Volume 5 Issue 5
Nov.  2016
Turn off MathJax
Article Contents
Ding Hao, Dong Yunlong, Liu Ningbo, Wang Guoqing, Guan Jian. Overview and Prospects of Research on Sea Clutter Property Cognition[J]. Journal of Radars, 2016, 5(5): 499-516. doi: 10.12000/JR16069
Citation: Ding Hao, Dong Yunlong, Liu Ningbo, Wang Guoqing, Guan Jian. Overview and Prospects of Research on Sea Clutter Property Cognition[J]. Journal of Radars, 2016, 5(5): 499-516. doi: 10.12000/JR16069

Overview and Prospects of Research on Sea Clutter Property Cognition

doi: 10.12000/JR16069
Funds:

The National Natural Science Foundation of China (61179017, 61201445, 61401495)

  • Received Date: 2016-04-21
  • Rev Recd Date: 2016-10-09
  • Publish Date: 2016-10-28
  • Sea clutter is one of the main limiting factors influencing the target detection performance of nautical radars. The physical mechanism of sea clutter is complex with an abundance of influencing factors, and the non-Gaussian as well as non-stationarity behavior is significant. Thus, research into sea clutter property cognition is complicated and has to be systematic. Based on research that concentrates on experimental data, this paper reviews and summarizes the research developments in sea clutter property cognition. It concentrates on the properties that are of most interest for target detection algorithms:amplitude distribution, spectra, correlation, and non-stationarity and nonlinearity. The main research results are also concluded. Based on this, four aspects of problems that need further exploration are highlighted and include the following:further analysis of sea clutter influencing factors; the game problem between sea clutter precision modeling and the requirements of detection algorithms; and the property cognition between radar target and sea clutter.

     

  • loading
  • [1]
    Ward K and Watts S. Use of sea clutter models in radar design and development[J]. IET Radar, Sonar & Navigation, 2010, 4(2):146-157.
    [2]
    Ward K, Tough R, and Watts S. Sea Clutter:Scattering, the K-distribution and Radar Performance, 2nd ed[M]. London:The Institution of Engineering and Technology, 2013.
    [3]
    Long M W. Radar Reflectivity of Land and Sea, 3nd ed[M]. London:Artech House radar library, 2001.
    [4]
    Skolnik M I. Radar Handbook, 3nd ed[M]. New York:The McGraw-Hill Companies Inc., 2008.
    [5]
    Gini F, Farina A, and Greco M. Selected list of references on radar signal processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1):329-359.
    [6]
    Daley J C, Ransone J T, Burkett J A, et al.. Sea clutter measurements on four frequencies[R]. Naval Research Laboratory Report 6806, November 1968.
    [7]
    Titi G W and Marshall D F. The ARPA/Navy Mountaintop program:adaptive signal processing for airborne early warning radar[C]. In Proceedings of 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1996:1165-1168.
    [8]
    Little M O and Berry W P. Real-time multichannel airborne radar measurements[C]. IEEE National Radar Conference, 1997:138-142.
    [9]
    Charles L R, Eckert E, Siegel A, et al.. X-band low-grazing-angle ocean backscatter obtained during LOGAN 1993[J]. IEEE Journal of Oceanic Engineering, 1997, 22(1):18-26.
    [10]
    Drosopoulos A. Description of the OHGR database[R]. Defence Research Establishment Ottawa, Technical Note 94-14, 1994.
    [11]
    Wind H J De, Cilliers J C, and Herselman P L. Sea clutter and small boat radar reflectivity databases[J]. IEEE Signal Processing Magazine, 2010, 32(2):145-148.
    [12]
    Hair T, Lee T, and Baker C J. Statistical properties of multifrequency high-range-resolution sea reflections[J]. IEE Proceedings-F, 1991, 138(2):75-79.
    [13]
    Carretero-Moya J, Gismero-Menoyo J, Blanco-del-Campo A, et al.. Statistical analysis of a high-resolution sea-clutter database[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4):2024-2037.
    [14]
    Antipov I. Simulation of sea clutter returns[R]. Technical Report, DSTO-TR-0679, 1998.
    [15]
    Antipov I. Analysis of sea clutter data[R]. Technical Report, DSTO-TR-0647, 1998.
    [16]
    Choong P L. Modelling airborne L-band radar sea and coastal land clutter[R]. Technical Report, DSTO-TR-0945, 2000.
