems (RADAR 2022), Edinburgh, UK, 2022: 202–207. doi: 10.1049/icp.2022.2316.
    [37]
    NASSO I and SANTI F. Maritime moving target detection and localisation technique for Global Navigation Satellite Signals-based passive multistatic radar[J]. IET Radar, Sonar & Navigation, 2024, 18(1): 93–106. doi: 10.1049/rsn2.12438.
    [38]
    戴剑华, 尹成友. 利用GPS星际照射源的无源侦察定位系统研究[J]. 航天电子对抗, 2001(4): 8–12. doi: 10.3969/j.issn.1673-2421.2001.04.003.

    DAI Jianhua and YIN Chengyou. Research on passive reconnaissance and positioning system using GPS interstellar irradiation source[J]. Aerospace Electronic Warfare, 2001(4): 8–12. doi: 10.3969/j.issn.1673-2421.2001.04.003.
    [39]
    袁伟明, 刘立东, 吴顺君, 等. 一种新的基于GPS照射源的天基雷达信号处理算法[J]. 电波科学学报, 2004, 19(2): 219–222. doi: 10.3969/j.issn.1005-0388.2004.02.019.

    YUAN Weiming, LIU Lidong, WU Shunjun, et al. An novel signal processing algorithm for SBR based on GPS illumination[J]. Chinese Journal of Radio Science, 2004, 19(2): 219–222. doi: 10.3969/j.issn.1005-0388.2004.02.019.
    [40]
    刘立东, 袁伟明, 吴顺君, 等. 基于GPS照射源的天地双基地雷达探测系统[J]. 电波科学学报, 2004, 19(1): 109–113. doi: 10.3969/j.issn.1005-0388.2004.01.024.

    LIU Lidong, YUAN Weiming, WU Shunjun, et al. Bistatic radar system based on GPS illumination[J]. Chinese Journal of Radio Science, 2004, 19(1): 109–113. doi: 10.3969/j.issn.1005-0388.2004.01.024.
    [41]
    HE X, CHERNIAKOV M, and ZENG T. Signal detectability in SS-BSAR with GNSS non-cooperative transmitter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(3): 124–132. doi: 10.1049/ip-rsn:20045042.
    [42]
    杨东凯, 路勇, 张波. 基于导航卫星反射信号的空间飞行器探测定位方法[J]. 航空学报, 2009, 30(1): 143–147. doi: 10.3321/j.issn:1000-6893.2009.01.023.

    YANG Dongkai, LU Yong, and ZHANG Bo. Space vehicle detection and positioning based on reflected signal of navigation satellite[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 143–147. doi: 10.3321/j.issn:1000-6893.2009.01.023.
    [43]
    范梅梅, 廖东平, 丁小峰. 基于北斗卫星信号的无源雷达可行性研究[J]. 信号处理, 2010, 26(4): 631–636. doi: 10.3969/j.issn.1003-0530.2010.04.028.

    FAN Meimei, LIAO Dongping, and DING Xiaofeng. Feasibility research of passive radar based on Beidou navigation and position system[J]. Journal of Signal Processing, 2010, 26(4): 631–636. doi: 10.3969/j.issn.1003-0530.2010.04.028.
    [44]
    蒋铁珍, 肖文书, 李大圣, 等. 基于星载机会源的空间目标外辐射源雷达探测技术可行性研究[J]. 雷达学报, 2014, 3(6): 711–719. doi: 10.12000/JR14080.

    JIANG Tiezhen, XIAO Wenshu, LI Dasheng, et al. Feasibility study on passive-radar detection of space targets using spaceborne illuminators of opportunity[J]. Journal of Radars, 2014, 3(6): 711–719. doi: 10.12000/JR14080.
    [45]
    何征, 蒙继东, 尚社. 基于GPS照射源的双基地新体制雷达探测系统[J]. 电子设计工程, 2015, 23(21): 32–34. doi: 10.3969/j.issn.1674-6236.2015.21.010.

    HE Zheng, MENG Jidong, and SHANG She. New bistatic radar system based on GPS illumination[J]. Electronic Design Engineering, 2015, 23(21): 32–34. doi: 10.3969/j.issn.1674-6236.2015.21.010.
    [46]
    李雨亭. 基于多个GPS卫星信息融合的信号检测[D]. [硕士论文], 西安电子科技大学, 2017. doi: 10.7666/d.D01385181.

    LI Yuting. Signal detection based on multiple GPS satellites information fusion[D]. [Master dissertation], Xidian University, 2017. doi: 10.7666/d.D01385181.
    [47]
    郭丹丹. 基于北斗二代卫星信号的外辐射源雷达目标探测技术[D]. [硕士论文], 西安电子科技大学, 2019. doi: 10.27389/d.cnki.gxadu.2019.000758.

    GUO Dandan. Target detection method in passive bistatic radar based on Beidou II satellite signals[D]. [Master dissertation], Xidian University, 2019. doi: 10.27389/d.cnki.gxadu.2019.000758.
    [48]
    何振宇, 陈武, 杨扬. GPS天-地无源双基地雷达探测海面移动目标[J]. 测绘学报, 2020, 49(12): 1523–1534. doi: 10.11947/j.AGCS.2020.20190487.

    HE Zhenyu, CHEN Wu, and YANG Yang. GPS-based space-surface passive bistatic radar technique for maritime moving target detection[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1523–1534. doi: 10.11947/j.AGCS.2020.20190487.
    [49]
    HUANG Chuan, LI Zhongyu, WU Junjie, et al. Multistatic Beidou-based passive radar for maritime moving target detection and localization[C]. IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 2175–2177. doi: 10.1109/IGARSS.2019.8900548.
    [50]
    LI Zhongyu, HUANG Chuan, WU Junjie, et al. Investigation and first experiment of BeiDou-based passive radar vessel target imaging[C]. 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), Gran Canaria, Spain, 2022: 1–4. doi: 10.23919/AT-AP-RASC54737.2022.9814205.
    [51]
    LI Zhongyu, HUANG Chuan, SUN Zhichao, et al. BeiDou-based passive multistatic radar maritime moving target detection technique via space-time hybrid integration processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5802313. doi: 10.1109/TGRS.2021.3128650.
    [52]
    HE Zhenyu, YANG Yang, CHEN Wu, et al. Moving target imaging using GNSS-based passive bistatic synthetic aperture radar[J]. Remote Sensing, 2020, 12(20): 3356. doi: 10.3390/rs12203356.
    [53]
    HE Zhenyu, CHEN Wu, YANG Yang, et al. Maritime ship target imaging with GNSS-based passive multistatic radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5800918. doi: 10.1109/TGRS.2023.3270182.
    [54]
    ZHENG Hui, CHENG Shuiying, and ZHANG Maoyi. Reference signal reconstruction for GPS-based passive radar based on software radio platform[C]. 2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 2023: 732–736. doi: 10.1109/ITNEC56291.2023.10082494.
    [55]
    TANG Tao, WANG Pengbo, ZENG Hongcheng, et al. An efficient coarse-to-fine Doppler parameter search method for moving target detection using GNSS-based passive bistatic radar[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3509105. doi: 10.1109/LGRS.2024.3450209.
    [56]
    杨东凯, 谭传瑞, 王峰, 等. 基于高度角随机模型的GNSS外辐射源雷达定位算法[J]. 电子与信息学报, 2024, 46(4): 1373–1381. doi: 10.11999/JEIT230462.

    YANG Dongkai, TAN Chuanrui, WANG Feng, et al. GNSS elevation-dependent stochastic localization algorithm for gnss-based passive radar[J]. Journal of Electronics and Information Technology, 2024, 46(4): 1373–1381. doi: 10.11999/JEIT230462.
    [57]
    GAO Wenning, YUE Fuzhan, XIA Zhenghuan, et al. Multistatic collaborative imaging for shipborne GNSS-S radar: Method and experimental verification[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4009805. doi: 10.1109/LGRS.2024.3398577.
    [58]
    GRIFFITHS H D, GARNETT A J, BAKER C J, et al. Bistatic radar using satellite-borne illuminators of opportunity[C]. 92 International Conference on Radar, Brighton, UK, 1992: 276–279.
    [59]
    MARQUES P, FERREIRA A, FORTES F, et al. A pedagogical passive RADAR using DVB-S signals[C]. 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, Korea (South), 2011: 1–4.
    [60]
    PISCIOTTANO I, PASTINA D, and CRISTALLINI D. DVB-S based passive radar imaging of ship targets[C]. The 20th International Radar Symposium (IRS), Ulm, Germany, 2019: 1–7. doi: 10.23919/IRS.2019.8768097.
    [61]
    PISCIOTTANO I, SANTI F, PASTINA D, et al. DVB-S based passive polarimetric ISAR—Methods and experimental validation[J]. IEEE Sensors Journal, 2021, 21(5): 6056–6070. doi: 10.1109/JSEN.2020.3037091.
    [62]
    MARTELLI T, CABRERA O, COLONE F, et al. Exploitation of long coherent integration times to improve drone detection in DVB-S based passive radar[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–6. doi: 10.1109/RadarConf2043947.2020.9266624.
    [63]
    CABRERA O, BONGIOANNI C, COLONE F, et al. Non-coherent DVB-S passive radar demonstrator[C]. 2020 21st International Radar Symposium (IRS), Warsaw, Poland, 2020: 228–231. doi: 10.23919/IRS48640.2020.9253805.
    [64]
    GENTILE L, CAPRIA A, SAVERINO A L, et al. DVB-S2 passive bistatic radar for resident space object detection: Preliminary results[C]. 2020 IEEE International Radar Conference (RADAR), Washington, USA, 2020: 607–611. doi: 10.1109/RADAR42522.2020.9114746.
    [65]
    GRONOWSKI K, ALMODOVAR-HERNANDEZ A, GUTIERREZ-SERRANO S, et al. Preliminary results of detection utilizing DVB-S2 based polarimetric passive radar[C]. 2024 International Radar Symposium (IRS), Wroclaw, Poland, 2024: 414–419.
    [66]
    金威, 吕晓德, 向茂生. 基于DVB-S信号的外辐射源雷达的模糊函数及分辨特性分析[J]. 雷达学报, 2012, 1(4): 380–386. doi: 10.3724/SP.J.1300.2012.20077.

    JIN Wei, LÜ Xiaode, and XIANG Maosheng. Ambiguity function and resolution characteristic analysis of DVB-S signal for passive radar[J]. Journal of Radars, 2012, 1(4): 380–386. doi: 10.3724/SP.J.1300.2012.20077.
    [67]
    SUN Zeyue, WANG Tianyun, JIANG Tao, et al. Analysis of the properties of DVB-S signal for passive radar application[C]. 2013 International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 2013: 1–5. doi: 10.1109/WCSP.2013.6677172.
    [68]
    孙泽月. 基于DVB-S信号特性分析的无源检测技术研究[D]. [硕士论文], 中国科学技术大学, 2014.

    SUN Zeyue. Research on passive detection based on the analysis of the properties of DVB-S signal[D]. [Master dissertation], University of Science and Technology of China, 2014.
    [69]
    冯斌. DVB-S信号的无源雷达接收处理技术研究[D]. [硕士论文], 中国科学技术大学, 2014.

    FENG Bin. Research on DVB-S signal processing of passive radar system[D]. [Master dissertation], University of Science and Technology of China, 2014.
    [70]
    刘明骞, 高修会, 李兵兵. 一种多个不同体制卫星下微弱回波信号联合检测方法[P]. 中国, 201610344683.1, 2016.

    LIU Mingqian, GAO Xiuhui, and LI Bingbing. Joint detection method for weak echo signals under satellites of multiple different systems[P]. CN, 201610344683.1, 2016.
    [71]
    李凌. 基于DVB-S信号的无源雷达检测方法研究[D]. [硕士论文], 浙江大学, 2019.

    LI Ling. A study on detection techniques for passive radar based on DVB-S signal[D]. [Master dissertation], Zhejiang University, 2019.
    [72]
    LI Junjie, WEI Junkang, CAO Zhihui, et al. A DVB-S-based multichannel passive radar system for vehicle detection[J]. IEEE Access, 2021, 9: 2900–2912. doi: 10.1109/ACCESS.2020.3047525.
    [73]
    谢进文. 基于外辐射源的高速运动目标探测技术[D]. [硕士论文], 电子科技大学, 2018.

    XIE Jinwen. High velocity targets detection technology based on opportunity illumination[D]. [Master dissertation], University of Electronic Science and Technology of China, 2018.
    [74]
    童云, 万显荣, 周昕, 等. 基于DVB-S信号的被动雷达舰船目标探测实验研究[C]. 第十八届全国电波传播年会, 青岛, 中国, 2023: 4. doi: 10.26914/c.cnkihy.2023.050938.

    TONG Yun, WAN Xianrong, ZHOU Xin, et al. Experimental research of ship target detection with DVB-S based passive radar[C]. Chinese National Symposium on Radio Propagation (CNSRP2023), Qingdao, China, 2023: 4. doi: 10.26914/c.cnkihy.2023.050938.
    [75]
    DANIEL L, HRISTOV S, LYU Xiaoyong, et al. Design and validation of a passive radar concept for ship detection using communication satellite signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 3115–3134. doi: 10.1109/TAES.2017.2728978.
    [76]
    STOVE A G, GASHINOVA M S, HRISTOV S, et al. Passive maritime surveillance using satellite communication signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2987–2997. doi: 10.1109/TAES.2017.2722598.
    [77]
    STOVE A G, GASHINOVA M S, HRISTOV S, et al. Passive maritime surveillance using satellite communication signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2987–2997. doi: 10.1109/TAES.2017.2722598.
    [78]
    DANIEL L, HRISTOV S, LYU Xiaoyong, et al. Design and validation of a passive radar concept for ship detection using communication satellite signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 3115–3134. doi: 10.1109/TAES.2017.2728978.
    [79]
    CHERNIAKOV M, NEZLIN D, and KUBIK K. Air target detection via bistatic radar based on LEOs communication signals[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 149(1): 33–38. doi: 10.1049/ip-rsn:20020129.
    [80]
    LYU Xiaoyong, STOVE A, GASHINOVA M, et al. Ambiguity function of Iridium signal for radar application[J]. Electronics Letters, 2016, 52(19): 1631–1633. doi: 10.1049/el.2016.1404.
    [81]
    LYU Xiaoyong, HRISTOV S, GASHINOVA M, et al. Ambiguity function analysis of the Inmarsat I-4 and Iridium signals[C]. International Conference on Radar Systems, Belfast, UK, 2017: 1–4. doi: 10.1049/cp.2017.0510.
    [82]
    SAYIN A, CHERNIAKOV M, and ANTONIOU M. Passive radar using Starlink transmissions: A theoretical study[C]. 2019 20th International Radar Symposium (IRS), Ulm, Germany, 2019: 1–7. doi: 10.23919/IRS.2019.8768105.
    [83]
    GOMEZ-DEL-HOYO P, SAMCZYNSKI P, and MICHALAK F. Analysis of Starlink Users’ downlink for passive radar applications: Signal characteristics and ambiguity function performance[C]. 2023 IEEE Radar Conference (RadarConf23), San Antonia, US, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149600.
    [84]
    BLÁZQUEZ-GARCÍA R, UMMENHOFER M, CRISTALLINI D, et al. Passive radar architecture based on broadband LEO communication satellite constellations[C]. 2022 IEEE Radar Conference (RadarConf22), New York City, USA, 2022: 1–6. doi: 10.1109/RadarConf2248738.2022.9764342.
    [85]
    BLÁZQUEZ-GARCÍA R, CRISTALLINI D, UMMENHOFER M, et al. Experimental comparison of Starlink and OneWeb signals for passive radar[C]. 2023 IEEE Radar Conference (RadarConf23), San Antonio, USA, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149580.
    [86]
    BLÁZQUEZ-GARCÍA R, CRISTALLINI D, SEIDEL V, et al. Experimental acquisition of Starlink satellite transmissions for passive radar applications[C]. International Conference on Radar Systems, Edinburgh, UK, 2022: 130–135. doi: 10.1049/icp.2022.2304.
    [87]
    ZHANG Maoyi, CHENG Shuiying, and ZHENG Hui. Feasibility of Starlink transmissions for passive airborne targets detection[C]. 2022 5th International Conference on Information Communication and Signal Processing (ICICSP), Shenzhen, China, 2022: 656–661. doi: 10.1109/ICICSP55539.2022.10050607.
    [88]
    ZHU Hanqing, ZHOU Dajiang, LI Zhongyu, et al. Moving target detection method for passive radar using LEO communication satellite constellation[C]. IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 8090–8093. doi: 10.1109/IGARSS52108.2023.10283174.
    [89]
    QIU Xingye, LI Aocheng, LI Zhongyu, et al. The low-earth-orbit communication satellites-based passive radar target detection via blind signal identification[C]. IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 6685–6688. doi: 10.1109/IGARSS53475.2024.10642614.
    [90]
    GOMEZ-DEL-HOYO P and SAMCZYNSKI P. Starlink-based passive radar for Earth’s surface imaging: First experimental results[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 13949–13965. doi: 10.1109/JSTARS.2024.3437179.
    [91]
    周昕, 易建新, 万显荣, 等. 基于低轨卫星机会照射源的无人机目标前向散射探测方法与实验[J]. 信号处理, 2024, 40(12): 2105–2115. doi: 10.12466/xhcl.2024.12.001.

    ZHOU Xin, YI Jianxin, WAN Xianrong, et al. Methods and experiments for forward scattering detection of UAV targets based on opportunistic illumination from low-orbit satellites[J]. Journal of Signal Processing, 2024, 40(12): 2105–2115. doi: 10.12466/xhcl.2024.12.001.
    [92]
    李江林. 铱星外辐射源雷达非均匀多普勒抽取杂波抑制技术研究[D]. 重庆: 重庆大学, 2024.

    LI Jianglin. Research on doppler extraction clutter suppression technology based on iridium passive bistatic radar[D]. Chongqing: Chongqing University, 2024.
    [93]
    田润, 崔志颖, 张爽娜, 等. 基于低轨通信星座的导航增强技术发展概述[J]. 导航定位与授时, 2021, 8(1): 66–81. doi: 10.19306/j.cnki.2095-8110.2021.01.007.

    TIAN Run, CUI Zhiying, ZHANG Shuangna, et al. Overview of navigation augmentation technology based on LEO[J]. Navigation Positioning and Timing, 2021, 8(1): 66–81. doi: 10.19306/j.cnki.2095-8110.2021.01.007.
    [94]
    蒙艳松, 边朗, 王瑛, 等. 基于“鸿雁”星座的全球导航增强系统[J]. 国际太空, 2018(10): 20–27. doi: 10.3969/j.issn.1009-2366.2018.10.005.

    MENG Yansong, BIAN Lang, WANG Ying, et al. Global navigation augmentation system based on Hongyan satellite constellation[J]. Space International, 2018(10): 20–27. doi: 10.3969/j.issn.1009-2366.2018.10.005.
    [95]
    宋奕辰, 徐小涛, 宋文婷. 国内外卫星移动通信系统发展现状综述[J]. 电信快报, 2019(8): 37–41. doi: 10.3969/j.issn.1006-1339.2019.08.008.

    SONG Yichen, XU Xiaotao, and SONG Wenting. Overview of the development of satellite mobile communication systems at home and abroad[J]. Telecommunications Information, 2019(8): 37–41. doi: 10.3969/j.issn.1006-1339.2019.08.008.
    [96]
    WANG Qing, ZHU Minjiong, ZHOU Jie, et al. Terminal-to-terminal calling for GEO broadband mobile satellite communication[J]. ZTE Communications, 2015, 13(2): 46–52. doi: 10.3969/j.issn.1673-5188.2015.02.009.
    [97]
    PRESS L. A new Chinese broadband satellite constellation[EB/OL]. https://circleid.com/posts/20201002-a-new-chinese-broadband-satellite-constellation/, 2020.
    [98]
    《2021中国的航天》白皮书发布[EB/OL]. https://www.cnsa.gov.cn/n6758823/n6758844/n6760320/index.html, 2021.
    [99]
    CRISTALLINI D, CARUSO M, FALCONE P, et al. Space-based passive radar enabled by the new generation of geostationary broadcast satellites[C]. 2010 IEEE Aerospace Conference, Big Sky, USA, 2010: 1–11. doi: 10.1109/AERO.2010.5446694.
    [100]
    谢卓成. 铱星STL信号体制及性能研究[D]. [硕士论文], 华中科技大学, 2019. doi: 10.27157/d.cnki.ghzku.2019.002799.

    XIE Zhuocheng. STL signal system and performance research of iridium satellite[D]. [Master dissertation], Huazhong University of Science & Technology, 2019. doi: 10.27157/d.cnki.ghzku.2019.002799.
    [101]
    刘悦. “下一代铱星”系统首批10颗卫星成功发射[J]. 国际太空, 2017(4): 52–54. doi: 10.3969/j.issn.1009-2366.2017.04.010.

    LIU Yue. The first 10 satellites of Iridium NEXT launched successfully[J]. Space International, 2017(4): 52–54. doi: 10.3969/j.issn.1009-2366.2017.04.010.
    [102]
    秦红磊, 谭滋中, 丛丽, 等. 基于铱星机会信号的定位技术[J]. 北京航空航天大学学报, 2019, 45(9): 1691–1699. doi: 10.13700/j.bh.1001-5965.2018.0717.

    QIN Honglei, TAN Zizhong, CONG Li, et al. Positioning technology based on IRIDIUM signals of opportunity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1691–1699. doi: 10.13700/j.bh.1001-5965.2018.0717.
    [103]
    NEINAVAIE M and KASSAS Z M. Unveiling Starlink LEO satellite OFDM-Like signal structure enabling precise positioning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(2): 2486–2489. doi: 10.1109/TAES.2023.3265951.
    [104]
    HUMPHREYS T E, IANNUCCI P A, KOMODROMOS Z M, et al. Signal structure of the Starlink Ku-band downlink[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6016–6030. doi: 10.1109/TAES.2023.3268610.
    [105]
    NEINAVAIE M and KASSAS Z M. Signal mode transition detection in Starlink LEO satellite downlink signals[C]. 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, US, 2023: 360–364. doi: 10.1109/PLANS53410.2023.10139993.
    [106]
    KOZHAYA S, KANJ H, and KASSAS Z M. Multi-constellation blind beacon estimation, Doppler tracking, and opportunistic positioning with OneWeb, Starlink, Iridium NEXT, and Orbcomm LEO satellites[C]. 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, USA, 2023: 1184–1195. doi: 10.1109/PLANS53410.2023.10139969.
    [107]
    极客网. T-Mobile美国测试卫星直连手机发送紧急警报, 覆盖通信盲区[EB/OL]. https://finance.sina.com.cn/stock/relnews/us/2024-09-14/doc-incpatau1803357.shtml, 2024.

    Geeknet. T-Mobile in the United States tests direct satellite connection with mobile phones for sending emergency alerts, covering communication blind spots [EB/OL]. https://finance.sina.com.cn/stock/relnews/us/2024-09-14/doc-incpatau1803357.shtml, 2024.
    [108]
    杨进佩, 刘中, 朱晓华. 用于无源雷达的GPS卫星信号性能分析[J]. 电子与信息学报, 2007, 29(5): 1083–1086. doi: 10.3724/SP.J.1146.2005.01981.

    YANG Jinpei, LIU Zhong, and ZHU Xiaohua. The performances analysis of GPS signals for passive radar[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1083–1086. doi: 10.3724/SP.J.1146.2005.01981.
  • Cited by

    Periodical cited type(7)

    1. 邵帅,邢雷,王峰. 基于遗传算法的机相扫机载预警雷达重点扇区波位排布方法. 中国电子科学研究院学报. 2023(06): 521-524+530 .
    2. 李纪三,刘溶,张宁. 高速旋转相控阵雷达基于资源预规划的任务调度算法. 电子科技大学学报. 2022(03): 377-383+480 .
    3. 李纪三,纪彦星,曹鼎,刘溶,任渊. 基于广义时间窗的旋转相控阵雷达资源调度算法. 电子学报. 2022(05): 1050-1057 .
    4. 鲁金,畅言,陈春. 基于多级时间窗的综合优先级雷达任务调度算法. 火控雷达技术. 2021(03): 39-41+52 .
    5. 柴炎,郑海宾,朱宏梁,张宇. 云平台下自适应调度算法的优化分析. 数码世界. 2019(03): 172 .
    6. 徐玲,祝军. 制药智能工厂生产物流调度系统柔性管控优化算法. 电子技术与软件工程. 2019(22): 102-103 .
    7. 方旖,陈秋菊,潘继飞,毕大平. 基于贝叶斯的多功能雷达脉冲列变化点检测. 指挥与控制学报. 2019(04): 308-315 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(328) PDF downloads(39) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint