Dai Da-hai, Liao Bin, Xiao Shun-ping, Wang Xue-song. Advancements on Radar Polarization Information Acquisition and Processing[J]. Journal of Radars, 2016, 5(2): 143-155. doi: 10.12000/JR15103
Citation: WANG Xinhai, WANG Chaoyu, ZHANG Ning, et al. Phase-only method for designing a unimodular radar waveform with low ISL[J]. Journal of Radars, 2022, 11(2): 255–263. doi: 10.12000/JR21137

Phase-only Method for Designing a Unimodular Radar Waveform with Low ISL

DOI: 10.12000/JR21137
Funds:  The National Ministries Foundation
More Information
  • Corresponding author: WANG Xinhai, wangxinhai_csic@163.com
  • Received Date: 2021-09-26
  • Accepted Date: 2022-01-11
  • Rev Recd Date: 2022-01-09
  • Available Online: 2022-01-23
  • Publish Date: 2022-02-21
  • Radar waveform optimization has recently drawn much attention. The radar waveform possesses not only constant amplitude but also a low autocorrelation sidelobe level. However, because of the presence of the constant modular constraint, the problem of optimizing the waveform is non-convex, which is difficult to address. The feasible domain used by the current methods usually contains the vector space with two dimensions: amplitude and phase. The optimization procedures accompanied by the constant constraint enlarge the difficulty and amount of calculation. Herein, the problem of designing unimodular sequences with low autocorrelation sidelobes is addressed, and a novel approach based on phase optimization is presented. The feasible domain is compressed into the vector space with only the phase dimension. The proposed method conducts a deep analysis of the relationship between the phases of the elements in the unimodular sequence and successively updates the vector with a closed-form solution in an element-by-element manner at each iteration using the coordinate descent method, which comprises low computational complexity. By compressing the feasible domain and updating the vector variable using the closed solution, the integrated sidelobe level and computation efficiency are improved. Representative numerical simulations are provided to verify the effectiveness of the proposed method.

     

  • [1]
    GINI F, DE MAIO A, and PATTON L. Waveform Design and Diversity for Advanced Radar Systems[M]. London, UK: Institution of Engineering and Technology, 2012: 5.
    [2]
    SKOLNIK M I. Introduction to Radar Systems[M]. 3rd ed. New York, USA: McGraw-Hill Education (Asia) Co. , 2007. 10–56.
    [3]
    WANG Xinhai, ZHANG Gong, ZHANG Yu, et al. Design of spectrally compatible waveform with constant modulus for colocated multiple-input multiple-output radar[J]. IET Radar, Sonar & Navigation, 2019, 13(8): 1373–1388. doi: 10.1049/iet-rsn.2019.0009
    [4]
    DAVIS M E and PILLAI S U. Waveform diversity for ultra-wide band surveillance radars[J]. IET Radar, Sonar & Navigation, 2014, 8(9): 1226–1233. doi: 10.1049/iet-rsn.2014.0366
    [5]
    GOLAY M. A class of finite binary sequences with alternate auto-correlation values equal to zero (Corresp. )[J]. IEEE Transactions on Information Theory, 1972, 18(3): 449–450. doi: 10.1109/TIT.1972.1054797
    [6]
    BARKER R H. Group Synchronizing of Binary Digital Systems[M]. JACKSON W. Communication Theory. New York: Academic Press, 1953: 273–287.
    [7]
    GOLAY M. Sieves for low autocorrelation binary sequences[J]. IEEE Transactions on Information Theory, 1977, 23(1): 43–51. doi: 10.1109/TIT.1977.1055653
    [8]
    MERTENS S. Exhaustive search for low-autocorrelation binary sequences[J]. Journal of Physics A:Mathematical and General, 1996, 29(18): L473–L481. doi: 10.1088/0305-4470/29/18/005
    [9]
    KOCABAS S E and ATALAR A. Binary sequences with low aperiodic autocorrelation for synchronization purposes[J]. IEEE Communications Letters, 2003, 7(1): 36–38. doi: 10.1109/LCOMM.2002.807438
    [10]
    JEDWAB J. A survey of the merit factor problem for binary sequences[C]. Third International Conference on Sequences and Their Applications, Seoul, Korea, 2005: 30–55. doi: 10.1007/11423461_2.