    [17]
    Antipov I. Statistical analysis of northern Australian coastline sea clutter data[R]. Technical Report, DSTO-TR-1236, 2002.
    [18]
    Dong Y. Clutter spatial distribution and new approaches of parameter estimation for Weibull and K-distributions[R]. Technical Report, DSTO-RR-0274, 2004.
    [19]
    Dong Y. Distribution of X-band high resolution and high grazing angle sea clutter[R]. Technical Report, DSTO-RR-0316, 2006.
    [20]
    Dong Y. High grazing angle and high resolution sea clutter correlation and polarization analyses[R]. Technical Report, DSTO-TR-1972, 2007.
    [21]
    Dong Y and Merrett D. Statistical measures of S-band sea clutter and targets[R]. Technical Report, DSTO-TR-2221, 2008.
    [22]
    Dong Y and Merrett D. Analysis of L-band multi-channel sea clutter[R]. Technical Report, DSTO-TR-2455, 2010.
    [23]
    Bocquet S. Calculation of radar probability of detection in K-distributed sea clutter and noise[R]. Technical Report, DSTO-TN-1000, 2011.
    [24]
    Weinberg G. Investigation of the Pareto distribution as a model for high grazing angle clutter[R]. Technical Report, DSTO-TR-2525, 2011.
    [25]
    Dong Y, Rosenberg L, and Weinberg G. Generating correlated gamma sequences for sea-clutter simulation[R]. Technical Report, DSTO-TR-2688, 2012.
    [26]
    Rosenberg L and Watts S. High grazing angle sea-clutter literature review[R]. Technical Report, DSTO-GD-0736, 2013.
    [27]
    Whitrow J L. A model of low grazing angle sea clutter for coherent radar performance analysis[R]. Technical Report, DSTO-TR-2864, 2013.
    [28]
    Rosenberg L. Sea-spike detection in high grazing angle X-band sea-clutter[R]. Technical Report, DSTO-TR-2820, 2013.
    [29]
    Ward K D, Barker C J, and Watts S. Maritime surveillance radar Part 1:Radar scattering from the ocean surface[J]. IEE Proceedings-F, 1990, 137(2):51-63.
    [30]
    Greco M, Gini F, and Rangaswamy M. Statistical analysis of measured polarimetric clutter data at different range resolutions[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(6):473-481.
    [31]
    Gregers-Hansen V and Mital R. An improved empirical model for radar sea clutter reflectivity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4):3512-3524.
    [32]
    Raynal M A and Doerry A W. Doppler characteristics of sea clutter[R]. Technical Report, SAND2010-3828, 2010.
    [33]
    Watts S. Modeling and simulation of coherent sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4):3303-3317.
    [34]
    Al-Ashwal W A, Woodbridge K, and Griffiths H D. Analysis of bistatic sea clutter-Part I:Average reflectivity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1283-1292.
    [35]
    Al-Ashwal W A, Woodbridge K, and Griffiths H D. Analysis of bistatic sea clutter-Part Ⅱ:Amplitude statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1293-1303.
    [36]
    Gini F and Greco M. Texture modelling, estimation and validation using measured sea clutter data[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 149(3):115-124.
    [37]
    Plant W J. Microwave sea return at moderate to high incidence angles[J]. Waves in Random Media, 2003, 13(4):339-354.
    [38]
    Gotwols B L, Thompson D R, and Chapman R D. Ocean backscatter distribution functions at mid incidence[C]. Proceedings Engineering in Harmony with Ocean, 1993:Ⅱ/10.
    [39]
    Greco M, Stinco P, and Gini F. Impact of sea clutter nonstationarity on disturbance covariance matrix estimation and CFAR detector performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3):1502-1513.
    [40]
    Lamont-Smith T, Waseda T, and Rheem C K. Measurements of the Doppler spectra of breaking waves[J]. IET Radar, Sonar & Navigation, 2007, 1(2):149-157.
    [41]
    Trunk G V and George S F. Detection of targets in non-Gaussian sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, 6(5):620-628.
    [42]
    Trunk G V. Radar properties of non-Rayleigh sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1972, 8(2):196-204.
    [43]
    Trunk G V. Non-Rayleigh sea clutter:Properties and detection of targets[R]. NRL Report, 1976, No. 7986.
