Citation: | SHEN Chun, GAO Hang, WANG Xuesong, et al. Aircraft wake vortex parameter-retrieval system based on Lidar[J]. Journal of Radars, 2020, 9(6): 1032–1044. doi: 10.12000/JR20046 |
[1] |
ROSSOW V J. Lift-generated vortex wakes of subsonic transport aircraft[J]. Progress in Aerospace Sciences, 1999, 35(6): 507–660. doi: 10.1016/S0376-0421(99)00006-8
|
[2] |
VEILLETTE P R. Data show that U. S. wake-turbulence accidents are most frequent at low altitude and during approach and landing[J]. Flight Safety Digest, 2002, 21(3/4): 147.
|
[3] |
ANDREWS W H, LARSON R R, and ROBINSON G H. Aircraft response to the wing trailing vortices generated by large jet transports[R]. SEE N71-30756 18-02, 1971: 115–126.
|
[4] |
ASTHEIMER T, HILTON D, BALDONI C, et al. SESAR master plan[R]. DLM-0710-001-02-00, 2008.
|
[5] |
Federal Aviation Administration. NextGen implementation plan 2016[R]. FAA, 2016.
|
[6] |
HOLZÄPFEL F, GERZ T, KÖPP F, et al. Strategies for circulation evaluation of aircraft wake vortices measured by lidar[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(8): 1183–1195. doi: 10.1175/1520-0426(2003)020<1183:SFCEOA>2.0.CO;2
|
[7] |
SMALIKHO I N, BANAKH V A, HOLZÄPFEL F, et al. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar[J]. Optics Express, 2015, 23(19): A1194–A1207. doi: 10.1364/OE.23.0A1194
|
[8] |
THOBOIS L P, KRISHNAMURTY R, CARIOU J P, et al. Wind and EDR measurements with scanning Doppler LIDARs for preparing future weather dependent separation concepts[C]. The 7th AIAA Atmospheric and Space Environments Conference, Dallas, USA, 2015: 1–13. doi: 10.2514/6.2015-3317.
|
[9] |
YOSHIKAWA E and MATAYOSHI N. Aircraft wake vortex retrieval method on lidar lateral range–Height Indicator Observation[J]. AIAA Journal, 2017, 55(7): 2269–2278. doi: 10.2514/1.J055224
|
[10] |
LI Jianbing, WANG Xuesong, and WANG Tao. Modeling the dielectric constant distribution of wake vortices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 820–831. doi: 10.1109/TAES.2011.5751228
|
[11] |
LIU Zhongxun, JEANNIN N, VINCENT F, et al. Modeling the radar signature of raindrops in aircraft wake vortices[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(3): 470–484. doi: 10.1175/JTECH-D-11-00220.1
|
[12] |
LI J, WANG X, and WANG T. On the validity of Born approximation[J]. Progress in Electromagnetics Research, 2010, 107: 219–237. doi: 10.2528/PIER10070504
|
[13] |
LI Jianbing, WANG Xuesong, and WANG Tao. A universal solution to one-dimensional oscillatory integrals[J]. Science in China Series F: Information Sciences, 2008, 51(10): 1614–1622. doi: 10.1007/s11432-008-0121-2
|
[14] |
LI Jianbing, WANG Xuesong, XIAO Shunping, et al. A rapid solution of a kind of 1D fredholm oscillatory integral equation[J]. Journal of Computational and Applied Mathematics, 2012, 236(10): 2696–2705. doi: 10.1016/j.cam.2012.01.007
|
[15] |
LI Jianbing, WANG Xuesong, WANG Tao, et al. On an improved-Levin oscillatory quadrature method[J]. Journal of Mathematical Analysis and Applications, 2011, 380(2): 467–474. doi: 10.1016/j.jmaa.2011.03.055
|
[16] |
Li Jianbing, WANG Xuesong, WANG Tao, et al. Delaminating quadrature method for multi-dimensional highly oscillatory integrals[J]. Applied Mathematics and Computation, 2009, 209(2): 327–338. doi: 10.1016/j.amc.2008.12.061
|
[17] |
LI Jianbing, WANG Xuesong, WANG Tao, et al. An improved levin quadrature method for highly oscillatory integrals[J]. Applied Numerical Mathematics, 2010, 60(8): 833–842. doi: 10.1016/j.apnum.2010.04.009
|
[18] |
李健兵, 王雪松. 飞机尾流雷达特征信号研究[M]. 长沙: 国防科技大学出版社, 2015.
LI Jianbing and WANG Xuesong. Study on the Radar Characteristics of Aircraft Wake Vortices[M]. Changsha: National University of Defense Technology Press, 2015.
|
[19] |
LI Jianbing, WANG Xuesong, WANG Tao, et al. High range resolution profile of simulated aircraft wake vortices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 116–129. doi: 10.1109/TAES.2012.6129624
|
[20] |
WANG Xuesong, LI Jianbing, QU Longhai, et al. Temporal evolution of the RCS of aircraft wake vortices[J]. Aerospace Science and Technology, 2013, 24(1): 204–208. doi: 10.1016/j.ast.2011.11.008
|
[21] |
LI Jianbing, WANG Tao, LIU Zhongxun, et al. Circulation retrieval of wake vortex in fog with a side-looking scanning Radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2242–2254. doi: 10.1109/TAES.2016.150635
|
[22] |
JIAO Yuntao. Windshear at low altitude and flight safety[J]. Civil Aviation Economics and technology, 1994, (11): 13–14.
|
[23] |
WILSON D K, OSTASHEV V E, GOEDECKE G H, et al. Quasi-Wavelet Calculations of Sound Scattering Behind Barriers[J]. Applied Acoustics, 2004, 65(6): 605–627. doi: 10.1016/j.apacoust.2003.11.009
|
[24] |
张宏昇. 大气湍流基础[M]. 北京: 北京大学出版社, 2014: 161–165.
ZHANG Hongsheng. Atmospheric Turbulence Foundation[M]. Beijing: Peking University Press, 2014: 161–165.
|
[25] |
GERZ T, HOLZÄPFEL F, and DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181–208. doi: 10.1016/S0376-0421(02)00004-0
|
[26] |
屈龙海. 晴空和湿性大气中飞机尾流雷达散射特性的研究[D]. [博士论文], 国防科学技术大学, 2015: 29–31.
QU Longhai. Study on the radar scattering characteristics of aircraft wake vortex in clear air and moist air[D]. [Ph. D. dissertation], National University of Defense Technology, 2015: 29–31.
|
[27] |
AHMAD N N, PROCTOR F H, LIMON DUPARCMEUR F M, et al. Review of idealized aircraft wake vortex models[C]. The 52nd Aerospace Sciences Meeting, National Harbor, USA, 2014.
|
[28] |
HOLZÄPFEL F. Sensitivity analysis of the effects of aircraft and environmental parameters on aircraft wake vortex trajectories and lifetimes[C]. The 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Dallas/Ft. Worth Region, USA, 2013: 7–10.
|
[29] |
HOLZÄPFEL F. Probabilistic two-phase wake vortex decay and transport model[J]. Journal of Aircraft, 2003, 40(2): 323–331. doi: 10.2514/2.3096
|
[30] |
李金梁. 箔条干扰的特性与雷达抗箔条技术研究[D]. [博士论文], 国防科学技术大学, 2010: 57–58.
LI Jingliang. Study on characteristics of chaff jamming and anti - chaff technology for radar[D]. [Ph. D. dissertation], National University of Defense Technology, 2010: 57–58.
|
[31] |
ZRNIC D S. Estimation of spectral moments for weather echoes[J]. IEEE Transactions on Geoscience Electronics, 1979, 17(4): 113–128. doi: 10.1109/TGE.1979.294638
|
[32] |
DAUGMAN J G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters[J]. Journal of the Optical Society of America A, 1985, 2(7): 1160–1169. doi: 10.1364/JOSAA.2.001160
|
[33] |
LI Jianbing, SHEN Chun, GAO Hang, et al. Path Integration (PI) method for the parameter-retrieval of aircraft wake vortex by Lidar[J]. Optics Express, 2020, 28(3): 4286–4306. doi: 10.1364/OE.382968
|
[34] |
GAO Hang, LI Jianbing, CHAN P W, et al. Parameter-retrieval of dry-air wake vortices with a scanning Doppler lidar[J]. Optics Express, 2018, 26(13): 16377–16392. doi: 10.1364/OE.26.016377
|
[35] |
GAO Hang, LI Jianbing, CHAN P W, et al. Parameter retrieval of aircraft wake vortex based on its max-min distribution of Doppler velocities measured by a lidar[J]. The Journal of Engineering, 2019, 2019(20): 6852–6855. doi: 10.1049/joe.2019.0539
|
[1] | WEI Ning, LI Minglei, CHEN Guangyong, YE Fangzhou. Research on Aircraft Docking Guidance Localization Based on LiDAR Point Cloud Completion[J]. Journal of Radars. doi: 10.12000/JR25002 |
[2] | XIAO Zhen, GU Yanfeng, JIANG Yanze, LI Xian. Full-waveform Small-footprint LiDAR Multi-target Echo Waveform Lightweight Detection by Spatio-temporal Coupling Models[J]. Journal of Radars. doi: 10.12000/JR24245 |
[3] | CHAI Jiahui, LI Minglei, LI Min, WEI Dazhou, CHEN Guangyong. ResCalib: Joint LiDAR and Camera Calibration Based on Geometrically Supervised Deep Neural Networks[J]. Journal of Radars. doi: 10.12000/JR24233 |
[4] | DANG Xiangwei, QIN Fei, BU Xiangxi, LIANG Xingdong. A Robust Perception Algorithm Based on a Radar and LiDAR for Intelligent Driving[J]. Journal of Radars, 2021, 10(4): 622-631. doi: 10.12000/JR21036 |
[5] | LI Jianbing, WANG Xuesong. Review of Radar Characteristics and Sensing Technologies of Distributed Soft Target[J]. Journal of Radars, 2021, 10(1): 86-99. doi: 10.12000/JR20052 |
[6] | SHEN Chun, LI Jianbing, GAO Hang, CHAN Pakwai, HON Kaikwong, WANG Xuesong. Aircraft Wake Vortex Behavior Prediction Based on Data Assimilation[J]. Journal of Radars, 2021, 10(4): 632-645. doi: 10.12000/JR21007 |
[7] | SHI Longfei, QUAN Yuan, FAN Jintao, MA Jiazhi. Communicational Radar Detection Technology[J]. Journal of Radars, 2020, 9(6): 1056-1063. doi: 10.12000/JR20088 |
[8] | LI Daojing, ZHU Yu, HU Xuan, YU Haifeng, ZHOU Kai, ZHANG Running, LIU Lei. Laser Application and Sparse Imaging Analysis of Diffractive Optical System[J]. Journal of Radars, 2020, 9(1): 195-203. doi: 10.12000/JR19081 |
[9] | LIU Ningbo, DONG Yunlong, WANG Guoqing, DING Hao, HUANG Yong, GUAN Jian, CHEN Xiaolong, HE You. Sea-detecting X-band Radar and Data Acquisition Program (in English)[J]. Journal of Radars, 2019, 8(5): 656-667. doi: 10.12000/JR19089 |
[10] | Li Daojing, Hu Xuan. Optical System and Detection Range Analysis of Synthetic Aperture Ladar[J]. Journal of Radars, 2018, 7(2): 263-274. doi: 10.12000/JR18017 |
[11] | Zhang Keshu, Pan Jie, Wang Ran, Li Guangzuo, Wang Ning, Wu Yirong. Study of Wide Swath Synthetic Aperture Ladar Imaging Techology[J]. Journal of Radars, 2017, 6(1): 1-10. doi: 10.12000/JR16152 |
[12] | Li Jianbing, Gao Hang, Wang Tao, Wang Xuesong. A Survey of the Scattering Characteristics and Detection of Aircraft Wake Vortices[J]. Journal of Radars, 2017, 6(6): 660-672. doi: 10.12000/JR17068 |
[13] | Liu Junkai, Li Jianbing, Ma Liang, Chen Zhongkuan, Cai Yichao. Radar Target Detection Method of Aircraft Wake Vortices Based on Matrix Information Geometry[J]. Journal of Radars, 2017, 6(6): 699-708. doi: 10.12000/JR17058 |
[14] | Hon Kaikwong, Chan Pakwai. Aircraft Wake Vortex Observations in Hong Kong[J]. Journal of Radars, 2017, 6(6): 709-718. doi: 10.12000/JR17072 |
[15] | Li Gang, Xia Xiang-Gen. Parametric Sparse Representation and Its Applications to Radar Sensing[J]. Journal of Radars, 2016, 5(1): 1-7. doi: 10.12000/JR15126 |
[16] | Yan Zhao-ai, Hu Xiong, Guo Shang-yong, Cheng Yong-qiang, Guo Wen-jie, Pan Yi-sheng. Performance Analysis of Spaceborne Sodium Fluorescence Doppler Lidar[J]. Journal of Radars, 2015, 4(1): 99-106. doi: 10.12000/JR14140 |
[17] | Ma Meng, Li Dao-jing, Du Jian-bo. Imaging of Airborne Synthetic Aperture Ladar under Platform Vibration Condition[J]. Journal of Radars, 2014, 3(5): 591-602. doi: 10.3724/SP.J.1300.2014.13132 |
[18] | Du Jian-bo, Li Dao-jing, Ma Meng. Performance Analysis and Image Processing of Phase-modulated Signal on Airborne Synthetic Aperture Ladar[J]. Journal of Radars, 2014, 3(1): 111-118. doi: 10.3724/SP.J.1300.2014.13094 |
[19] | Li Dao-jing, Zhang Qing-juan, Liu Bo, Yang Hong, Pan Jie. Key Technology and Implementation Scheme Analysis of Air-borne Synthetic Aperture Ladar[J]. Journal of Radars, 2013, 2(2): 143-151. doi: 10.3724/SP.J.1300.2013.13021 |
[20] | Wu Jin. On the Development of Synthetic Aperture Ladar Imaging[J]. Journal of Radars, 2012, 1(4): 353-360. doi: 10.3724/SP.J.1300.2012.20076 |
1. | 陈霖,孙晓亮,盛一成,毕道明,刘骏. 基于激光雷达和计算流体力学模型的飞机起降通道风场测量. 应用光学. 2025(01): 129-136 . ![]() | |
2. | 谷润平,鹿彤,魏志强. 激光雷达探测中基于贝叶斯网络的飞机尾流反演. 激光与光电子学进展. 2024(04): 404-415 . ![]() | |
3. | 魏志强,吕振海. 基于激光雷达探测的飞机尾流融合预测方法. 激光与红外. 2024(03): 355-363 . ![]() | |
4. | 沈淳,李健兵,高航,殷加鹏,王雪松. 低空复杂风场全天候雷达精细探测技术. 电子学报. 2024(04): 1189-1204 . ![]() | |
5. | 潘卫军,蒋倩兰,陈宽明. 基于雷达探测数据的尾涡危险区评估. 科学技术与工程. 2024(20): 8783-8789 . ![]() | |
6. | 邹建森. 基于双光式热成像的机场鸟害探测预警系统. 信息记录材料. 2023(03): 150-152 . ![]() | |
7. | 王玄,潘卫军,王昊,罗玉明. 近地阶段ARJ21飞机尾涡探测及演化分析. 应用激光. 2022(01): 83-90 . ![]() | |
8. | 庄南剑,赵丽雅,谷润平,魏志强. 激光雷达选址对飞机尾涡特征参数反演的影响. 交通运输工程学报. 2022(01): 229-239 . ![]() | |
9. | 任维贺,张月,苏云,张学敏,邓红艳,柳祎. 环境扰动下空中动目标探测技术综述. 红外与激光工程. 2022(09): 391-408 . ![]() | |
10. | 沈淳,李健兵,高航,陈柏纬,韩启光,王雪松. 基于数据同化的飞机尾流行为预测. 雷达学报. 2021(04): 632-645 . ![]() | |
11. | 冷元飞,潘卫军,殷浩然,罗玉明,许亚星,王靖开. 基于特征融合的随机森林飞机尾流识别. 西华大学学报(自然科学版). 2021(06): 22-26+38 . ![]() | |
12. | 魏志强,李晓晨. 基于蒙特卡洛仿真的高空尾涡运动特性. 空军工程大学学报(自然科学版). 2021(05): 9-14 . ![]() |