Citation: | Li Gang, Xia Xiang-Gen. Parametric Sparse Representation and Its Applications to Radar Sensing[J]. Journal of Radars, 2016, 5(1): 1-7. doi: 10.12000/JR15126 |
[1] |
Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society, Series B (Methodological), 1996: 267-288.
|
[2] |
Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
|
[3] |
Cands E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
|
[4] |
Candes E J and Tao T. Near-optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
|
[5] |
Eldar Y and Kutyniok G. Compressed Sensing: Theory and Applications[M]. Cambridge University Press, 2012.
|
[6] |
Baraniuk R and Steeghs P. Compressive radar imaging[C]. 2007 IEEE Radar Conference, 2007: 128-133.
|
[7] |
Potter L C, Ertin E, Parker J T, et al.. Sparsity and compressed sensing in radar imaging[J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020.
|
[8] |
Ender J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402-1414.
|
[9] |
Zhang B, Hong W, and Wu Y. Sparse microwave imaging: principles and applications[J]. SCIENCE CHINA Information Sciences, 2012, 55(8): 1722-1754.
|
[10] |
吴一戎, 洪文, 张冰尘, 等. 稀疏微波成像研究进展[J]. 雷达学报, 2014, 3(4): 383-395. Wu Yi-rong, Hong Wen, Zhang Bing-chen, et al.. Current developments of sparse microwave imaging[J]. Journal of Radars, 2014, 3(4): 383-395.
|
[11] |
Hong W, Zhang B, Zhang Z, et al.. Radar imaging with sparse constraint: principle and initial experiment[C]. Proceedings of 10th European Conference on Synthetic Aperture Radar, EUSAR 2014, Berlin, Germany, 2014: 1-4.
|
[12] |
Tropp J A and Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
|
[13] |
Dai W and Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249.
|
[14] |
Needell D and Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321.
|
[15] |
Li G, Zhang H, Wang X, et al.. ISAR 2-D imaging of uniformly rotating targets via matching pursuit[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1838-1846.
|
[16] |
Rao W, Li G, Wang X, et al.. Adaptive sparse recovery by parametric weighted L1 minimization for ISAR imaging of uniformly rotating targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 942-952.
|
[17] |
Rao W, Li G, Wang X, et al.. Comparison of parametric sparse recovery methods for ISAR image formation[J]. SCIENCE CHINA Information Sciences, 2014, 57(2). doi: 10.1007/s11432-013-4859-9.
|
[18] |
Rao W, Li G, Wang X, et al.. Parametric sparse representation method for ISAR imaging of rotating targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 910-919.
|
[19] |
Chen Y, Li G, Zhang Q, et al.. Parametric sparse representation method for air-borne SAR autofocusing. submitted to IEEE Transactions on Geoscience and Remote Sensing.
|
[20] |
Li G and Varshney P K. Micro-Doppler parameter estimation via parametric sparse representation and pruned orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(12): 4937-4948.
|
[21] |
Gaglione D, Clemente C, Coutts F, et al.. Model-based sparse recovery method for automatic classification of helicopters[C]. 2015 IEEE Radar Conference, Arlington, 2015: 1161-1165.
|
[22] |
Alonso M T, Lopez-Dekker P, and Mallorqui J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285-4295.
|
[23] |
Coutts F K, Gaglione D, Clemente C, et al.. Label consistent K-SVD for sparse micro-Doppler classification[C]. 2015 IEEE International Conference on Digital Signal Processing, Singapore, 2015: 90-94.
|
[24] |
Peyre G. Best basis compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2613-2622.
|
[25] |
Zhu H, Leus G, and Giannakis G B. Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2002-2016.
|
[26] |
Olshausen B A and Field D J. Sparse coding with an overcomplete basis set: a strategy employed by V1?[J]. Vision Research, 1997, 37(23): 3311-3325.
|
[27] |
Kreutz-Delgado K, Murray J F, Rao B D, et al.. Dictionary learning algorithms for sparse representation[J]. Neural Computation, 2003, 15(2): 349-396.
|
[28] |
Bryta O and Elad M. Compression of facial images using the K-SVD algorithm[J]. Journal of Visual Communication and Image Representation, 2008, 19(4): 270-282.
|
[29] |
Tosic I and Frossard P. Dictionary learning[J]. IEEE Signal Processing Magazine, 2011, 28(2): 27-38.
|
[30] |
Donohoe G W. Subaperture autofocus for synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2): 617-621.
|
[31] |
Wahl D E, Eichel P H, Ghiglia D C, et al.. Phase gradient autofocusa robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827-835.
|