    [44]
    Jakeman E and Pusey P N. A model for non-Rayleigh sea echo[J]. IEEE Transactions on Antennas and Propagation, 1976, 24(6):806-814.
    [45]
    Sangston K J and Gerlach K R. Coherent detection of radar targets in a non-Gaussian background[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2):330-340.
    [46]
    Chan H C. Radar sea-clutter at low grazing angles[J]. IEE Proceedings-F, 1990, 137(2):102-112.
    [47]
    Stehwien W. Statistics and correlation properties of high resolution X-band sea clutter[C]. Proceedings of the 1994 IEEE National Radar Conference, 1994:36-51.
    [48]
    Conte E, Maio A De, and Galdi C. Statistical analysis of real clutter at different range resolutions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3):903-918.
    [49]
    Haykin S, Bakker R, and Currie B W. Uncovering nonlinear dynamics:The case study of sea clutter[J]. Proceedings of the IEEE, 2002, 90(5):860-881.
    [50]
    Greco M, Bordoni F, and Gini F. X-band sea-clutter nonstationarity:Influence of long waves[J]. IEEE Journal of Ocean Engineering, 2004, 29(2):269-283.
    [51]
    Watts S and Wicks D C. Empirical models for prediction in K-distribution radar sea clutter[C]. IEEE International Radar Conference, 1990:189-194.
    [52]
    Ryan J and Johnson M. Radar performance prediction for target detection at sea[C]. IEE Conference Radar-92, 1992:13-17.
    [53]
    Conte E, Lops M, and Ricci G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2):617-625.
    [54]
    Conte E, Lops M, and Ricci G. Adaptive matched filter detection in spherically invariant noise[J]. IEEE Signal Processing Letters, 1996, 3(8):248-250.
    [55]
    Conte E and Maio A D. Mitigation techniques for non-Gaussian sea clutter[J]. IEEE Journal of Ocean Engineering, 2004, 29(2):284-302.
    [56]
    Pulsone N B and Raghavan R S. Analysis of an adaptive CFAR detector in non-Gaussian interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3):903-916.
    [57]
    Rangaswamy M. Statistical analysis of the nonhomogeneity detector for non-Gaussian interference backgrounds[J]. IEEE Transactions on Signal Processing, 2005, 53(6):2101-2111.
    [58]
    Farina A, Gini F, Greco M V, et al.. High resolution sea clutter data:Statistical analysis of recorded live data[J]. IEE Proceedings-Radar, Sonar and Navigation, 1997, 144(3):121-130.
    [59]
    Shnidman D A. Generalized radar clutter model[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3):857-865.
    [60]
    Rosenberg L and Bocquet S. Application of the Pareto plus noise distribution to medium grazing angle sea-clutter[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1):255-261.
    [61]
    Liu Y, Frasier S J, and Mcintosh R E. Measurement and classification of low-grazing-angle radar sea spikes[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(1):27-40.
    [62]
    Gutnik V G, Kulemin G P, and Sharapov L. Spike statistics features of the radar sea clutter in the millimeter wave band at extremely small grazing angles[J]. Physics and Engineering of Millimeter and Sub-Millimeter Waves, 2001, 43(3):426-428.
    [63]
    Melief H W, Greidanus H, and Genderen P. Analysis of sea spikes in radar sea clutter data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4):985-993.
    [64]
    Lyzenga D R, Maffett A L, and Shuchman R A. The contribution of wedge scattering to the radar cross section of the ocean surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 1983, 21(4):502-505.
    [65]
    Keller M R, Gotwols B L, and Chapman R D. Multiple sea spike definitions:Reducing the clutter[C]. Geoscience and Remote Sensing Symposium, 2002:940-942.
    [66]
    Posner F and Gerlach K. Sea spike demographics at high range resolutions and very low grazing angles[C]. Radar Conference, Proceedings of the 2003 IEEE, 2003:38-45.
    [67]
    Posner F L. Spiky sea clutter at high range resolutions and very low grazing angles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1):58-73.
    [68]
    Greco M, Stinco P, and Gini F. Identification and analysis of sea radar clutter spikes[J]. IET Radar, Sonar & Navigation, 2010, 4(2):239-250.
    [69]
    Rosenberg L. Sea-spike detection in high grazing angle X-band sea-clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4556-4562.
    [70]
    Middleton D. New physical-statistical methods and models for clutter and reverberation:The KA-distribution and related probability structures[J]. IEEE Journal of Ocean Engineering, 1999, 24(3):261-283.
    [71]
    Ward K D and Tough R J. Radar detection performance in sea clutter with discrete spikes[C]. International Conference Radar 2002, 2002:253-257.
    [72]
    Watts S, Ward K D, and Tough R J A. The physics and modelling of discrete spikes in radar sea clutter[C]. Proceedings of International Radar Conference, 2005:72-77.
    [73]
    Rosenberg L, Crisp D J, and Stacy N J. Analysis of the KK-distribution with medium grazing angle sea-clutter[J]. IET Radar, Sonar & Navigation, 2010, 4(2):209-222.
    [74]
    Blunt S D, Gerlach K, and Heyer J. HRR detector for slow-moving targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3):965-974.
    [75]
    许心瑜, 张玉石, 黎鑫, 等. L波段小擦地角海杂波KK分布建模[J]. 系统工程与电子技术, 2014, 36(7):1304-1308. Xu X Y, Zhang Y S, Li X, et al.. KK distribution modeling with L band low grazing sea clutter[J]. Systems Engineering and Electronics, 2014, 36(7):1304-1308.
    [76]
    高彦钊, 占荣辉, 万建伟. KK分布杂波下的距离扩展目标检测算法[J]. 国防科技大学学报, 2015, 37(1):118-124. Gao Y Z, Zhan R H, and Wan J W. Range-spread target detection in KK-distributed clutter[J]. Journal of National University of Defense Technology, 2015, 37(1):118-124.
    [77]
    Ding H, Huang Y, Liu N B, et al.. Modeling of sea spike events with generalized extreme value distribution[C]. Proceedings European Radar Conference (EuRAD), 2015:113-116.
    [78]
    Balleri A, Nehorai A, and Wang J. Maximum likelihood estimation for compound-Gaussian clutter with inverse gamma texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2):775-780.
    [79]
    Gotwols B L and Thompson D R. Ocean microwave backscatter distributions[J]. Journal of Geophysical Research, 1994, 99(C5):9741-9750.
    [80]
    Ollila E, Tyler D E, Koivunen V, et al.. Compound-Gaussian clutter modeling with an inverse Gaussian texture distribution[J]. IEEE Signal Processing Letters, 2012, 19(12):876-879.
    [81]
    Anastassopoulos V, Lampropoulos G A, and Drosopoulos A. High resolution radar clutter statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1):43-60.
    [82]
    Fayard P and Field T R. Inference of a generalised texture for a compound-Gaussian clutter[J]. IET Radar, Sonar & Navigation, 2010, 4(2):187-194.
    [83]
    Gini F, Greco M, Diani M, et al.. Performance analysis of two adaptive radar detectors against non-Gaussian real sea clutter data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4):1429-1439.
    [84]
    Farshchian M and Posner F L. The Pareto distribution for low grazing angle and high resolution X-band sea clutter[C]. IEEE Radar Conference, 2010:789-793.
    [85]
    Rosenberg L and Bocquet S. The Pareto distribution for high grazing angle sea-clutter[C]. IEEE International Geoscience and Remote Sensing Symposium, 2013:4209-4212.
    [86]
    Weinberg G V. Assessing Pareto fit to high-resolution high-grazing-angle sea clutter[J]. Electronics Letters, 2011, 47(8):516-517.
    [87]
    Rosenberg L, Watts S, and Bocquet S. Application of the K+Rayleigh distribution to high grazing angle sea-clutter[C]. International Radar Conference, 2014:1-6.
    [88]
    Fiche A, Angelliaume S, Rosenberg L, et al.. Analysis of X-Band SAR sea-clutter distributions at different grazing angles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8):4650-4660.
    [89]
    Hu J, Tung W, and Gao J. A new way to model nonstationary sea clutter[J]. IEEE Signal Processing Letters, 2009, 16(2):129-132.
    [90]
    Tsihrintzis G A and Nikias C L. Evaluation of fractional, lower-order statistics-based detection algorithms on real radar sea-clutter data[J]. IEE Proceedings-Radar, Sonar and Navigation, 1997, 144(1):29-37.
    [91]
    石志广, 周剑雄, 付强. K分布海杂波参数估计方法研究[J]. 信号处理, 2007, 23(3):420-424. Shi Z G, Zhou J X, and Fu Q. Parameter estimation study of K-distributed sea clutter[J]. Signal Processing, 2007, 23(3):420-424.
    [92]
    Marier L J. Correlated K-distributed clutter generation for radar detection and track[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2):568-580.
    [93]
    Davidson G. Simulation of coherent sea clutter[J]. IET Radar, Sonar & Navigation, 2010, 4(2):168-177.
    [94]
    Pidgeon V W. Doppler dependence of radar sea return[J]. Journal of Geophysical Research, 1968, 73:1333-1341.
    [95]
    Lee P, Barter J D, Beach K L, et al.. Power spectral lineshapes of microwave radiation backscattered from sea surfaces at small grazing angle[J]. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(5):252-258.
    [96]
    Lamont-Smith T. An empirical model of EM scattering from steepening wave profiles derived from numerical computations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6):1447-1454.
    [97]
    Lamont-Smith T. Investigation of the variability of Doppler spectra with radar frequency and grazing angle[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(5):291-298.
    [98]
    Lamont-Smith T. Azimuth dependence of Doppler spectra of sea clutter at low grazing angle[J]. IET Radar, Sonar & Navigation, 2008, 2(2):97-103.
    [99]
    Lamont-Smith T, Mitomi M, Kawamura T, et al.. Electromagnetic scattering from wind blown waves and ripples modulated by longer waves under laboratory conditions[J]. IET Radar, Sonar & Navigation, 2010, 4(2):265-279.
    [100]
    Lee P, Barter J D, and Lake B M. Lineshape analysis of breaking wave Doppler spectra[J]. IEE Proceedings-Radar, Sonar and Navigation, 1998, 145(2):135-139.
    [101]
    Walker D. Experimentally motivated model for low grazing angle radar Doppler spectra of the sea surface[J]. IEE Proceedings-Radar, Sonar and Navigation, 2000, 147(3):114-120.
    [102]
    Walker D. Doppler modelling of radar sea clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(2):73-80.
    [103]
    Rosenberg L. Characterization of high grazing angle X-band sea-clutter Doppler spectra[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1):406-417.
    [104]
    Rosenberg L and Stacy N J. Analysis of medium grazing angle X-band sea-clutter Doppler spectra[C]. Proceedings of the IEEE Radarcon Conference, 2008:1-6.
    [105]
    Watts S. The effects of covariance matrix mismatch on adaptive CFAR performance[C]. IEEE Radar 2013 International Conference, 2013:495-499.
    [106]
    Miller R J. Variability in spectra of low-grazing angle sea clutter returns[R]. NATO/RTO Publications, Proceedings of SET Symposium on Low Grazing Angle Clutter:Its Characterisation, Measurement and Application, 2000.
    [107]
    Ritchie M A, Stove A G, Watts S, et al.. Application of a new sea clutter Doppler model[C]. IEEE Radar 2013 International Conference, 2013:560-565.
    [108]
    Watts S, Rosenberg L, Bocquet S, et al.. Doppler spectra of medium grazing angle sea clutter Part 1:Characterisation[J]. IET Radar, Sonar & Navigation, 2016, 10(1):24-31.
    [109]
    Watts S, Rosenberg L, Bocquet S, et al.. Doppler spectra of medium grazing angle sea clutter Part 2:Model assessment and simulation[J]. IET Radar, Sonar & Navigation, 2016, 10(1):32-42.
    [110]
    Baker C J. K-distributed coherent sea clutter[J]. IEE Proceedings-F, 1991, 138(2):89-92.
    [111]
    Ritchie M A, Woodbridge K, and Stove A G. Analysis of sea clutter distribution variation with Doppler using the compound K-distribution[C]. IEEE Radar 2010 International Conference, 2010:495-499.
    [112]
    Ding H, Sun Y L, Liu N B, et al.. Bispectrum property analysis of high resolution real sea clutter[C]. IET International Radar Conference, 2015:1-4.
    [113]
    Haykin S and Thomson D J. Signal detection in a nonstationary environment reformulated as an adaptive pattern classification problem[J]. Proceedings of the IEEE, 1998, 86(11):2325-2344.
    [114]
    Guan J, Zhang J, and Liu N B. Time-frequency entropy of Hilbert-Huang transformation for detecting weak target in the sea clutter[C]. 2009 IEEE Radar Conference, 2009:1-5.
    [115]
    张建, 黄勇, 关键, 等. 基于局部Hilbert边际谱隶属度的微弱目标检测算法[J]. 信号处理, 2011, 27(9):1335-1340. Zhang J, Huang Y, Guan J, et al.. Weak target detection based on the membership degree of partial Hilbert marginal spectrum[J]. Signal Processing, 2011, 27(9):1335-1340.
    [116]
    Chen X L, Guan J, Bao Z H, et al.. Detection and extraction of target with micro-motion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1002-1018.
    [117]
    Rosenberg L. The effect of temporal correlation with K and KK-distributed sea-clutter[C]. IEEE Radarcon Conference, 2012:0303-0308.
    [118]
    Siegel A, Ochadlick A, Davis Jr J, et al.. Spatial and temporal correlation of LOGAN-1 high-resolution radar sea clutter data[C]. IEEE International Conference on Geoscience and Remote Sensing Symposium, 1994:818-821.
    [119]
    Farina A, Gini F, Greco M V, et al.. Improvement factor for real sea-clutter Doppler frequency spectra[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(5):341-344.
    [120]
    Watts S. Cell-averaging CFAR gain in spatially correlated K-distributed clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(5):321-327.
    [121]
    Raghavan R S. A model for spatially correlated radar clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2):268-275.
    [122]
    Lombardo P and Oliver C J. Estimating the correlation properties of K-distributed SAR clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(4):167-178.
    [123]
    Watts S and Ward K D. Spatial correlation in K-distributed sea clutter[J]. IEE Proceedings F Communications, Radar and Signal Processing, 1987, 134(6):526-532.
    [124]
    Armstrong B C and Griffiths H D. Modeling spatially correlated K-distributed clutter[J]. Electronics Letters, 1991, 27(15):1355-1356.
    [125]
    Armstrong B C and Griffiths H D. CFAR detection of fluctuating targets in spatially correlated K-distributed clutter[J]. IEE Proceedings F-Radar and Signal Processing, 1991, 138(2):139-152.
    [126]
    Tough R J A, Ward K D, and Shepherd P W. The modelling and exploitation of spatial correlation in spiky sea clutter[C]. EMRS DTC 2nd Annual Conference, 2005:A1.
    [127]
    关键, 丁昊, 黄勇, 等. 实测海杂波数据空间相关性研究[J]. 电波科学学报, 2012, 27(5):943-954. Guan J, Ding H, Huang Y, et al.. Spatial correlation property with measured sea clutter data[J]. Chinese Journal of Radio Science, 2012, 27(5):943-954.
    [128]
    Ding H, Guan J, Liu N B, et al.. New spatial correlation models for sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9):1833-1837.
    [129]
    何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12):1-9. He Y, Huang Y, Guan J, et al.. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12):1-9.
    [130]
    Stankovic L, Thayaparan T, and Dakovic M. Signal decomposition by using the S-method with application to the analysis of HF radar signals in sea-clutter[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4332-4342.
    [131]
    Dong Y H and Crisp D J. The Euler decomposition and its application to sea clutter analysis[C]. IEEE International Conference on Radar, 2008:133-138.
    [132]
    Huang N E, Shen Z, Long S R, et al.. The empirical mode decomposition and the Hilbert spectrum for nonlinear and Non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science, 1998, 454(1971). doi: 10.1098/rspa.1998.0193.
    [133]
    Gini F and Greco M. Texture modelling, estimation and validation using measured sea clutter data[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 149(3):115-124.
    [134]
    Gini F, Giannakis G B, Greco M, et al.. Time-averaged subspace methods for radar clutter texture retrieval[J]. IEEE Transactions on Signal Processing, 2001, 49(9):1886-1898.
    [135]
    Dinesh R and Jeffrey K. Adaptive radar detection in doubly nonstationary autoregressive Doppler spread clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2):484-497.
    [136]
    Carretero-Moya J, Gismero-Menoyo J, Asensio-Lopez A, et al.. Small-target detection in high-resolution heterogeneous sea-clutter:an empirical analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3):1880-1898.
    [137]
    Leung H and Lo T. Chaotic radar signal processing over the sea[J]. IEEE Journal of Ocean Engineering, 1993, 18(3):287-295.
    [138]
    Unsworth C P, Cowper M R, Mclaughlin S, et al.. Re-examining the nature of radar sea clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 149(3):105-114.
    [139]
    Mcdonald M and Damini A. Limitations of nonlinear chaotic dynamics in predicting sea clutter returns[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(2):105-113.
    [140]
    Blu T and Unser M. Self-similarity:Part Ⅱ-Optimal estimation of fractal processes[J]. IEEE Transactions on Signal Processing, 2007, 55(4):1364-1378.
    [141]
    Hu J, Tung W W, and Gao J B. Detection of low observable targets within sea clutter by structure function based multifractal analysis[J]. IEEE Transactions on Antenna and Propagation, 2006, 54(1):136-143.
    [142]
    Hu J, Gao J B, Posner F L, et al.. Target detection within sea clutter:A comparative study by fractal scaling analyses[J]. Fractals, 2006, 14(3):187-204.
    [143]
    Peng C K, Buldyrev S V, Goldberger A L, et al.. Statistical properties of DNA sequences[J]. Physica A, 1995, 221(1/3):180-192.
    [144]
    Kantelhardt J W, Koscielny-Bunde E, Rego H H A, et al.. Detecting long range correlations with detrended fluctuation analysis[J]. Physica A, 2001, 295(3/4):441-454.
    [145]
    Bashan A, Bartsch R, Kantelhardt J W, et al.. Comparison of detrending methods for fluctuation analysis[J]. Physica A, 2008, 387(21):5080-5090.
    [146]
    Xu X K. Low observable targets detection by joint fractal properties of sea clutter:An experimental study of IPIX OHGR datasets[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(4):1425-1429.
    [147]
    许小可. 基于非线性分析的海杂波处理与目标检测[D].[博士论文], 大连海事大学, 2008. Xu X K. Sea clutter processing and target detecting based on nonlinear analysis[D].[Ph.D. dissertation], Dalian Maritime University, 2008.
    [148]
    丁昊, 关键, 黄勇, 等. 非平稳海杂波的消除趋势波动分析[J]. 电波科学学报, 2013, 28(1):116-123. Ding H, Guan J, Huang Y, et al.. Detrended fluctuation analysis of non-stationary sea clutter[J]. Chinese Journal of Radio Science, 2013, 28(1):116-123.
    [149]
    Ding H, Wang G Q, and Guan J. Analysis of sea clutter fractal property and target detection based on fit error[C]. Asia-Pacific Conference on Antennas and Propagation Conference, 2012.
    [150]
    Guan J, Liu N B, Zhang J, et al.. Multifractal correlation characteristic for radar detecting low-observable target in sea clutter[J]. Signal Processing, 2010, 90(2):523-535.
    [151]
    Liu N B, Ding H, Xue Y H, et al.. Approximate fractality of sea clutter fractional Fourier transform spectrum[C]. Proceedings European Radar Conference (EuRAD), 2015:117-120.
    [152]
    Guan J, Liu N B, Huang Y, et al.. Fractal characteristic in frequency domain for target detection within sea clutter[J]. IET Radar, Sonar & Navigation, 2012, 6(5):293-306.
    [153]
    刘宁波, 关键, 黄勇, 等. 基于海杂波频谱多尺度Hurst指数的目标检测方法[J]. 电子学报, 2013, 41(3):424-431. Liu N B, Guan J, Huang Y, et al.. Target detection within sea clutter based on multi-scale Hurst exponent in frequency domain[J]. Acta Electronica Sinica, 2013, 41(3):424-431.
    [154]
    刘宁波, 关键, 王国庆, 等. 基于海杂波FRFT谱多尺度Hurst指数的目标检测方法[J]. 电子学报, 2013, 41(9):1847-1853. Liu N B, Guan J, Wang G Q, et al.. Target detection within sea clutter based on multi-scale Hurst exponent in FRFT domain[J]. Acta Electronica Sinica, 2013, 41(9):1847-1853.
    [155]
    刘宁波, 黄勇, 关键, 等. 实测海杂波频域分形特性分析[J]. 电子与信息学报, 2012, 34(4):929-935. Liu N B, Huang Y, Guan J, et al.. Fractal analysis of real sea clutter in frequency domain[J]. Journal of Electronics & Information Technology, 2012, 34(4):929-935.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3582) PDF downloads(2259) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint