Citation: | ZHANG Qiang, WANG Zhihao, WANG Xueqian, et al. Cooperative detection of ships in optical and SAR remote sensing images based on neighborhood saliency[J]. Journal of Radars, 2024, 13(4): 885–903. doi: 10.12000/JR24037 |
[1] |
JIANG Xiao, LI Gang, LIU Yu, et al. Change detection in heterogeneous optical and SAR remote sensing images via deep homogeneous feature fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1551–1566. doi: 10.1109/jstars.2020.2983993.
|
[2] |
王志豪, 李刚, 蒋骁. 基于光学和SAR遥感图像融合的洪灾区域检测方法[J]. 雷达学报, 2020, 9(3): 539–553. doi: 10.12000/JR19095.
WANG Zhihao, LI Gang, and JIANG Xiao. Flooded area detection method based on fusion of optical and SAR remote sensing images[J]. Journal of Radars, 2020, 9(3): 539–553. doi: 10.12000/JR19095.
|
[3] |
ZHANG Qiang, WANG Xueqian, WANG Zhihao, et al. Heterogeneous remote sensing image fusion based on homogeneous transformation and target enhancement[C]. 2022 IEEE International Conference on Unmanned Systems (ICUS), Guangzhou, China, 2022: 688–693. doi: 10.1109/ICUS55513.2022.9987218.
|
[4] |
WANG Xueqian, ZHU Dong, LI Gang, et al. Proposal-copula-based fusion of spaceborne and airborne SAR images for ship target detection[J]. Information Fusion, 2022, 77: 247–260. doi: 10.1016/j.inffus.2021.07.019.
|
[5] |
ZHANG Yu, WANG Xueqian, JIANG Zhizhuo, et al. An efficient center-based method with multilevel auxiliary supervision for multiscale SAR ship detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 7065–7075. doi: 10.1109/jstars.2022.3197210.
|
[6] |
刘泽宇, 柳彬, 郭炜炜, 等. 高分三号NSC模式SAR图像舰船目标检测初探[J]. 雷达学报, 2017, 6(5): 473–482. doi: 10.12000/JR17059.
LIU Zeyu, LIU Bin, GUO Weiwei, et al. Ship detection in GF-3 NSC mode SAR images[J]. Journal of Radars, 2017, 6(5): 473–482. doi: 10.12000/JR17059.
|
[7] |
BRUSCH S, LEHNER S, FRITZ T, et al. Ship surveillance with TerraSAR-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 1092–1103. doi: 10.1109/tgrs.2010.2071879.
|
[8] |
WANG Xueqian, LI Gang, ZHANG Xiaoping, et al. A fast CFAR algorithm based on density-censoring operation for ship detection in SAR images[J]. IEEE Signal Processing Letters, 2021, 28: 1085–1089. doi: 10.1109/lsp.2021.3082034.
|
[9] |
张帆, 陆圣涛, 项德良, 等. 一种改进的高分辨率SAR图像超像素CFAR舰船检测算法[J]. 雷达学报, 2023, 12(1): 120–139. doi: 10.12000/JR22067.
ZHANG Fan, LU Shengtao, XIANG Deliang, et al. An improved superpixel-based CFAR method for high-resolution SAR image ship target detection[J]. Journal of Radars, 2023, 12(1): 120–139. doi: 10.12000/JR22067.
|
[10] |
ZHANG Linping, LIU Yu, ZHAO Wenda, et al. Frequency-adaptive learning for SAR ship detection in clutter scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5215514. doi: 10.1109/TGRS.2023.3249349.
|
[11] |
QIN Chuan, WANG Xueqian, LI Gang, et al. A semi-soft label-guided network with self-distillation for SAR inshore ship detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5211814. doi: 10.1109/TGRS.2023.3293535.
|
[12] |
刘方坚, 李媛. 基于视觉显著性的SAR遥感图像NanoDet舰船检测方法[J]. 雷达学报, 2021, 10(6): 885–894. doi: 10.12000/JR21105.
LIU Fangjian and LI Yuan. SAR remote sensing image ship detection method NanoDet based on visual saliency[J]. Journal of Radars, 2021, 10(6): 885–894. doi: 10.12000/JR21105.
|
[13] |
胥小我, 张晓玲, 张天文, 等. 基于自适应锚框分配与IOU监督的复杂场景SAR舰船检测[J]. 雷达学报, 2023, 12(5): 1097–1111. doi: 10.12000/JR23059.
XU Xiaowo, ZHANG Xiaoling, ZHANG Tianwen, et al. SAR ship detection in complex scenes based on adaptive anchor assignment and IOU supervise[J]. Journal of Radars, 2023, 12(5): 1097–1111. doi: 10.12000/JR23059.
|
[14] |
WANG Wensheng, ZHANG Xinbo, SUN Wu, et al. A novel method of ship detection under cloud interference for optical remote sensing images[J]. Remote Sensing, 2022, 14(15): 3731. doi: 10.3390/rs14153731.
|
[15] |
TIAN Yang, LIU Jinghong, ZHU Shengjie, et al. Ship detection in visible remote sensing image based on saliency extraction and modified channel features[J]. Remote Sensing, 2022, 14(14): 3347. doi: 10.3390/rs14143347.
|
[16] |
ZHUANG Yin, LI Lianlin, and CHEN He. Small sample set inshore ship detection from VHR optical remote sensing images based on structured sparse representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2145–2160. doi: 10.1109/JSTARS.2020.2987827.
|
[17] |
HU Jianming, ZHI Xiyang, ZHANG Wei, et al. Salient ship detection via background prior and foreground constraint in remote sensing images[J]. Remote Sensing, 2020, 12(20): 3370. doi: 10.3390/rs12203370.
|
[18] |
QIN Chuan, WANG Xueqian, LI Gang, et al. An improved attention-guided network for arbitrary-oriented ship detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6514805. doi: 10.1109/LGRS.2022.3198681.
|
[19] |
REN Zhida, TANG Yongqiang, HE Zewen, et al. Ship detection in high-resolution optical remote sensing images aided by saliency information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5623616. doi: 10.1109/TGRS.2022.3173610.
|
[20] |
SI Jihao, SONG Binbin, WU Jixuan, et al. Maritime ship detection method for satellite images based on multiscale feature fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 6642–6655. doi: 10.1109/JSTARS.2023.3296898.
|
[21] |
BENDER E J, REESE C E, and VAN DER WAL G S. Comparison of additive image fusion vs. feature-level image fusion techniques for enhanced night driving[C]. SPIE 4796, Low-Light-Level and Real-Time Imaging Systems, Components, and Applications, Seattle, USA, 2003: 140–151. doi: 10.1117/12.450867.
|
[22] |
JIA Yong, KONG Lingjiang, YANG Xiaobo, et al. Multi-channel through-wall-radar imaging based on image fusion[C]. 2011 IEEE RadarCon (RADAR), Kansas City, USA, 2011: 103–105. doi: 10.1109/RADAR.2011.5960508.
|
[23] |
JIN Yue, YANG Ruliang, and HUAN Ruohong. Pixel level fusion for multiple SAR images using PCA and wavelet transform[C]. 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4. doi: 10.1109/ICR.2006.343209.
|
[24] |
FASANO L, LATINI D, MACHIDON A, et al. SAR data fusion using nonlinear principal component analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(9): 1543–1547. doi: 10.1109/LGRS.2019.2951292.
|
[25] |
ZHU Dong, WANG Xueqian, LI Gang, et al. Vessel detection via multi-order saliency-based fuzzy fusion of spaceborne and airborne SAR images[J]. Information Fusion, 2023, 89: 473–485. doi: 10.1016/j.inffus.2022.08.022.
|
[26] |
张良培, 何江, 杨倩倩, 等. 数据驱动的多源遥感信息融合研究进展[J]. 测绘学报, 2022, 51(7): 1317–1337. doi: 10.11947/j.AGCS.2022.20220171.
ZHANG Liangpei, HE Jiang, YANG Qianqian, et al. Data-driven multi-source remote sensing data fusion: Progress and challenges[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317–1337. doi: 10.11947/j.AGCS.2022.20220171.
|
[27] |
童莹萍, 全英汇, 冯伟, 等. 基于空谱信息协同与Gram-Schmidt变换的多源遥感图像融合方法[J]. 系统工程与电子技术, 2022, 44(7): 2074–2083. doi: 10.12305/j.issn.1001-506X.2022.07.02.
TONG Yingping, QUAN Yinghui, FENG Wei, et al. Multi-source remote sensing image fusion method based on spatial-spectrum information collaboration and Gram-Schmidt transform[J]. Systems Engineering and Electronics, 2022, 44(7): 2074–2083. doi: 10.12305/j.issn.1001-506X.2022.07.02.
|
[28] |
QUANG N H, TUAN V A, HAO N T P, et al. Synthetic aperture radar and optical remote sensing image fusion for flood monitoring in the Vietnam Lower Mekong Basin: A prototype application for the Vietnam open data cube[J]. European Journal of Remote Sensing, 2019, 52(1): 599–612. doi: 10.1080/22797254.2019.1698319.
|
[29] |
KAUR H, KOUNDAL D, and KADYAN V. Image fusion techniques: A survey[J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4425–4447. doi: 10.1007/s11831-021-09540-7.
|
[30] |
FUENTES REYES M, AUER S, MERKLE N, et al. SAR-to-optical image translation based on conditional generative adversarial networks—optimization, opportunities and limits[J]. Remote Sensing, 2019, 11(17): 2067. doi: 10.3390/rs11172067.
|
[31] |
LEWIS J J, O’CALLAGHAN R J, NIKOLOV S G, et al. Pixel- and region-based image fusion with complex wavelets[J]. Information Fusion, 2007, 8(2): 119–130. doi: 10.1016/j.inffus.2005.09.006.
|
[32] |
JIANG Xiao, HE You, LI Gang, et al. Building damage detection via superpixel-based belief fusion of space-borne SAR and optical images[J]. IEEE Sensors Journal, 2020, 20(4): 2008–2022. doi: 10.1109/jsen.2019.2948582.
|
[33] |
KHELIFI L and MIGNOTTE M. Deep learning for change detection in remote sensing images: Comprehensive review and meta-analysis[J]. IEEE Access, 2020, 8: 126385–126400. doi: 10.1109/access.2020.3008036.
|
[34] |
JIANG Xiao, LI Gang, ZHANG Xiaoping, et al. A semisupervised siamese network for efficient change detection in heterogeneous remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4700718. doi: 10.1109/TGRS.2021.3061686.
|
[35] |
LI Chengxi, LI Gang, WANG Xueqian, et al. A copula-based method for change detection with multisensor optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5620015. doi: 10.1109/TGRS.2023.3312344.
|
[36] |
YU Ruikun, WANG Guanghui, SHI Tongguang, et al. Potential of land cover classification based on GF-1 and GF-3 data[C]. 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, USA, 2020: 2747–2750. doi: 10.1109/IGARSS39084.2020.9324435.
|
[37] |
MA Yanbiao, LI Yuxin, FENG Kexin, et al. Multisource data fusion for the detection of settlements without electricity[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 1839–1842. doi: 10.1109/IGARSS47720.2021.9553860.
|
[38] |
KANG Wenchao, XIANG Yuming, WANG Feng, et al. CFNet: A cross fusion network for joint land cover classification using optical and SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1562–1574. doi: 10.1109/JSTARS.2022.3144587.
|
[39] |
YU Yongtao, LIU Chao, GUAN Haiyan, et al. Land cover classification of multispectral LiDAR data with an efficient self-attention capsule network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6501505. doi: 10.1109/LGRS.2021.3071252.
|
[40] |
WU Xin, LI Wei, HONG Danfeng, et al. Vehicle detection of multi-source remote sensing data using active fine-tuning network[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 39–53. doi: 10.1016/j.isprsjprs.2020.06.016.
|
[41] |
FANG Qingyun and WANG Zhaokui. Cross-modality attentive feature fusion for object detection in multispectral remote sensing imagery[J]. Pattern Recognition, 2022, 130: 108786. doi: 10.1016/j.patcog.2022.108786.
|
[42] |
FANG Qingyun and WANG Zhaokui. Fusion detection via distance-decay intersection over union and weighted dempster–shafer evidence theory[J]. Journal of Aerospace Information Systems, 2023, 20(3): 114–125. doi: 10.2514/1.I011031.
|
[43] |
焦洪臣, 张庆君, 刘杰, 等. 基于光电通路耦合的光SAR一体化卫星探测系统[P]. 中国, 115639553B, 2023.
JIAO Hongchen, ZHANG Qingjun, LIU Jie, et al. Optical and SAR integrated satellite detection system based on photoelectric path coupling[P]. CN, 115639553B, 2023.
|
[44] |
焦洪臣, 刘杰, 张庆君, 等. 一种基于光SAR共口径集成的多源一体化探测方法[P]. 中国, 115616561B, 2023.
JIAO Hongchen, LIU Jie, ZHANG Qingjun, et al. A multi-source integrated detection method based on optical and SAR co-aperture integration[P]. CN, 115616561B, 2023.
|
[45] |
ZHANG Lu, ZHU Xiangyu, CHEN Xiangyu, et al. Weakly aligned cross-modal learning for multispectral pedestrian detection[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 5126–5136. doi: 10.1109/ICCV.2019.00523.
|
[46] |
陈俊. 基于R-YOLO的多源遥感图像海面目标融合检测算法研究[D]. [硕士论文], 华中科技大学, 2019. doi: 10.27157/d.cnki.ghzku.2019.002510.
CHEN Jun. Research on maritime target fusion detection in multi-source remote sensing images based on R-YOLO[D]. [Master dissertation], Huazhong University of Science and Technology, 2019. doi: 10.27157/d.cnki.ghzku.2019.002510.
|
[47] |
OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076.
|
[48] |
HARTIGAN J A and WONG M A. Algorithm AS 136: A K-means clustering algorithm[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979, 28(1): 100–108. doi: 10.2307/2346830.
|
[49] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2999–3007. doi: 10.1109/ICCV.2017.324.
|
[50] |
JOCHER G, STOKEN A, BOROVEC J, et al. YOLOv5[EB/OL]. https://github.com/ultralytics/yolov5, 2020.
|
[51] |
XIONG Hongqiang, LI Jing, LI Zhilian, et al. GPR-GAN: A ground-penetrating radar data generative adversarial network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5200114. doi: 10.1109/TGRS.2023.3337172.
|
[52] |
WANG Zhixu, HOU Guangyu, XIN Zhihui, et al. Detection of SAR image multiscale ship targets in complex inshore scenes based on improved YOLOv5[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 5804–5823. doi: 10.1109/JSTARS.2024.3370722.
|
[53] |
SHI Jingye, ZHI Ruicong, ZHAO Jingru, et al. A double-head global reasoning network for object detection of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5402216. doi: 10.1109/TGRS.2023.3347798.
|
[54] |
LI Tianhua, SUN Meng, HE Qinghai, et al. Tomato recognition and location algorithm based on improved YOLOv5[J]. Computers and Electronics in Agriculture, 2023, 208: 107759. doi: 10.1016/j.compag.2023.107759.
|
[55] |
LIU Wei, QUIJANO K, and CRAWFORD M M. YOLOv5-tassel: Detecting tassels in RGB UAV imagery with improved YOLOv5 based on transfer learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 8085–8094. doi: 10.1109/JSTARS.2022.3206399.
|
[56] |
XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: A large-scale dataset for object detection in aerial images[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3974–3983. doi: 10.1109/CVPR.2018.00418.
|
[57] |
LEI Songlin, LU Dongdong, QIU Xiaolan, et al. SRSDD-v1.0: A high-resolution SAR rotation ship detection dataset[J]. Remote Sensing, 2021, 13(24): 5104. doi: 10.3390/rs13245104.
|
[58] |
ACHANTA R and SÜSSTRUNK S. Saliency detection using maximum symmetric surround[C]. 2010 IEEE International Conference on Image Processing, Hong Kong, China, 2010: 2653–2656. doi: 10.1109/ICIP.2010.5652636.
|
[59] |
WANG Wensheng, REN Jianxin, SU Chang, et al. Ship detection in multispectral remote sensing images via saliency analysis[J]. Applied Ocean Research, 2021, 106: 102448. doi: 10.1016/j.apor.2020.102448.
|
[60] |
李志远, 郭嘉逸, 张月婷, 等. 基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法[J]. 雷达学报, 2022, 11(1): 83–94. doi: 10.12000/JR21159.
LI Zhiyuan, GUO Jiayi, ZHANG Yueting, et al. A novel autofocus algorithm for ship targets in SAR images based on the adaptive momentum estimation optimizer and space-variant minimum entropy criteria[J]. Journal of Radars, 2022, 11(1): 83–94. doi: 10.12000/JR21159.
|
[61] |
罗汝, 赵凌君, 何奇山, 等. SAR图像飞机目标智能检测识别技术研究进展与展望[J]. 雷达学报, 2024, 13(2): 307–330. doi: 10.12000/JR23056.
LUO Ru, ZHAO Lingjun, HE Qishan, et al. Intelligent technology for aircraft detection and recognition through SAR imagery: Advancements and prospects[J]. Journal of Radars, 2024, 13(2): 307–330. doi: 10.12000/JR23056.
|