    [11]
    WANG S. Efficient heuristic method of search for binary sequences with good aperiodic autocorrelations[J]. Electronics Letters, 2008, 44(12): 731–732. doi: 10.1049/el:20081058
    [12]
    FRANK R. Polyphase codes with good nonperiodic correlation properties[J]. IEEE Transactions on Information Theory, 1963, 9(1): 43–45. doi: 10.1109/TIT.1963.1057798
    [13]
    ZHANG N and GOLOMB S W. Polyphase sequence with low autocorrelations[J]. IEEE Transactions on Information Theory, 1993, 39(3): 1085–1089. doi: 10.1109/18.256535
    [14]
    NUNN C J and COXSON G E. Polyphase pulse compression codes with optimal peak and integrated sidelobes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 775–781. doi: 10.1109/TAES.2009.5089560
    [15]
    DE MAIO A, DE NICOLA S, HUANG Yongwei, et al. Design of phase codes for radar performance optimization with a similarity constraint[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 610–621. doi: 10.1109/TSP.2008.2008247
    [16]
    CUI Guolong, JING Ying, LU Shuping, et al. Dual-Use Unimodular Sequence Design via Frequency Nulling Modulation[J]. IEEE Access, 2018(6): 62470–62481. doi: 10.1109/ACCESS.2018.2876644
    [17]
    SOLTANALIAN M and STOICA P. Computational design of sequences with good correlation properties[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2180–2193. doi: 10.1109/TSP.2012.2186134
    [18]
    STOICA P, HE Hao, and LI Jian. New algorithms for designing unimodular sequences with good correlation properties[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1415–1425. doi: 10.1109/TSP.2009.2012562
    [19]
    STOICA P, HE Hao, and LI Jian. On designing sequences with impulse-like periodic correlation[J]. IEEE Signal Processing Letters, 2009, 16(8): 703–706. doi: 10.1109/LSP.2009.2021378
    [20]
    SONG Junxiao, BABU P, and PALOMAR D P. Optimization methods for designing sequences with low autocorrelation sidelobes[J]. IEEE Transactions on Signal Processing, 2015, 63(15): 3998–4009. doi: 10.1109/TSP.2015.2425808
    [21]
    BORWEIN P and FERGUSON R. Polyphase sequences with low autocorrelation[J]. IEEE Transactions on Information Theory, 2005, 51(4): 1564–1567. doi: 10.1109/TIT.2004.842778
    [22]
    LIANG Junli, SO H C, LEUNG C S, et al. Waveform design with unit modulus and spectral shape constraints via Lagrange programming neural network[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1377–1386. doi: 10.1109/JSTSP.2015.2464178
    [23]
    LIANG Junli, SO H C, LI Jian, et al. Unimodular sequence design based on alternating direction method of multipliers[J]. IEEE Transactions on Signal Processing, 2016, 64(20): 5367–5381. doi: 10.1109/TSP.2016.2597123
    [24]
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
    [25]
    ZHANG Jindong, ZHU Daiyin, and ZHANG Gong. New antivelocity deception jamming technique using pulses with adaptive initial phases[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1290–1300. doi: 10.1109/TAES.2013.6494414
    [26]
    BONNANS J F, GILBERT J C, LEMARÉCHAL C, et al. Numerical Optimization: Theoretical and Practical Aspects[M]. Berlin, Heidelberg: Springer, 2006, 67–76. doi: 10.1007/978-3-540-35447-5.
    [27]
    TANG Liang, ZHU Yongfeng, and FU Qiang. Fast algorithm for designing periodic/aperiodic sequences with good correlation and stopband properties[J]. EURASIP Journal on Advances in Signal Processing, 2018, 2018(1): 57. doi: 10.1186/s13634-018-0579-z
    [28]
    ESMAEILI-NAJAFABADI H, LEUNG H, and MOO P W. Unimodular waveform design with desired ambiguity function for cognitive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(3): 2489–2496. doi: 10.1109/TAES.2019.2942411
    [29]
    GRANT M. CVX: MATLAB software for disciplined convex programming[EB/OL]. http://cvxr.com/cvx, 2020.
    [30]
    PEAUCELLE D, HENRION D, LABIT Y, et al. User’s guide for SEDUMI interface 1.04[J]. Siam Journal on Optimization - SIAMJO, 2002.
  • Relative Articles

    [1]GAO Zhiqi, SUN Shuchen, HUANG Pingping, QI Yaolong, XU Wei. Improved L1/2 Threshold Iterative High Resolution SAR Imaging Algorithm[J]. Journal of Radars, 2023, 12(5): 1044-1055. doi: 10.12000/JR22243
    [2]LYU Zexin, QIU Xiaolan, ZHANG Zhe, DING Chibiao. Error Analysis of Polarimetric Interferometric SAR under Different Processing Modes in Urban Areas[J]. Journal of Radars, 2022, 11(4): 600-617. doi: 10.12000/JR22059
    [3]LI Yueli, LI Zesen, WANG Jian, LIU Ke, ZHOU Zhimin. Modification and Compensation of the Line-of-Sight Motion Error for Multirotor UAV SAR[J]. Journal of Radars, 2022, 11(6): 1061-1080. doi: 10.12000/JR22082
    [4]GAO Ming, QIU Xiaolan, MENG Dadi, HUANG Lijia, DING Chibiao. Geolocation Error Transfer Model and Trajectory Calibration Method for Airborne SAR Considering Motion Compensation Residual Error[J]. Journal of Radars, 2021, 10(4): 646-655. doi: 10.12000/JR21018
    [5]ZHANG Lingzhi, LIU Feifeng, HU Cheng. Optimization Method and Analysis of Data Acquisition Strategy Based on Interference SAR with GNSS Transmitters[J]. Journal of Radars, 2019, 8(5): 624-630. doi: 10.12000/JR19065
    [6]Liu Yunlong, Li Yanlei, Zhou Liangjiang, Liang Xingdong. A Fast Precise Geometric Calibration Method for Airborne SAR[J]. Journal of Radars, 2016, 5(4): 419-424. doi: 10.12000/JR16064
    [7]Yin Qiang, Li Yang, Huang Ping-ping, Lin Yun, Hong Wen. Analysis of InSAR Coherence Loss Caused by Soil Moisture Variation(in English)[J]. Journal of Radars, 2015, 4(6): 689-697. doi: 10.12000/JR15075
    [8]Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock[J]. Journal of Radars, 2015, 4(4): 467-473. doi: 10.12000/JR15016
    [9]Wu Qin-xia, Liang Xing-dong, Li Yan-lei, Zhou Liang-jiang. Analysis of the Residual Motion Error Impact on Airborne Multiband SAR Image Registration[J]. Journal of Radars, 2015, 4(2): 209-216. doi: 10.12000/JR14065
    [10]Xu Li-ying, Li Shi-qiang, Deng Yun-kai, Wang Yu. Improved Three-stage Algorithm of Forest Height Retrieval with PolInSAR[J]. Journal of Radars, 2014, 3(1): 28-34. doi: 10.3724/SP.J.1300.2014.13089
    [11]Liu Zhong-sheng, Wang Bing-nan, Xiang Mao-sheng, Chen Long-yong. Performance Analysis for Airborne Interferometric SAR Affected by Flexible Baseline Oscillation[J]. Journal of Radars, 2014, 3(2): 183-191. doi: 10.3724/SP.J.1300.2014.14015
    [12]Deng Yuan, Li Yin-wei, Xiang Mao-sheng, Wei Li-deng. Performance Analysis of Measurement Inaccuracies of IMU/GPS on Airborne Repeat-pass Interferometric SAR in the Presence of Squint[J]. Journal of Radars, 2014, 3(4): 428-438. doi: 10.3724/SP.J.1300.2014.13141
    [13]Mao Yong-fei, Wang Xiao-jie, Xiang Mao-sheng. Joint Three-dimensional Location Algorithm for Airborne Interferometric SAR System[J]. Journal of Radars, 2013, 2(1): 60-67. doi: 10.3724/SP.J.1300.2012.20107
    [14]Meng Da-di, Hu Yu-xin, Shi Tao, Sun Rui, Li Xiao-bo. Airborne SAR Real-time Imaging Algorithm Design and Implementation with CUDA on NVIDIA GPU[J]. Journal of Radars, 2013, 2(4): 481-491. doi: 10.3724/SP.J.1300.2013.13056
    [15]Jia Ying-xin, Wang Yan-fei. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System[J]. Journal of Radars, 2013, 2(1): 77-85. doi: 10.3724/SP.J.1300.2012.20100
    [16]Li Yin-wei, Wei Li-deng, Xiang Mao-sheng. Effects of Target Positioning Error on Motion Compensation for Airborne Interferometric SAR[J]. Journal of Radars, 2013, 2(4): 492-498. doi: 10.3724/SP.J.1300.2013.13040
    [17]Li Yan-lei, Liang Xing-dong, Ding Chi-biao. Error Comparison and Analysis of the Two-pass and Three-pass Approaches in Airborne D-InSAR[J]. Journal of Radars, 2013, 2(3): 326-333. doi: 10.3724/SP.J.1300.2013.13034
    [18]Zhong Xue-lian, Chen Ren-yuan, Yang Ran, Wu Tao. Two Factors Influencing Residual Motion Estimation in Airborne SAR Images with MTPT[J]. Journal of Radars, 2013, 2(2): 180-186. doi: 10.3724/SP.J.1300.2012.20095
    [19]Lin Xue, Li Fang-fang, Hu Dong-hui, Ding Chi-biao. Performance Analysis of Flat Surface Assumption and Residual Motion Errors on Airborne Repeat-pass InSAR[J]. Journal of Radars, 2013, 2(3): 334-347. doi: 10.3724/SP.J.1300.2013.13013
    [20]He Li-ping, Li Jun-xing, Liu Ming. Structural Modeling and Analysis on Dynamic Characteristics[J]. Journal of Radars, 2012, 1(2): 203-208. doi: 10.3724/SP.J.1300.2013.20018
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 34.5 %FULLTEXT: 34.5 %META: 59.0 %META: 59.0 %PDF: 6.5 %PDF: 6.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %其他: 0.7 %其他: 0.7 %Canton: 0.2 %Canton: 0.2 %Central District: 0.1 %Central District: 0.1 %China: 1.9 %China: 1.9 %Germany: 0.2 %Germany: 0.2 %Herndon: 0.1 %Herndon: 0.1 %Italy: 0.1 %Italy: 0.1 %San Lorenzo: 0.1 %San Lorenzo: 0.1 %Seattle: 0.1 %Seattle: 0.1 %Slovenia: 0.2 %Slovenia: 0.2 %Taichung: 0.1 %Taichung: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %Turkey: 0.1 %Turkey: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.3 %[]: 0.3 %三亚: 0.1 %三亚: 0.1 %上海: 1.4 %上海: 1.4 %上饶: 0.1 %上饶: 0.1 %东京: 0.1 %东京: 0.1 %东京都: 0.1 %东京都: 0.1 %东莞: 0.4 %东莞: 0.4 %东营: 0.1 %东营: 0.1 %中卫: 0.2 %中卫: 0.2 %丹东: 0.1 %丹东: 0.1 %乌海: 0.1 %乌海: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %九江: 0.1 %九江: 0.1 %伦敦: 0.1 %伦敦: 0.1 %佛山: 0.2 %佛山: 0.2 %保定: 0.2 %保定: 0.2 %信阳: 0.1 %信阳: 0.1 %兰州: 0.1 %兰州: 0.1 %内江: 0.3 %内江: 0.3 %北京: 9.6 %北京: 9.6 %十堰: 0.1 %十堰: 0.1 %南京: 3.9 %南京: 3.9 %南充: 0.1 %南充: 0.1 %南宁: 0.1 %南宁: 0.1 %南昌: 0.3 %南昌: 0.3 %南通: 0.2 %南通: 0.2 %厦门: 0.1 %厦门: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.8 %合肥: 0.8 %吉安: 0.1 %吉安: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %和田: 0.1 %和田: 0.1 %咸阳: 0.3 %咸阳: 0.3 %哈尔滨: 0.6 %哈尔滨: 0.6 %嘉兴: 0.3 %嘉兴: 0.3 %埃德蒙顿: 0.1 %埃德蒙顿: 0.1 %大连: 0.1 %大连: 0.1 %天津: 1.4 %天津: 1.4 %太原: 0.2 %太原: 0.2 %奥尔巴尼: 0.1 %奥尔巴尼: 0.1 %威海: 0.6 %威海: 0.6 %宁波: 0.2 %宁波: 0.2 %安庆: 0.2 %安庆: 0.2 %安康: 0.5 %安康: 0.5 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.1 %宣城: 0.1 %巴中: 0.1 %巴中: 0.1 %巴音郭楞蒙古自治州: 0.3 %巴音郭楞蒙古自治州: 0.3 %常州: 0.3 %常州: 0.3 %常德: 0.2 %常德: 0.2 %平凉: 0.1 %平凉: 0.1 %广州: 0.7 %广州: 0.7 %庆阳: 0.1 %庆阳: 0.1 %延安: 0.1 %延安: 0.1 %开封: 0.7 %开封: 0.7 %弗吉: 0.1 %弗吉: 0.1 %张家口: 1.0 %张家口: 1.0 %张家界: 0.2 %张家界: 0.2 %徐州: 0.1 %徐州: 0.1 %德里: 0.2 %德里: 0.2 %忻州: 0.1 %忻州: 0.1 %惠州: 0.1 %惠州: 0.1 %慕尼黑: 0.2 %慕尼黑: 0.2 %成都: 3.1 %成都: 3.1 %扬州: 0.3 %扬州: 0.3 %拉萨: 0.1 %拉萨: 0.1 %揭阳: 0.1 %揭阳: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.6 %无锡: 0.6 %昆明: 1.0 %昆明: 1.0 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.4 %杭州: 1.4 %格兰特县: 0.2 %格兰特县: 0.2 %桂林: 0.4 %桂林: 0.4 %武汉: 0.6 %武汉: 0.6 %汉中: 0.2 %汉中: 0.2 %沈阳: 0.4 %沈阳: 0.4 %沧州: 0.1 %沧州: 0.1 %泰米尔纳德: 0.2 %泰米尔纳德: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.4 %济南: 0.4 %海口: 0.2 %海口: 0.2 %淄博: 0.1 %淄博: 0.1 %淮南: 0.2 %淮南: 0.2 %深圳: 1.3 %深圳: 1.3 %温州: 0.2 %温州: 0.2 %渭南: 0.1 %渭南: 0.1 %湘潭: 0.1 %湘潭: 0.1 %湛江: 0.1 %湛江: 0.1 %滁州: 0.1 %滁州: 0.1 %漯河: 0.9 %漯河: 0.9 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.2 %烟台: 0.2 %玉林: 0.1 %玉林: 0.1 %石家庄: 1.0 %石家庄: 1.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.4 %绍兴: 0.4 %绵阳: 0.1 %绵阳: 0.1 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 27.3 %芒廷维尤: 27.3 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 1.3 %苏州: 1.3 %莫斯科: 0.2 %莫斯科: 0.2 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 11.0 %西宁: 11.0 %西安: 3.8 %西安: 3.8 %诺伊达: 0.1 %诺伊达: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.8 %运城: 0.8 %连云港: 0.1 %连云港: 0.1 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %重庆: 0.3 %重庆: 0.3 %金华: 0.1 %金华: 0.1 %银川: 0.1 %银川: 0.1 %镇江: 0.2 %镇江: 0.2 %长春: 0.2 %长春: 0.2 %长沙: 1.7 %长沙: 1.7 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.1 %鞍山: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %黄冈: 0.2 %黄冈: 0.2 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他其他CantonCentral DistrictChinaGermanyHerndonItalySan LorenzoSeattleSloveniaTaichungTaiwan, ChinaTurkeyUnited States[]三亚上海上饶东京东京都东莞东营中卫丹东乌海乌鲁木齐九江伦敦佛山保定信阳兰州内江北京十堰南京南充南宁南昌南通厦门台州合肥吉安呼和浩特和田咸阳哈尔滨嘉兴埃德蒙顿大连天津太原奥尔巴尼威海宁波安庆安康宝鸡宣城巴中巴音郭楞蒙古自治州常州常德平凉广州庆阳延安开封弗吉张家口张家界徐州德里忻州惠州慕尼黑成都扬州拉萨揭阳新乡无锡昆明晋城朝阳杭州格兰特县桂林武汉汉中沈阳沧州泰米尔纳德洛阳济南海口淄博淮南深圳温州渭南湘潭湛江滁州漯河潍坊烟台玉林石家庄秦皇岛纽约绍兴绵阳舟山芒廷维尤芝加哥苏州莫斯科葫芦岛衡水衡阳衢州西宁西安诺伊达贵阳运城连云港邢台邯郸郑州重庆金华银川镇江长春长沙青岛鞍山香港特别行政区黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1198) PDF downloads(226) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint