Volume 10 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
SHEN Chun, LI Jianbing, GAO Hang, et al. Aircraft wake vortex behavior prediction based on data assimilation[J]. Journal of Radars, 2021, 10(4): 632–645. doi: 10.12000/JR21007
Citation: SHEN Chun, LI Jianbing, GAO Hang, et al. Aircraft wake vortex behavior prediction based on data assimilation[J]. Journal of Radars, 2021, 10(4): 632–645. doi: 10.12000/JR21007

Aircraft Wake Vortex Behavior Prediction Based on Data Assimilation

DOI: 10.12000/JR21007
Funds:  The National Natural Science Foundation of China (61490649, 61771479, 61625108), Hunan Natural Science Foundation for Distinguished Young Scholars (2018JJ1030)
More Information
  • Corresponding author: LI Jianbing, jianbingli@nudt.edu.cn
  • Received Date: 2021-01-22
  • Rev Recd Date: 2021-03-16
  • Available Online: 2021-04-02
  • Publish Date: 2021-08-28
  • Aircraft wake are a couple of counter-rotating vortices generated by a flying aircraft, which can pose a serious hazard to follower aircraft. The behavior prediction of it is a key issue for air traffic safety management. To this end, we propose a prediction method based on data assimilation, which can be used to predict the evolution and hazard area of aircraft wake vortex from the vortex-core’s positions and circulation. To construct our wake vortex prediction model, we use linear shear and least square estimation. In addition, we use a data assimilation model based on the unscented Kalman filter to instantly correct the predicted trajectories. Our experimental results show that the proposed method performs well and runs steadily, thus, providing an effective tool for aircraft wake vortex prediction and support for the establishment of dynamic wake separation in air traffic management.

     

  • loading
  • [1]
    李健兵, 高航, 王涛, 等. 飞机尾流的散射特性与探测技术综述[J]. 雷达学报, 2017, 6(6): 660–672. doi: 10.12000/JR17068

    LI Jianbing, GAO Hang, WANG Tao, et al. A survey of the scattering characteristics and detection of aircraft wake vortices[J]. Journal of Radars, 2017, 6(6): 660–672. doi: 10.12000/JR17068
    [2]
    GERZ T, HOLZÄPFEL F, BRYANT W, et al. Research towards a wake-vortex advisory system for optimal aircraft spacing[J]. Comptes Rendus Physique, 2005, 6(4/5): 501–523. doi: 10.1016/j.crhy.2005.06.002
    [3]
    THOBOIS Ludovic and CARIOU Jean-Pierre. Next generation scanning LIDAR systems for optimizing wake turbulence separation minima[J]. Journal of Radars, 2017, 6(6): 689–698. doi: 10.12000/JR17056.
    [4]
    HON Kaikwong and CHAN Pakwai. Aircraft wake fortex observations in Hong Kong[J]. Journal of Radars, 2017, 6(6): 709–718. doi: 10.12000/JR17072.
    [5]
    Vortex State-of-the-Art & Research Needs. Project report under EC contract 2134622015[R]. 2015. doi: 10.17874/BFAEB7154B0.
    [6]
    CHENG J, TITTSWORTH J, GALLO W, et al. The development of wake turbulence recategorization in the United States[C]. 8th AIAA Atmospheric and Space Environments Conference, Washington, USA, 2016: 1–12.
    [7]
    HOLZÄPFEL F. Probabilistic two-phase wake vortex decay and transport model[J]. Journal of Aircraft, 2003, 40(2): 323–331. doi: 10.2514/2.3096
    [8]
    HOLZÄPFEL F. Sensitivity analysis of the effects of aircraft and environmental parameters on aircraft wake vortex trajectories and lifetimes[C]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Dallas, USA, 2013: 7–10.
    [9]
    DE VISSCHER I, WINCKELMANS G, LONFILS T, et al. The WAKE4D simulation platform for predicting aircraft wake vortex transport and decay: Description and examples of application[C]. AIAA Atmospheric and Space Environments Conference, Toronto, Canada, 2010: 7994.
    [10]
    SARPKAYA T, ROBINS R E, and DELISI D P. Wake-vortex eddy-dissipation model predictions compared with observations[J]. Journal of Aircraft, 2001, 38(4): 687–692. doi: 10.2514/2.2820
    [11]
    DELISI D P. Development of the VIPER fast-time wake vortex model (development, assumptions, examples, and plans)[C]. WakeNet3-Europe Specific Workshop on "Operational Wake Vortex Models", Belgium, 2011.
    [12]
    PROCTOR F, HAMILTON D, and SWITZER G. TASS driven algorithms for wake prediction[C]. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, 2006.
    [13]
    HOLZÄPFEL F. On the maturity of wake vortex observation, prediction, and validation[C]. WakeNet3-Eurooe 1st Workshop on "Wake Turbulence Safety in Future Aircraft Operations", Paris, France, 2009.
    [14]
    DE VISSCHER I, WINCKELMANS G, and BRICTEUX L. Some reflections on the achievable quality of operational WV prediction using operational meteorological and aircraft inputs[C]. WakeNet3-Europe 1st Workshop on "Wake Turbulence Safety in Future Aircraft Operations", Paris, France, 2009.
    [15]
    PRUIS M J. Development of a new probabilistic wake vortex prediction model[C]. WakeNet3-Europe Specific Workshop on "Operational Wake Vortex Models", Belgium, 2011.
    [16]
    SCHÖNHALS S, STEEN M, and HECKER P. Wake vortex prediction and detection utilising advanced fusion filter technologies[J]. The Aeronautical Journal, 2011, 115(1166): 221–228. doi: 10.1017/S0001924000005674
    [17]
    LI Jianbing, CHAN P W, WANG Tao, et al. Circulation retrieval of wake vortex with a side-looking scanning Lidar[C]. CIE International Conference on Radar, Guangzhou, China, 2016: 1–4.
    [18]
    JULIER S, UHLMANN J, and DURRANT-WHYTE H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477–482. doi: 10.1109/9.847726
    [19]
    JULIER S J and UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401–422. doi: 10.1109/JPROC.2003.823141
    [20]
    GERZ T, HOLZÄPFEL F, and DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181–208. doi: 10.1016/S0376-0421(02)00004-0
    [21]
    屈龙海. 晴空和湿性大气中飞机尾流雷达散射特性的研究[D]. [博士论文], 国防科技大学, 2015: 29–31.

    QU Longhai. Study on the radar scattering characteristics of aircraft wake vortex in clear air and moist air[D]. [Ph. D. dissertation], National University of Defense Technology, 2015: 29–31.
    [22]
    AHMAD N N and PROCTOR F. Review of idealized aircraft wake vortex models[C]. 52nd Aerospace Sciences Meeting, National Harbor, USA, 2014.
    [23]
    BURNHAM D. Chicago monostatic acoustic vortex sensing system, Volume I: Data collection and reduction[R]. FAA-RD-79-103, 1979.
    [24]
    SHEN Chun, LI Jianbing, ZHANG Fulin, et al. Two-step locating method for aircraft wake vortices based on Gabor filter and velocity range distribution[J]. IET Radar, Sonar & Navigation, 2020, 14(12): 1958–1967. doi: 10.1049/iet-rsn.2020.0319
    [25]
    LI Jianbing, SHEN Chun, GAO Hang, et al. Path Integration (PI) method for the parameter-retrieval of aircraft wake vortex by Lidar[J]. Optics Express, 2020, 28(3): 4286–4306. doi: 10.1364/OE.382968
    [26]
    焦云涛. 低空风切变与飞行安全[J]. 民航经济与技术, 1994, (11): 13–14.

    JIAO Yuntao. Windshear at low altitude and flight safety[J]. Civil Aviation Economics and Technology, 1994, (11): 13–14.
    [27]
    WILSON D K, OSTASHEV V E, GOEDECKE G H, et al. Quasi-wavelet calculations of sound scattering behind barriers[J]. Applied Acoustics, 2004, 65(6): 605–627. doi: 10.1016/j.apacoust.2003.11.009
    [28]
    张宏昇. 大气湍流基础[M]. 北京: 北京大学出版社, 2014: 161–165.

    ZHANG Hongsheng. Atmospheric Turbulence Foundation[M]. Beijing: Peking University Press, 2014: 161–165.
    [29]
    李金梁. 箔条干扰的特性与雷达抗箔条技术研究[D]. [博士论文], 国防科学技术大学, 2010: 57–58.

    LI Jinliang. Study on characteristics of chaff jamming and anti-chaff technology for radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2010: 57–58.
    [30]
    SMALIKHO I N, BANAKH V A, HOLZÄPFEL F, et al. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler Lidar[J]. Optics Express, 2015, 23(19): A1194–A1207. doi: 10.1364/OE.23.0A1194
    [31]
    沈淳, 高航, 王雪松, 等. 基于激光雷达探测的飞机尾流特征参数反演系统[J]. 雷达学报, 2020, 9(6): 1032–1044. doi: 10.12000/JR20046

    SHEN Chun, GAO Hang, WANG Xuesong, et al. Aircraft wake vortex parameter-retrieval system based on Lidar[J]. Journal of Radars, 2020, 9(6): 1032–1044. doi: 10.12000/JR20046
    [32]
    GAO Hang, LI Jianbing, CHAN P W, et al. Parameter-retrieval of dry-air wake vortices with a scanning Doppler Lidar[J]. Optics Express, 2018, 26(13): 16377–16392. doi: 10.1364/OE.26.016377
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2502) PDF downloads(159) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint