Citation: | FU Hongwei, ZHANG Zhang, LUO Yu, et al. Passive radar using LEO communication satellite signals: an overview and prospect[J]. Journal of Radars, in press. doi: 10.12000/JR24219 |
[1] |
KUSCHEL H. Approaching 80 years of passive radar[C]. 2013 International Conference on Radar, Adelaide, Australia, 2013: 213–217. doi: 10.1109/RADAR.2013.6651987.
|
[2] |
宋杰, 何友, 蔡复青, 等. 基于非合作雷达辐射源的无源雷达技术综述[J]. 系统工程与电子技术, 2009, 31(9): 2151–2156, 2180. doi: 10.3321/j.issn:1001-506X.2009.09.028.
SONG Jie, HE You, CAI Fuqing, et al. Overview of passive radar technology based on non-cooperative radar illuminator[J]. Systems Engineering and Electronics, 2009, 31(9): 2151–2156, 2180. doi: 10.3321/j.issn:1001-506X.2009.09.028.
|
[3] |
郑恒, 王俊, 江胜利, 等. 外辐射源雷达[M]. 北京: 国防工业出版社, 2017: 1–10.
ZHENG Heng, WANG Jun, JIANG Shengli, et al. Passive Bistatic Radar[M]. Beijing, China: National Defense Industry Press, 2017: 1–10.
|
[4] |
万显荣, 易建新, 占伟杰, 等. 基于多照射源的被动雷达研究进展与发展趋势[J]. 雷达学报, 2020, 9(6): 939–958. doi: 10.12000/JR20143.
WAN Xianrong, YI Jianxin, ZHAN Weijie, et al. Research progress and development trend of the multi-illuminator-based passive radar[J]. Journal of Radars, 2020, 9(6): 939–958. doi: 10.12000/JR20143.
|
[5] |
WILLIS N J and GRIFFITHS H D. Advances in bistatic radar (Willis, NJ and Griffiths, HD, Eds.; 2007) [Book Review][J]. IEEE Aerospace and Electronic Systems Magazine, 2008, 23(7): 46–46. doi: 10.1109/MAES.2008.4579292.
|
[6] |
GRIFFITHS H and WILLIS N. Klein Heidelberg-the first modern bistatic radar system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1571–1588. doi: 10.1109/TAES.2010.5595580.
|
[7] |
GRIFFITHS H D and LONG N R W. Television-based bistatic radar[J]. IEE Proceedings F (Communications, Radar and Signal Processing), 1986, 133(7): 649–657. doi: 10.1049/ip-f-1.1986.0104.
|
[8] |
王小谟, 吴曼青, 王政. 未来战争中的“沉默哨兵”——外辐射源目标探测与跟踪雷达[J]. 现代军事, 2000(10): 10–12.
WANG Xiaomo, WU Manqing, and WANG Zhen. ‘Silence Sentinel’ in future wars—external radiation source target detection and tracking radar[J]. Modern Military, 2000(10): 10–12.
|
[9] |
HOWLAND P E, MAKSIMIUK D, and REITSMA G. FM radio based bistatic radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(3): 107–115. doi: 10.1049/ip-rsn:20045077.
|
[10] |
EDRICH M, SCHROEDER A, and MEYER F. Design and performance evaluation of a mature FM/DAB/DVB-T multi-illuminator passive radar system[J]. IET Radar, Sonar & Navigation, 2014, 8(2): 114–122. doi: 10.1049/iet-rsn.2013.0162.
|
[11] |
O’HAGAN D W, KUSCHEL H, UMMENHOFER M, et al. A multi-frequency hybrid passive radar concept for medium range air surveillance[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(10): 6–15. doi: 10.1109/MAES.2012.6373907.
|
[12] |
BIČÍK P. Passive radar: Here comes the new generation VERA-NG[C]. The 11-th International Radar Symposium, Vilnius, Lithuania, 2010: 1–4.
|
[13] |
贾玉贵. 现代对空情报雷达[M]. 北京: 国防工业出版社, 2004: 169.
JIA Yugui. Modern Air Surveillance Radar[M]. Beijing, China: National Defense Industry Press, 2004: 169.
|
[14] |
吴翼虎. 外辐射源雷达目标检测与定位技术[D]. [硕士论文], 西安电子科技大学, 2010. doi: 10.7666/d.Y1706760.
WU Yihu. Target detection and location technology in external illuminator based passive radar[D]. [Master dissertation], Xidian University, 2010. doi: 10.7666/d.Y1706760.
|
[15] |
杨广平. 外辐射源雷达关键技术研究[J]. 现代雷达, 2008, 30(8): 5–9. doi: 10.3969/j.issn.1004-7859.2008.08.002.
YANG Guangping. A study on key technology of passive radar[J]. Modern Radar, 2008, 30(8): 5–9. doi: 10.3969/j.issn.1004-7859.2008.08.002.
|
[16] |
郑雨晴, 艾小锋, 王满喜, 等. 以全球导航卫星系统为辐射源的前向散射雷达发展综述[J]. 电子与信息学报, 2024, 46(8): 3073–3093. doi: 10.11999/JEIT231255.
ZHENG Yuqing, AI Xiaofeng, WANG Manxi, et al. Global navigation satellite system forward scatter radar: A review[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3073–3093. doi: 10.11999/JEIT231255.
|
[17] |
李中余, 黄川, 武俊杰, 等. 基于GNSS的无源雷达海面目标检测技术综述[J]. 雷达科学与技术, 2020, 18(4): 404–416. doi: 10.3969/j.issn.1672-2337.2020.04.009.
LI Zhongyu, HUANG Chuan, WU Junjie, et al. Overview of maritime target detection techniques using GNSS-based passive radar[J]. Radar Science and Technology, 2020, 18(4): 404–416. doi: 10.3969/j.issn.1672-2337.2020.04.009.
|
[18] |
HUANG Chuan, LI Zhongyu, WU Junjie, et al. A long-time integration method for GNSS-based passive radar detection of marine target with multi-stage motions[C]. IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, USA, 2020: 2815–2818. doi: 10.1109/IGARSS39084.2020.9324042.
|
[19] |
陈江宁. 基于高轨卫星外辐射源微弱目标检测技术研究[D]. [硕士论文], 电子科技大学, 2021. doi: 10.27005/d.cnki.gdzku.2021.001367.
CHEN Jiangning. Research on dim target detection technology based on external transmitter of geostationary earth orbit satellite[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021. doi: 10.27005/d.cnki.gdzku.2021.001367.
|
[20] |
李唐, 王峰, 杨新宇, 等. GNSS外辐射源空中目标探测研究现状及发展[J]. 无线电工程, 2023, 53(7): 1639–1651. doi: 10.3969/j.issn.1003-3106.2023.07.018.
LI Tang, WANG Feng, YANG Xinyu, et al. Development and status of air target detection from GNSS-based passive radar[J]. Radio Engineering, 2023, 53(7): 1639–1651. doi: 10.3969/j.issn.1003-3106.2023.07.018.
|
[21] |
LYU Xiaoyong, STOVE A, GASHINOVA M, et al. Ambiguity function of Inmarsat BGAN signal for radar application[J]. Electronics Letters, 2016, 52(18): 1557–1559. doi: 10.1049/el.2016.1400.
|
[22] |
FOSSA C E, RAINES R A, GUNSCH G H, et al. An overview of the IRIDIUM (R) low Earth orbit (LEO) satellite system[C]. IEEE 1998 National Aerospace and Electronics Conference. NAECON 1998. Celebrating 50 Years (Cat. No.98CH36185), Dayton, USA, 1998: 152–159. doi: 10.1109/NAECON.1998.710110.
|
[23] |
梁健. 铱星STL系统定位方法研究[D]. [硕士论文], 华中科技大学, 2019. doi: 10.27157/d.cnki.ghzku.2019.002798.
LIANG Jian. Investigation on Iridium STL positioning method[D]. [Master dissertation], Huazhong University of Science & Technology, 2019. doi: 10.27157/d.cnki.ghzku.2019.002798.
|
[24] |
秦红磊, 张宇. 星链机会信号定位方法[J]. 导航定位学报, 2023, 11(1): 67–73. doi: 10.3969/j.issn.2095-4999.2023.01.010.
QIN Honglei and ZHANG Yu. Positioning technology based on Starlink signal of opportunity[J]. Journal of Navigation and Positioning, 2023, 11(1): 67–73. doi: 10.3969/j.issn.2095-4999.2023.01.010.
|
[25] |
秦红磊, 武宁, 赵超. 基于视向矢量修正的铱星机会信号多普勒差分定位技术[J]. 北京航空航天大学学报, 2024, 50(3): 748–756. doi: 10.13700/j.bh.1001-5965.2022.0378.
QIN Honglei, WU Ning, and ZHAO Chao. Differential positioning with doppler measurements from Iridium satellite signals of opportunity based on lines of sight correction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(3): 748–756. doi: 10.13700/j.bh.1001-5965.2022.0378.
|
[26] |
崔志颖, 岳富占, 田润, 等. 基于铱星突发信号的导航定位技术研究[J]. 全球定位系统, 2021, 46(2): 77–85. doi: 10.12265/j.gnss.2020121503.
CUI Zhiying, YUE Fuzhan, TIAN Run, et al. Research on positioning technology based on Iridium burst signal[J]. GNSS World of China, 2021, 46(2): 77–85. doi: 10.12265/j.gnss.2020121503.
|
[27] |
GOMEZ-DEL-HOYO P, GRONOWSKI K, and SAMCZYNSKI P. The STARLINK-based passive radar: Preliminary study and first illuminator signal measurements[C]. 2022 23rd International Radar Symposium (IRS), Gdansk, Poland, 2022: 350–355. doi: 10.23919/IRS54158.2022.9905046.
|
[28] |
KHALIFE J, NEINAVAIE M, and KASSAS Z M. The first carrier phase tracking and positioning results with Starlink LEO satellite signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1487–1491. doi: 10.1109/TAES.2021.3113880.
|
[29] |
KOCH V and WESTPHAL R. New approach to a multistatic passive radar sensor for air/space defense[J]. IEEE Aerospace and Electronic Systems Magazine, 1995, 10(11): 24–32. doi: 10.1109/62.473409.
|
[30] |
MCINTOSH J C. Passive three dimensional track of non-cooperative targets through opportunistic use of global positioning system (GPS) and GLONASS signals[EB/OL]. https://www.freepatentsonline.com/6232922.html, 2001.
|
[31] |
MOJARRABI B, HOMER J, KUBIK K, et al. Power budget study for passive target detection and imaging using secondary applications of GPS signals in bistatic radar systems[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 449–451. doi: 10.1109/IGARSS.2002.1025069.
|
[32] |
BEHAR V and KABAKCHIEV C. Detectability of air targets using bistatic radar based on GPS L5 signals[C]. 2011 12th International Radar Symposium (IRS), Leipzig, Germany, 2011: 212–217.
|
[33] |
MA Hui, ANTONIOU M, PASTINA D, et al. Maritime moving target indication using passive GNSS-based bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 115–130. doi: 10.1109/TAES.2017.2739900.
|
[34] |
PASTINA D, SANTI F, PIERALICE F, et al. Maritime moving target long time integration for GNSS-based passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 3060–3083. doi: 10.1109/TAES.2018.2840298.
|
[35] |
VEREMYEV V I, VOROBEV E N, and KOKORINA Y V. Feasibility study of air target detection by passive radar using satellite-based transmitters[C]. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Saint Petersburg and Moscow, Russia, 2019: 154–157. doi: 10.1109/EIConRus.2019.8656630.
|
[36] |
NASSO I and SANTI F. A centralized approach for ship target detection and localization with multi-transmitters GNSS-based passive radar[C]. International Conference on Radar Systems (RADAR 2022), Edinburgh, UK, 2022: 202–207. doi: 10.1049/icp.2022.2316.
|
[37] |
NASSO I and SANTI F. Maritime moving target detection and localisation technique for Global Navigation Satellite Signals-based passive multistatic radar[J]. IET Radar, Sonar & Navigation, 2024, 18(1): 93–106. doi: 10.1049/rsn2.12438.
|
[38] |
戴剑华, 尹成友. 利用GPS星际照射源的无源侦察定位系统研究[J]. 航天电子对抗, 2001(4): 8–12. doi: 10.3969/j.issn.1673-2421.2001.04.003.
DAI Jianhua and YIN Chengyou. Research on passive reconnaissance and positioning system using GPS interstellar irradiation source[J]. Aerospace Electronic Warfare, 2001(4): 8–12. doi: 10.3969/j.issn.1673-2421.2001.04.003.
|
[39] |
袁伟明, 刘立东, 吴顺君, 等. 一种新的基于GPS照射源的天基雷达信号处理算法[J]. 电波科学学报, 2004, 19(2): 219–222. doi: 10.3969/j.issn.1005-0388.2004.02.019.
YUAN Weiming, LIU Lidong, WU Shunjun, et al. An novel signal processing algorithm for SBR based on GPS illumination[J]. Chinese Journal of Radio Science, 2004, 19(2): 219–222. doi: 10.3969/j.issn.1005-0388.2004.02.019.
|
[40] |
刘立东, 袁伟明, 吴顺君, 等. 基于GPS照射源的天地双基地雷达探测系统[J]. 电波科学学报, 2004, 19(1): 109–113. doi: 10.3969/j.issn.1005-0388.2004.01.024.
LIU Lidong, YUAN Weiming, WU Shunjun, et al. Bistatic radar system based on GPS illumination[J]. Chinese Journal of Radio Science, 2004, 19(1): 109–113. doi: 10.3969/j.issn.1005-0388.2004.01.024.
|
[41] |
HE X, CHERNIAKOV M, and ZENG T. Signal detectability in SS-BSAR with GNSS non-cooperative transmitter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(3): 124–132. doi: 10.1049/ip-rsn:20045042.
|
[42] |
杨东凯, 路勇, 张波. 基于导航卫星反射信号的空间飞行器探测定位方法[J]. 航空学报, 2009, 30(1): 143–147. doi: 10.3321/j.issn:1000-6893.2009.01.023.
YANG Dongkai, LU Yong, and ZHANG Bo. Space vehicle detection and positioning based on reflected signal of navigation satellite[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 143–147. doi: 10.3321/j.issn:1000-6893.2009.01.023.
|
[43] |
范梅梅, 廖东平, 丁小峰. 基于北斗卫星信号的无源雷达可行性研究[J]. 信号处理, 2010, 26(4): 631–636. doi: 10.3969/j.issn.1003-0530.2010.04.028.
FAN Meimei, LIAO Dongping, and DING Xiaofeng. Feasibility research of passive radar based on Beidou navigation and position system[J]. Journal of Signal Processing, 2010, 26(4): 631–636. doi: 10.3969/j.issn.1003-0530.2010.04.028.
|
[44] |
蒋铁珍, 肖文书, 李大圣, 等. 基于星载机会源的空间目标外辐射源雷达探测技术可行性研究[J]. 雷达学报, 2014, 3(6): 711–719. doi: 10.12000/JR14080.
JIANG Tiezhen, XIAO Wenshu, LI Dasheng, et al. Feasibility study on passive-radar detection of space targets using spaceborne illuminators of opportunity[J]. Journal of Radars, 2014, 3(6): 711–719. doi: 10.12000/JR14080.
|
[45] |
何征, 蒙继东, 尚社. 基于GPS照射源的双基地新体制雷达探测系统[J]. 电子设计工程, 2015, 23(21): 32–34. doi: 10.3969/j.issn.1674-6236.2015.21.010.
HE Zheng, MENG Jidong, and SHANG She. New bistatic radar system based on GPS illumination[J]. Electronic Design Engineering, 2015, 23(21): 32–34. doi: 10.3969/j.issn.1674-6236.2015.21.010.
|
[46] |
李雨亭. 基于多个GPS卫星信息融合的信号检测[D]. [硕士论文], 西安电子科技大学, 2017. doi: 10.7666/d.D01385181.
LI Yuting. Signal detection based on multiple GPS satellites information fusion[D]. [Master dissertation], Xidian University, 2017. doi: 10.7666/d.D01385181.
|
[47] |
郭丹丹. 基于北斗二代卫星信号的外辐射源雷达目标探测技术[D]. [硕士论文], 西安电子科技大学, 2019. doi: 10.27389/d.cnki.gxadu.2019.000758.
GUO Dandan. Target detection method in passive bistatic radar based on Beidou II satellite signals[D]. [Master dissertation], Xidian University, 2019. doi: 10.27389/d.cnki.gxadu.2019.000758.
|
[48] |
何振宇, 陈武, 杨扬. GPS天-地无源双基地雷达探测海面移动目标[J]. 测绘学报, 2020, 49(12): 1523–1534. doi: 10.11947/j.AGCS.2020.20190487.
HE Zhenyu, CHEN Wu, and YANG Yang. GPS-based space-surface passive bistatic radar technique for maritime moving target detection[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1523–1534. doi: 10.11947/j.AGCS.2020.20190487.
|
[49] |
HUANG Chuan, LI Zhongyu, WU Junjie, et al. Multistatic Beidou-based passive radar for maritime moving target detection and localization[C]. IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 2175–2177. doi: 10.1109/IGARSS.2019.8900548.
|
[50] |
LI Zhongyu, HUANG Chuan, WU Junjie, et al. Investigation and first experiment of BeiDou-based passive radar vessel target imaging[C]. 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), Gran Canaria, Spain, 2022: 1–4. doi: 10.23919/AT-AP-RASC54737.2022.9814205.
|
[51] |
LI Zhongyu, HUANG Chuan, SUN Zhichao, et al. BeiDou-based passive multistatic radar maritime moving target detection technique via space-time hybrid integration processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5802313. doi: 10.1109/TGRS.2021.3128650.
|
[52] |
HE Zhenyu, YANG Yang, CHEN Wu, et al. Moving target imaging using GNSS-based passive bistatic synthetic aperture radar[J]. Remote Sensing, 2020, 12(20): 3356. doi: 10.3390/rs12203356.
|
[53] |
HE Zhenyu, CHEN Wu, YANG Yang, et al. Maritime ship target imaging with GNSS-based passive multistatic radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5800918. doi: 10.1109/TGRS.2023.3270182.
|
[54] |
ZHENG Hui, CHENG Shuiying, and ZHANG Maoyi. Reference signal reconstruction for GPS-based passive radar based on software radio platform[C]. 2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 2023: 732–736. doi: 10.1109/ITNEC56291.2023.10082494.
|
[55] |
TANG Tao, WANG Pengbo, ZENG Hongcheng, et al. An efficient coarse-to-fine Doppler parameter search method for moving target detection using GNSS-based passive bistatic radar[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3509105. doi: 10.1109/LGRS.2024.3450209.
|
[56] |
杨东凯, 谭传瑞, 王峰, 等. 基于高度角随机模型的GNSS外辐射源雷达定位算法[J]. 电子与信息学报, 2024, 46(4): 1373–1381. doi: 10.11999/JEIT230462.
YANG Dongkai, TAN Chuanrui, WANG Feng, et al. GNSS elevation-dependent stochastic localization algorithm for gnss-based passive radar[J]. Journal of Electronics and Information Technology, 2024, 46(4): 1373–1381. doi: 10.11999/JEIT230462.
|
[57] |
GAO Wenning, YUE Fuzhan, XIA Zhenghuan, et al. Multistatic collaborative imaging for shipborne GNSS-S radar: Method and experimental verification[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4009805. doi: 10.1109/LGRS.2024.3398577.
|
[58] |
GRIFFITHS H D, GARNETT A J, BAKER C J, et al. Bistatic radar using satellite-borne illuminators of opportunity[C]. 92 International Conference on Radar, Brighton, UK, 1992: 276–279.
|
[59] |
MARQUES P, FERREIRA A, FORTES F, et al. A pedagogical passive RADAR using DVB-S signals[C]. 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, Korea (South), 2011: 1–4.
|
[60] |
PISCIOTTANO I, PASTINA D, and CRISTALLINI D. DVB-S based passive radar imaging of ship targets[C]. The 20th International Radar Symposium (IRS), Ulm, Germany, 2019: 1–7. doi: 10.23919/IRS.2019.8768097.
|
[61] |
PISCIOTTANO I, SANTI F, PASTINA D, et al. DVB-S based passive polarimetric ISAR—Methods and experimental validation[J]. IEEE Sensors Journal, 2021, 21(5): 6056–6070. doi: 10.1109/JSEN.2020.3037091.
|
[62] |
MARTELLI T, CABRERA O, COLONE F, et al. Exploitation of long coherent integration times to improve drone detection in DVB-S based passive radar[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–6. doi: 10.1109/RadarConf2043947.2020.9266624.
|
[63] |
CABRERA O, BONGIOANNI C, COLONE F, et al. Non-coherent DVB-S passive radar demonstrator[C]. 2020 21st International Radar Symposium (IRS), Warsaw, Poland, 2020: 228–231. doi: 10.23919/IRS48640.2020.9253805.
|
[64] |
GENTILE L, CAPRIA A, SAVERINO A L, et al. DVB-S2 passive bistatic radar for resident space object detection: Preliminary results[C]. 2020 IEEE International Radar Conference (RADAR), Washington, USA, 2020: 607–611. doi: 10.1109/RADAR42522.2020.9114746.
|
[65] |
GRONOWSKI K, ALMODOVAR-HERNANDEZ A, GUTIERREZ-SERRANO S, et al. Preliminary results of detection utilizing DVB-S2 based polarimetric passive radar[C]. 2024 International Radar Symposium (IRS), Wroclaw, Poland, 2024: 414–419.
|
[66] |
金威, 吕晓德, 向茂生. 基于DVB-S信号的外辐射源雷达的模糊函数及分辨特性分析[J]. 雷达学报, 2012, 1(4): 380–386. doi: 10.3724/SP.J.1300.2012.20077.
JIN Wei, LÜ Xiaode, and XIANG Maosheng. Ambiguity function and resolution characteristic analysis of DVB-S signal for passive radar[J]. Journal of Radars, 2012, 1(4): 380–386. doi: 10.3724/SP.J.1300.2012.20077.
|
[67] |
SUN Zeyue, WANG Tianyun, JIANG Tao, et al. Analysis of the properties of DVB-S signal for passive radar application[C]. 2013 International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 2013: 1–5. doi: 10.1109/WCSP.2013.6677172.
|
[68] |
孙泽月. 基于DVB-S信号特性分析的无源检测技术研究[D]. [硕士论文], 中国科学技术大学, 2014.
SUN Zeyue. Research on passive detection based on the analysis of the properties of DVB-S signal[D]. [Master dissertation], University of Science and Technology of China, 2014.
|
[69] |
冯斌. DVB-S信号的无源雷达接收处理技术研究[D]. [硕士论文], 中国科学技术大学, 2014.
FENG Bin. Research on DVB-S signal processing of passive radar system[D]. [Master dissertation], University of Science and Technology of China, 2014.
|
[70] |
刘明骞, 高修会, 李兵兵. 一种多个不同体制卫星下微弱回波信号联合检测方法[P]. 中国, 201610344683.1, 2016.
LIU Mingqian, GAO Xiuhui, and LI Bingbing. Joint detection method for weak echo signals under satellites of multiple different systems[P]. CN, 201610344683.1, 2016.
|
[71] |
李凌. 基于DVB-S信号的无源雷达检测方法研究[D]. [硕士论文], 浙江大学, 2019.
LI Ling. A study on detection techniques for passive radar based on DVB-S signal[D]. [Master dissertation], Zhejiang University, 2019.
|
[72] |
LI Junjie, WEI Junkang, CAO Zhihui, et al. A DVB-S-based multichannel passive radar system for vehicle detection[J]. IEEE Access, 2021, 9: 2900–2912. doi: 10.1109/ACCESS.2020.3047525.
|
[73] |
谢进文. 基于外辐射源的高速运动目标探测技术[D]. [硕士论文], 电子科技大学, 2018.
XIE Jinwen. High velocity targets detection technology based on opportunity illumination[D]. [Master dissertation], University of Electronic Science and Technology of China, 2018.
|
[74] |
童云, 万显荣, 周昕, 等. 基于DVB-S信号的被动雷达舰船目标探测实验研究[C]. 第十八届全国电波传播年会, 青岛, 中国, 2023: 4. doi: 10.26914/c.cnkihy.2023.050938.
TONG Yun, WAN Xianrong, ZHOU Xin, et al. Experimental research of ship target detection with DVB-S based passive radar[C]. Chinese National Symposium on Radio Propagation (CNSRP2023), Qingdao, China, 2023: 4. doi: 10.26914/c.cnkihy.2023.050938.
|
[75] |
DANIEL L, HRISTOV S, LYU Xiaoyong, et al. Design and validation of a passive radar concept for ship detection using communication satellite signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 3115–3134. doi: 10.1109/TAES.2017.2728978.
|
[76] |
STOVE A G, GASHINOVA M S, HRISTOV S, et al. Passive maritime surveillance using satellite communication signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2987–2997. doi: 10.1109/TAES.2017.2722598.
|
[77] |
STOVE A G, GASHINOVA M S, HRISTOV S, et al. Passive maritime surveillance using satellite communication signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2987–2997. doi: 10.1109/TAES.2017.2722598.
|
[78] |
DANIEL L, HRISTOV S, LYU Xiaoyong, et al. Design and validation of a passive radar concept for ship detection using communication satellite signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 3115–3134. doi: 10.1109/TAES.2017.2728978.
|
[79] |
CHERNIAKOV M, NEZLIN D, and KUBIK K. Air target detection via bistatic radar based on LEOs communication signals[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 149(1): 33–38. doi: 10.1049/ip-rsn:20020129.
|
[80] |
LYU Xiaoyong, STOVE A, GASHINOVA M, et al. Ambiguity function of Iridium signal for radar application[J]. Electronics Letters, 2016, 52(19): 1631–1633. doi: 10.1049/el.2016.1404.
|
[81] |
LYU Xiaoyong, HRISTOV S, GASHINOVA M, et al. Ambiguity function analysis of the Inmarsat I-4 and Iridium signals[C]. International Conference on Radar Systems, Belfast, UK, 2017: 1–4. doi: 10.1049/cp.2017.0510.
|
[82] |
SAYIN A, CHERNIAKOV M, and ANTONIOU M. Passive radar using Starlink transmissions: A theoretical study[C]. 2019 20th International Radar Symposium (IRS), Ulm, Germany, 2019: 1–7. doi: 10.23919/IRS.2019.8768105.
|
[83] |
GOMEZ-DEL-HOYO P, SAMCZYNSKI P, and MICHALAK F. Analysis of Starlink Users’ downlink for passive radar applications: Signal characteristics and ambiguity function performance[C]. 2023 IEEE Radar Conference (RadarConf23), San Antonia, US, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149600.
|
[84] |
BLÁZQUEZ-GARCÍA R, UMMENHOFER M, CRISTALLINI D, et al. Passive radar architecture based on broadband LEO communication satellite constellations[C]. 2022 IEEE Radar Conference (RadarConf22), New York City, USA, 2022: 1–6. doi: 10.1109/RadarConf2248738.2022.9764342.
|
[85] |
BLÁZQUEZ-GARCÍA R, CRISTALLINI D, UMMENHOFER M, et al. Experimental comparison of Starlink and OneWeb signals for passive radar[C]. 2023 IEEE Radar Conference (RadarConf23), San Antonio, USA, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149580.
|
[86] |
BLÁZQUEZ-GARCÍA R, CRISTALLINI D, SEIDEL V, et al. Experimental acquisition of Starlink satellite transmissions for passive radar applications[C]. International Conference on Radar Systems, Edinburgh, UK, 2022: 130–135. doi: 10.1049/icp.2022.2304.
|
[87] |
ZHANG Maoyi, CHENG Shuiying, and ZHENG Hui. Feasibility of Starlink transmissions for passive airborne targets detection[C]. 2022 5th International Conference on Information Communication and Signal Processing (ICICSP), Shenzhen, China, 2022: 656–661. doi: 10.1109/ICICSP55539.2022.10050607.
|
[88] |
ZHU Hanqing, ZHOU Dajiang, LI Zhongyu, et al. Moving target detection method for passive radar using LEO communication satellite constellation[C]. IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 8090–8093. doi: 10.1109/IGARSS52108.2023.10283174.
|
[89] |
QIU Xingye, LI Aocheng, LI Zhongyu, et al. The low-earth-orbit communication satellites-based passive radar target detection via blind signal identification[C]. IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 6685–6688. doi: 10.1109/IGARSS53475.2024.10642614.
|
[90] |
GOMEZ-DEL-HOYO P and SAMCZYNSKI P. Starlink-based passive radar for Earth’s surface imaging: First experimental results[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 13949–13965. doi: 10.1109/JSTARS.2024.3437179.
|
[91] |
周昕, 易建新, 万显荣, 等. 基于低轨卫星机会照射源的无人机目标前向散射探测方法与实验[J]. 信号处理, 2024, 40(12): 2105–2115. doi: 10.12466/xhcl.2024.12.001.
ZHOU Xin, YI Jianxin, WAN Xianrong, et al. Methods and experiments for forward scattering detection of UAV targets based on opportunistic illumination from low-orbit satellites[J]. Journal of Signal Processing, 2024, 40(12): 2105–2115. doi: 10.12466/xhcl.2024.12.001.
|
[92] |
李江林. 铱星外辐射源雷达非均匀多普勒抽取杂波抑制技术研究[D]. 重庆: 重庆大学, 2024.
LI Jianglin. Research on doppler extraction clutter suppression technology based on iridium passive bistatic radar[D]. Chongqing: Chongqing University, 2024.
|
[93] |
田润, 崔志颖, 张爽娜, 等. 基于低轨通信星座的导航增强技术发展概述[J]. 导航定位与授时, 2021, 8(1): 66–81. doi: 10.19306/j.cnki.2095-8110.2021.01.007.
TIAN Run, CUI Zhiying, ZHANG Shuangna, et al. Overview of navigation augmentation technology based on LEO[J]. Navigation Positioning and Timing, 2021, 8(1): 66–81. doi: 10.19306/j.cnki.2095-8110.2021.01.007.
|
[94] |
蒙艳松, 边朗, 王瑛, 等. 基于“鸿雁”星座的全球导航增强系统[J]. 国际太空, 2018(10): 20–27. doi: 10.3969/j.issn.1009-2366.2018.10.005.
MENG Yansong, BIAN Lang, WANG Ying, et al. Global navigation augmentation system based on Hongyan satellite constellation[J]. Space International, 2018(10): 20–27. doi: 10.3969/j.issn.1009-2366.2018.10.005.
|
[95] |
宋奕辰, 徐小涛, 宋文婷. 国内外卫星移动通信系统发展现状综述[J]. 电信快报, 2019(8): 37–41. doi: 10.3969/j.issn.1006-1339.2019.08.008.
SONG Yichen, XU Xiaotao, and SONG Wenting. Overview of the development of satellite mobile communication systems at home and abroad[J]. Telecommunications Information, 2019(8): 37–41. doi: 10.3969/j.issn.1006-1339.2019.08.008.
|
[96] |
WANG Qing, ZHU Minjiong, ZHOU Jie, et al. Terminal-to-terminal calling for GEO broadband mobile satellite communication[J]. ZTE Communications, 2015, 13(2): 46–52. doi: 10.3969/j.issn.1673-5188.2015.02.009.
|
[97] |
PRESS L. A new Chinese broadband satellite constellation[EB/OL]. https://circleid.com/posts/20201002-a-new-chinese-broadband-satellite-constellation/, 2020.
|
[98] |
《2021中国的航天》白皮书发布[EB/OL]. https://www.cnsa.gov.cn/n6758823/n6758844/n6760320/index.html, 2021.
|
[99] |
CRISTALLINI D, CARUSO M, FALCONE P, et al. Space-based passive radar enabled by the new generation of geostationary broadcast satellites[C]. 2010 IEEE Aerospace Conference, Big Sky, USA, 2010: 1–11. doi: 10.1109/AERO.2010.5446694.
|
[100] |
谢卓成. 铱星STL信号体制及性能研究[D]. [硕士论文], 华中科技大学, 2019. doi: 10.27157/d.cnki.ghzku.2019.002799.
XIE Zhuocheng. STL signal system and performance research of iridium satellite[D]. [Master dissertation], Huazhong University of Science & Technology, 2019. doi: 10.27157/d.cnki.ghzku.2019.002799.
|
[101] |
刘悦. “下一代铱星”系统首批10颗卫星成功发射[J]. 国际太空, 2017(4): 52–54. doi: 10.3969/j.issn.1009-2366.2017.04.010.
LIU Yue. The first 10 satellites of Iridium NEXT launched successfully[J]. Space International, 2017(4): 52–54. doi: 10.3969/j.issn.1009-2366.2017.04.010.
|
[102] |
秦红磊, 谭滋中, 丛丽, 等. 基于铱星机会信号的定位技术[J]. 北京航空航天大学学报, 2019, 45(9): 1691–1699. doi: 10.13700/j.bh.1001-5965.2018.0717.
QIN Honglei, TAN Zizhong, CONG Li, et al. Positioning technology based on IRIDIUM signals of opportunity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1691–1699. doi: 10.13700/j.bh.1001-5965.2018.0717.
|
[103] |
NEINAVAIE M and KASSAS Z M. Unveiling Starlink LEO satellite OFDM-Like signal structure enabling precise positioning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(2): 2486–2489. doi: 10.1109/TAES.2023.3265951.
|
[104] |
HUMPHREYS T E, IANNUCCI P A, KOMODROMOS Z M, et al. Signal structure of the Starlink Ku-band downlink[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6016–6030. doi: 10.1109/TAES.2023.3268610.
|
[105] |
NEINAVAIE M and KASSAS Z M. Signal mode transition detection in Starlink LEO satellite downlink signals[C]. 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, US, 2023: 360–364. doi: 10.1109/PLANS53410.2023.10139993.
|
[106] |
KOZHAYA S, KANJ H, and KASSAS Z M. Multi-constellation blind beacon estimation, Doppler tracking, and opportunistic positioning with OneWeb, Starlink, Iridium NEXT, and Orbcomm LEO satellites[C]. 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, USA, 2023: 1184–1195. doi: 10.1109/PLANS53410.2023.10139969.
|
[107] |
极客网. T-Mobile美国测试卫星直连手机发送紧急警报, 覆盖通信盲区[EB/OL]. https://finance.sina.com.cn/stock/relnews/us/2024-09-14/doc-incpatau1803357.shtml, 2024.
Geeknet. T-Mobile in the United States tests direct satellite connection with mobile phones for sending emergency alerts, covering communication blind spots [EB/OL]. https://finance.sina.com.cn/stock/relnews/us/2024-09-14/doc-incpatau1803357.shtml, 2024.
|
[108] |
杨进佩, 刘中, 朱晓华. 用于无源雷达的GPS卫星信号性能分析[J]. 电子与信息学报, 2007, 29(5): 1083–1086. doi: 10.3724/SP.J.1146.2005.01981.
YANG Jinpei, LIU Zhong, and ZHU Xiaohua. The performances analysis of GPS signals for passive radar[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1083–1086. doi: 10.3724/SP.J.1146.2005.01981.
|