Citation: | SHEN Chun, LI Jianbing, GAO Hang, et al. Aircraft wake vortex behavior prediction based on data assimilation[J]. Journal of Radars, 2021, 10(4): 632–645. doi: 10.12000/JR21007 |
[1] |
李健兵, 高航, 王涛, 等. 飞机尾流的散射特性与探测技术综述[J]. 雷达学报, 2017, 6(6): 660–672. doi: 10.12000/JR17068
LI Jianbing, GAO Hang, WANG Tao, et al. A survey of the scattering characteristics and detection of aircraft wake vortices[J]. Journal of Radars, 2017, 6(6): 660–672. doi: 10.12000/JR17068
|
[2] |
GERZ T, HOLZÄPFEL F, BRYANT W, et al. Research towards a wake-vortex advisory system for optimal aircraft spacing[J]. Comptes Rendus Physique, 2005, 6(4/5): 501–523. doi: 10.1016/j.crhy.2005.06.002
|
[3] |
THOBOIS Ludovic and CARIOU Jean-Pierre. Next generation scanning LIDAR systems for optimizing wake turbulence separation minima[J]. Journal of Radars, 2017, 6(6): 689–698. doi: 10.12000/JR17056.
|
[4] |
HON Kaikwong and CHAN Pakwai. Aircraft wake fortex observations in Hong Kong[J]. Journal of Radars, 2017, 6(6): 709–718. doi: 10.12000/JR17072.
|
[5] |
Vortex State-of-the-Art & Research Needs. Project report under EC contract 2134622015[R]. 2015. doi: 10.17874/BFAEB7154B0.
|
[6] |
CHENG J, TITTSWORTH J, GALLO W, et al. The development of wake turbulence recategorization in the United States[C]. 8th AIAA Atmospheric and Space Environments Conference, Washington, USA, 2016: 1–12.
|
[7] |
HOLZÄPFEL F. Probabilistic two-phase wake vortex decay and transport model[J]. Journal of Aircraft, 2003, 40(2): 323–331. doi: 10.2514/2.3096
|
[8] |
HOLZÄPFEL F. Sensitivity analysis of the effects of aircraft and environmental parameters on aircraft wake vortex trajectories and lifetimes[C]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Dallas, USA, 2013: 7–10.
|
[9] |
DE VISSCHER I, WINCKELMANS G, LONFILS T, et al. The WAKE4D simulation platform for predicting aircraft wake vortex transport and decay: Description and examples of application[C]. AIAA Atmospheric and Space Environments Conference, Toronto, Canada, 2010: 7994.
|
[10] |
SARPKAYA T, ROBINS R E, and DELISI D P. Wake-vortex eddy-dissipation model predictions compared with observations[J]. Journal of Aircraft, 2001, 38(4): 687–692. doi: 10.2514/2.2820
|
[11] |
DELISI D P. Development of the VIPER fast-time wake vortex model (development, assumptions, examples, and plans)[C]. WakeNet3-Europe Specific Workshop on "Operational Wake Vortex Models", Belgium, 2011.
|
[12] |
PROCTOR F, HAMILTON D, and SWITZER G. TASS driven algorithms for wake prediction[C]. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, 2006.
|
[13] |
HOLZÄPFEL F. On the maturity of wake vortex observation, prediction, and validation[C]. WakeNet3-Eurooe 1st Workshop on "Wake Turbulence Safety in Future Aircraft Operations", Paris, France, 2009.
|
[14] |
DE VISSCHER I, WINCKELMANS G, and BRICTEUX L. Some reflections on the achievable quality of operational WV prediction using operational meteorological and aircraft inputs[C]. WakeNet3-Europe 1st Workshop on "Wake Turbulence Safety in Future Aircraft Operations", Paris, France, 2009.
|
[15] |
PRUIS M J. Development of a new probabilistic wake vortex prediction model[C]. WakeNet3-Europe Specific Workshop on "Operational Wake Vortex Models", Belgium, 2011.
|
[16] |
SCHÖNHALS S, STEEN M, and HECKER P. Wake vortex prediction and detection utilising advanced fusion filter technologies[J]. The Aeronautical Journal, 2011, 115(1166): 221–228. doi: 10.1017/S0001924000005674
|
[17] |
LI Jianbing, CHAN P W, WANG Tao, et al. Circulation retrieval of wake vortex with a side-looking scanning Lidar[C]. CIE International Conference on Radar, Guangzhou, China, 2016: 1–4.
|
[18] |
JULIER S, UHLMANN J, and DURRANT-WHYTE H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477–482. doi: 10.1109/9.847726
|
[19] |
JULIER S J and UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401–422. doi: 10.1109/JPROC.2003.823141
|
[20] |
GERZ T, HOLZÄPFEL F, and DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181–208. doi: 10.1016/S0376-0421(02)00004-0
|
[21] |
屈龙海. 晴空和湿性大气中飞机尾流雷达散射特性的研究[D]. [博士论文], 国防科技大学, 2015: 29–31.
QU Longhai. Study on the radar scattering characteristics of aircraft wake vortex in clear air and moist air[D]. [Ph. D. dissertation], National University of Defense Technology, 2015: 29–31.
|
[22] |
AHMAD N N and PROCTOR F. Review of idealized aircraft wake vortex models[C]. 52nd Aerospace Sciences Meeting, National Harbor, USA, 2014.
|
[23] |
BURNHAM D. Chicago monostatic acoustic vortex sensing system, Volume I: Data collection and reduction[R]. FAA-RD-79-103, 1979.
|
[24] |
SHEN Chun, LI Jianbing, ZHANG Fulin, et al. Two-step locating method for aircraft wake vortices based on Gabor filter and velocity range distribution[J]. IET Radar, Sonar & Navigation, 2020, 14(12): 1958–1967. doi: 10.1049/iet-rsn.2020.0319
|
[25] |
LI Jianbing, SHEN Chun, GAO Hang, et al. Path Integration (PI) method for the parameter-retrieval of aircraft wake vortex by Lidar[J]. Optics Express, 2020, 28(3): 4286–4306. doi: 10.1364/OE.382968
|
[26] |
焦云涛. 低空风切变与飞行安全[J]. 民航经济与技术, 1994, (11): 13–14.
JIAO Yuntao. Windshear at low altitude and flight safety[J]. Civil Aviation Economics and Technology, 1994, (11): 13–14.
|
[27] |
WILSON D K, OSTASHEV V E, GOEDECKE G H, et al. Quasi-wavelet calculations of sound scattering behind barriers[J]. Applied Acoustics, 2004, 65(6): 605–627. doi: 10.1016/j.apacoust.2003.11.009
|
[28] |
张宏昇. 大气湍流基础[M]. 北京: 北京大学出版社, 2014: 161–165.
ZHANG Hongsheng. Atmospheric Turbulence Foundation[M]. Beijing: Peking University Press, 2014: 161–165.
|
[29] |
李金梁. 箔条干扰的特性与雷达抗箔条技术研究[D]. [博士论文], 国防科学技术大学, 2010: 57–58.
LI Jinliang. Study on characteristics of chaff jamming and anti-chaff technology for radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2010: 57–58.
|
[30] |
SMALIKHO I N, BANAKH V A, HOLZÄPFEL F, et al. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler Lidar[J]. Optics Express, 2015, 23(19): A1194–A1207. doi: 10.1364/OE.23.0A1194
|
[31] |
沈淳, 高航, 王雪松, 等. 基于激光雷达探测的飞机尾流特征参数反演系统[J]. 雷达学报, 2020, 9(6): 1032–1044. doi: 10.12000/JR20046
SHEN Chun, GAO Hang, WANG Xuesong, et al. Aircraft wake vortex parameter-retrieval system based on Lidar[J]. Journal of Radars, 2020, 9(6): 1032–1044. doi: 10.12000/JR20046
|
[32] |
GAO Hang, LI Jianbing, CHAN P W, et al. Parameter-retrieval of dry-air wake vortices with a scanning Doppler Lidar[J]. Optics Express, 2018, 26(13): 16377–16392. doi: 10.1364/OE.26.016377
|
[1] | CHAI Jiahui, LI Minglei, LI Min, WEI Dazhou, CHEN Guangyong. ResCalib: Joint LiDAR and Camera Calibration Based on Geometrically Supervised Deep Neural Networks[J]. Journal of Radars. doi: 10.12000/JR24233 |
[2] | XIAO Zhen, GU Yanfeng, JIANG Yanze, LI Xian. Full-waveform Small-footprint LiDAR Multi-target Echo Waveform Lightweight Detection by Spatio-temporal Coupling Models[J]. Journal of Radars. doi: 10.12000/JR24245 |
[3] | WEI Ning, LI Minglei, CHEN Guangyong, YE Fangzhou. Research on Aircraft Docking Guidance Localization Based on LiDAR Point Cloud Completion[J]. Journal of Radars. doi: 10.12000/JR25002 |
[4] | WANG Zhirui, KANG Yuzhuo, ZENG Xuan, WANG Yuelei, ZHANG Ting, SUN Xian. SAR-AIRcraft-1.0: High-resolution SAR Aircraft Detection and Recognition Dataset(in English)[J]. Journal of Radars, 2023, 12(4): 906-922. doi: 10.12000/JR23043 |
[5] | ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133 |
[6] | DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037 |
[7] | WANG Ruyi, ZHANG Hanqing, HAN Bing, ZHANG Yueting, GUO Jiayi, HONG Wen, SUN Wei, HU Wenlong. Multiangle SAR Dataset Construction of Aircraft Targets Based on Angle Interpolation Simulation[J]. Journal of Radars, 2022, 11(4): 637-651. doi: 10.12000/JR21193 |
[8] | LI Jianbing, WANG Xuesong. Review of Radar Characteristics and Sensing Technologies of Distributed Soft Target[J]. Journal of Radars, 2021, 10(1): 86-99. doi: 10.12000/JR20052 |
[9] | SHI Longfei, QUAN Yuan, FAN Jintao, MA Jiazhi. Communicational Radar Detection Technology[J]. Journal of Radars, 2020, 9(6): 1056-1063. doi: 10.12000/JR20088 |
[10] | SHEN Chun, GAO Hang, WANG Xuesong, LI Jianbing. Aircraft Wake Vortex Parameter-retrieval System Based on Lidar[J]. Journal of Radars, 2020, 9(6): 1032-1044. doi: 10.12000/JR20046 |
[11] | LIU Ningbo, DONG Yunlong, WANG Guoqing, DING Hao, HUANG Yong, GUAN Jian, CHEN Xiaolong, HE You. Sea-detecting X-band Radar and Data Acquisition Program (in English)[J]. Journal of Radars, 2019, 8(5): 656-667. doi: 10.12000/JR19089 |
[12] | Li Daojing, Hu Xuan. Optical System and Detection Range Analysis of Synthetic Aperture Ladar[J]. Journal of Radars, 2018, 7(2): 263-274. doi: 10.12000/JR18017 |
[13] | Hon Kaikwong, Chan Pakwai. Aircraft Wake Vortex Observations in Hong Kong[J]. Journal of Radars, 2017, 6(6): 709-718. doi: 10.12000/JR17072 |
[14] | Li Jianbing, Gao Hang, Wang Tao, Wang Xuesong. A Survey of the Scattering Characteristics and Detection of Aircraft Wake Vortices[J]. Journal of Radars, 2017, 6(6): 660-672. doi: 10.12000/JR17068 |
[15] | Liu Junkai, Li Jianbing, Ma Liang, Chen Zhongkuan, Cai Yichao. Radar Target Detection Method of Aircraft Wake Vortices Based on Matrix Information Geometry[J]. Journal of Radars, 2017, 6(6): 699-708. doi: 10.12000/JR17058 |
[16] | Li Gang, Xia Xiang-Gen. Parametric Sparse Representation and Its Applications to Radar Sensing[J]. Journal of Radars, 2016, 5(1): 1-7. doi: 10.12000/JR15126 |
[17] | Hu Cheng, Liu Changjiang, Zeng Tao. Bistatic Forward Scattering Radar Detection and Imaging[J]. Journal of Radars, 2016, 5(3): 229-243. doi: 10.12000/JR16058 |
[18] | Yan Zhao-ai, Hu Xiong, Guo Shang-yong, Cheng Yong-qiang, Guo Wen-jie, Pan Yi-sheng. Performance Analysis of Spaceborne Sodium Fluorescence Doppler Lidar[J]. Journal of Radars, 2015, 4(1): 99-106. doi: 10.12000/JR14140 |
[19] | Li Dao-jing, Zhang Qing-juan, Liu Bo, Yang Hong, Pan Jie. Key Technology and Implementation Scheme Analysis of Air-borne Synthetic Aperture Ladar[J]. Journal of Radars, 2013, 2(2): 143-151. doi: 10.3724/SP.J.1300.2013.13021 |
[20] | Wu Jin. On the Development of Synthetic Aperture Ladar Imaging[J]. Journal of Radars, 2012, 1(4): 353-360. doi: 10.3724/SP.J.1300.2012.20076 |