Citation: | |
[1] |
金亚秋. 多模式遥感智能信息与目标识别: 微波视觉的物理智能[J]. 雷达学报, 2019, 8(6): 710–716. doi: 10.12000/JR19083
JIN Yaqiu. Multimode remote sensing intelligent information and target recognition: Physical intelligence of microwave vision[J]. Journal of Radars, 2019, 8(6): 710–716. doi: 10.12000/JR19083
|
[2] |
NOVAK L M, OWIRKA G J, and NETISHEN C M. Radar target identification using spatial matched filters[J]. Pattern Recognition, 1994, 27(4): 607–617. doi: 10.1016/0031-3203(94)90040-X
|
[3] |
NOVAK L M, OWIRKA G J, and NETISHEN C M. Performance of a high-resolution polarimetric SAR automatic target recognition system[J]. The Lincoln Laboratory Journal, 1993, 6(1): 11–24.
|
[4] |
NOVAK L M, HALVERSEN S D, OWIRKA G J, et al. Effects of polarization and resolution on the performance of a SAR automatic target recognition system[J]. The Lincoln Laboratory Journal, 1995, 8(1): 49–68.
|
[5] |
高贵. SAR图像目标ROI自动获取技术研究[D]. [博士论文], 国防科学技术大学, 2007.
GAO Gui. The research on automatic acquirement of target’s ROI from SAR imagery[D]. [Ph.D. dissertation], National University of Defense Technology, 2007.
|
[6] |
徐恒. SAR目标鉴别算法研究[D]. [硕士论文], 西安电子科技大学, 2012.
XU Heng. Research on algorithms of SAR target discrimination[D]. [Master dissertation], Xidian University, 2012.
|
[7] |
GREENSPAN M, PHAM L, and TARDELLA N. Development and evaluation of a real time SAR ATR system[C]. IEEE Radar Conference, RADARCON’98. Challenges in Radar Systems and Solutions, Dallas, USA, 1998: 38-43.
|
[8] |
DAI Hui, DU Lan, WANG Yan, et al. A modified CFAR algorithm based on object proposals for ship target detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1925–1929. doi: 10.1109/LGRS.2016.2618604
|
[9] |
WANG Yinghua and LIU Hongwei. A hierarchical ship detection scheme for high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 4173–4184. doi: 10.1109/TGRS.2012.2189011
|
[10] |
SOUYRIS J C, HENRY C, and ADRAGNA F. On the use of complex SAR image spectral analysis for target detection: Assessment of polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(12): 2725–2734. doi: 10.1109/TGRS.2003.817809
|
[11] |
OUCHI K, TAMAKI S, YAGUCHI H, et al. Ship detection based on coherence images derived from cross correlation of multilook SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(3): 184–187. doi: 10.1109/LGRS.2004.827462
|
[12] |
CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720
|
[13] |
PARK J I, PARK S H, and KIM K T. New discrimination features for SAR automatic target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 476–480. doi: 10.1109/LGRS.2012.2210385
|
[14] |
徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148. doi: 10.12000/JR16130
XU Feng, WANG Haipeng, and JIN Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148. doi: 10.12000/JR16130
|
[15] |
高贵, 周蝶飞, 蒋咏梅, 等. SAR图像目标检测研究综述[J]. 信号处理, 2008, 24(6): 971–981. doi: 10.3969/j.issn.1003-0530.2008.06.018
GAO Gui, ZHOU Diefei, JIANG Yongmei, et al. Study on target detection in SAR image: A survey[J]. Signal Processing, 2008, 24(6): 971–981. doi: 10.3969/j.issn.1003-0530.2008.06.018
|
[16] |
高贵. SAR图像目标鉴别研究综述[J]. 信号处理, 2009, 25(9): 1421–1432. doi: 10.3969/j.issn.1003-0530.2009.09.018
GAO Gui. Study on target discrimination in SAR images: A survey[J]. Signal Processing, 2009, 25(9): 1421–1432. doi: 10.3969/j.issn.1003-0530.2009.09.018
|
[17] |
EL-DARYMLI K, MCGUIRE P, POWER D, et al. Target detection in synthetic aperture radar imagery: A state-of-the-art survey[J]. Journal of Applied Remote Sensing, 2013, 7(1): 071598. doi: 10.1117/1.JRS.7.071598
|
[18] |
王兆成, 李璐, 杜兰, 等. 基于单极化SAR图像的舰船目标检测与分类方法[J]. 科技导报, 2017, 35(20): 86–93. doi: 10.3981/j.issn.1000-7857.2017.20.009
WANG Zhaocheng, LI Lu, DU Lan, et al. Ship detection and classification baser on single-polarization SAR images[J]. Science &Technology Review, 2017, 35(20): 86–93. doi: 10.3981/j.issn.1000-7857.2017.20.009
|
[19] |
聂春霞. 基于复杂场景SAR图像的多目标智能检测算法研究[D]. [硕士论文], 南京航空航天大学, 2017.
NIE Chunxia. Research on multi-target intelligent detection algorithm based on SAR image of complex scene[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2017.
|
[20] |
余文毅. 复杂场景下的SAR目标检测[D]. [硕士论文], 西安电子科技大学, 2015.
YU Wenyi. SAR target detection in the complex scene[D]. [Master dissertation], Xidian University, 2015.
|
[21] |
WARD K D. Compound representation of high resolution sea clutter[J]. Electronics Letters, 1981, 17(16): 561–563. doi: 10.1049/el:19810394
|
[22] |
OLIVER C and QUEGAN S. Understanding Synthetic Aperture Radar Images[M]. Boston, London: Artech House, 1998.
|
[23] |
FRERY A C, MULLER H J, YANASSE C C F, et al. A model for extremely heterogeneous clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 648–659. doi: 10.1109/36.581981
|
[24] |
ANASTASSOPOULOS V, LAMPROPOULOS G A, DROSOPOULOS A, et al. High resolution radar clutter statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 43–59. doi: 10.1109/7.745679
|
[25] |
TISON C, NICOLAS J M, TUPIN F, et al. A new statistical model for markovian classification of urban areas in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2046–2057. doi: 10.1109/TGRS.2004.834630
|
[26] |
代梦. 背景干扰情况下高分SAR图像车辆目标检测方法研究[D]. [硕士论文], 上海交通大学, 2017.
DAI Meng. Research on vehicle target detection method for high resolution SAR images with backgrund disturbances[D]. [Master dissertation], Shanghai Jiao Tong University, 2017.
|
[27] |
WEISS M. Analysis of some modified cell-averaging CFAR processors in multiple-target situations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1982, AES-18(1): 102–114. doi: 10.1109/TAES.1982.309210
|
[28] |
ROHLING H. Radar CFAR thresholding in clutter and multiple target situations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(4): 608–621. doi: 10.1109/TAES.1983.309350
|
[29] |
何友, 关键, 孟祥伟, 等. 雷达目标检测与恒虚警处理[M]. 2版. 北京: 清华大学出版社, 2011.
HE You, GUAN Jian, MENG Xiangwei, et al. Radar Target Detection and CFAR Processing[M]. 2nd ed. Beijing: Tsinghua University Press, 2011.
|
[30] |
MEZIANI H A and SOLTANI F. Performance analysis of some CFAR detectors in homogeneous and non-homogeneous pearson-distributed clutter[J]. Signal Processing, 2006, 86(8): 2115–2122. doi: 10.1016/j.sigpro.2006.02.036
|
[31] |
RITCEY J A and DU H. Order statistic CFAR detectors for speckled area targets in SAR[C]. Proceedings of Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers, Pacific Grove, USA, 1991: 1082–1086.
|
[32] |
SMITH M E and VARSHNEY P K. VI-CFAR: A novel CFAR algorithm based on data variability[C]. 1997 IEEE National Radar Conference, Syracuse, USA, 1997: 263–268.
|
[33] |
SMITH M E and VARSHNEY P K. Intelligent CFAR processor based on data variability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 837–847. doi: 10.1109/7.869503
|
[34] |
LI Jian and ZELNIO E G. Target detection with synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2): 613–627. doi: 10.1109/7.489506
|
[35] |
LOMBARDO P, SCIOTTI M, and KAPLAN L M. SAR prescreening using both target and shadow information[C]. 2001 IEEE Radar Conference, Atlanta, USA, 2001: 147–152.
|
[36] |
LEUNG H, DUBASH N, and XIE N. Detection of small objects in clutter using a GA-RBF neural network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 98–118. doi: 10.1109/7.993232
|
[37] |
LAMPROPOULOS G A and LEUNG H. CFAR detection of small manmade targets using chaotic and statistical CFAR detectors[C]. SPIE 3809, Signal and Data Processing of Small Targets, Denver, USA, 1999: 292–296.
|
[38] |
NOVAK L M, OWIRKA G J, BROWER W S, et al. The automatic target-recognition system in SAIP[J]. The Lincoln Laboratory Journal, 1997, 10(2): 187–202.
|
[39] |
GREIG D W and DENNY M. Knowledge-based methods for small object detection in SAR images[C]. The SPIE 4883, SAR Image Analysis, Modeling, and Techniques V, Crete, Greece, 2003: 121–130.
|
[40] |
HALVERSEN S D, OWIRKA G J, and NOVAK L M. New approaches for detecting groups of targets[C]. 1994 28th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 1994: 137–140.
|
[41] |
OWIRKA G J, HALVERSEN S D, HIETT M, et al. An algorithm for detecting groups of targets[C]. The International Radar Conference, Alexandria, USA, 1995: 641–643.
|
[42] |
GAO Gui, KUANG Gangyao, ZHANG Qi, et al. Fast detecting and locating groups of targets in high-resolution SAR images[J]. Pattern Recognition, 2007, 40(4): 1378–1384. doi: 10.1016/j.patcog.2006.01.019
|
[43] |
CUI Yi, ZHOU Guangyi, YANG Jian, et al. On the iterative censoring for target detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 641–655. doi: 10.1109/LGRS.2010.2098434
|
[44] |
陈祥, 孙俊, 尹奎英, 等. 基于CFAR级联的SAR图像舰船目标检测算法[J]. 现代雷达, 2012, 34(9): 50–54, 58. doi: 10.3969/j.issn.1004-7859.2012.09.011
CHEN Xiang, SUN Jun, YIN Kuiying, et al. An algorithm of ship target detection in SAR images based on cascaded CFAR[J]. Modern Radar, 2012, 34(9): 50–54, 58. doi: 10.3969/j.issn.1004-7859.2012.09.011
|
[45] |
宋文青, 王英华, 刘宏伟. 高分辨SAR图像自动区域筛选目标检测算法[J]. 电子与信息学报, 2016, 38(5): 1017–1025. doi: 10.11999/JEIT150808
SONG Wenqing, WANG Yinghua, and LIU Hongwei. An automatic block-to-block censoring target detector for high resolution SAR image[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1017–1025. doi: 10.11999/JEIT150808
|
[46] |
DING Tao, ANFINSEN S N, and BREKKE C. Robust CFAR detector based on truncated statistics in multiple-target situations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 117–134. doi: 10.1109/TGRS.2015.2451311
|
[47] |
YU Wenyi, WANG Yinghua, LIU Hongwei, et al. Superpixel-based CFAR target detection for high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 730–734. doi: 10.1109/LGRS.2016.2540809
|
[48] |
AO Wei, XU Feng, LI Yongchen, et al. Detection and discrimination of ship targets in complex background from spaceborne ALOS-2 SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(2): 536–550. doi: 10.1109/JSTARS.2017.2787573
|
[49] |
LENG Xiangguang, JI Kefeng, XIANG Xiangwei, et al. Area ratio invariant feature group for ship detection in SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2376–2388. doi: 10.1109/JSTARS.2018.2820078
|
[50] |
GAO Gui, LIU Li, ZHAO Lingjun, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685–1697. doi: 10.1109/TGRS.2008.2006504
|
[51] |
胡睿, 孙进平, 王文光. 基于α稳定分布的SAR图像目标检测算法[J]. 中国图象图形学报, 2009, 14(1): 25–29. doi: 10.11834/jig.20090105
HU Rui, SUN Jinping, and WANG Wenguang. Target detection of SAR images using α stable distribution[J]. Journal of image and Graphics, 2009, 14(1): 25–29. doi: 10.11834/jig.20090105
|
[52] |
QIN Xianxiang, ZHOU Shilin, ZOU Huanxin, et al. A CFAR detection algorithm for generalized gamma distributed background in high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 806–810. doi: 10.1109/LGRS.2012.2224317
|
[53] |
GAO Gui. A parzen-window-kernel-based CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 557–561. doi: 10.1109/LGRS.2010.2090492
|
[54] |
张颢, 孟祥伟, 刘磊, 等. 改进的基于Parzen窗算法的SAR图像目标检测[J]. 计算机科学, 2015, 42(11A): 151–154.
ZHANG Hao, MENG Xiangwei, LIU Lei, et al. Improved parzen window based ship detection algorithm in SAR images[J]. Computer Science, 2015, 42(11A): 151–154.
|
[55] |
LENG Xiangguang, JI Kefeng, YANG Kai, et al. A bilateral CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1536–1540. doi: 10.1109/LGRS.2015.2412174
|
[56] |
HUANG Yong and LIU Fang. Detecting cars in VHR SAR images via semantic CFAR algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 801–805. doi: 10.1109/LGRS.2016.2546309
|
[57] |
曾丽娜, 周德云, 李枭扬, 等. 基于无训练单样本有效特征的SAR目标检测[J]. 雷达学报, 2017, 6(2): 177–185. doi: 10.12000/JR16114
ZENG Li’na, ZHOU Deyun, LI Xiaoyang, et al. Novel SAR target detection algorithm using free training[J]. Journal of Radars, 2017, 6(2): 177–185. doi: 10.12000/JR16114
|
[58] |
KANG Miao, LENG Xiangguang, LIN Zhao, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]. 2017 International Workshop on Remote Sensing with Intelligent Processing, Shanghai, China, 2017: 1–4.
|
[59] |
WALTHER D. Interactions of visual attention and object recognition: Computational modeling, algorithms, and psychophysics[D]. [Ph.D. dissertation], California Institute of Technology, 2006.
|
[60] |
ITTI L, KOCH C, and NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254–1259. doi: 10.1109/34.730558
|
[61] |
BORJI A and ITTI L. State-of-the-Art in visual attention modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 185–207. doi: 10.1109/TPAMI.2012.89
|
[62] |
KOCH K, MCLEAN J, SEGEV R, et al. How much the eye tells the Brain[J]. Current Biology, 2006, 16(14): 1428–1434. doi: 10.1016/j.cub.2006.05.056
|
[63] |
BRUCE N D B and TSOTSOS J K. Saliency based on information maximization[C]. The 18th International Conference on Neural Information Processing Systems, Montreal, Canada, 2005: 155–162.
|
[64] |
ITTI L and BALDI P. Bayesian surprise attracts human attention[J]. Vision Research, 2009, 49(10): 1295–1306. doi: 10.1016/j.visres.2008.09.007
|
[65] |
HOU Xiaodi and ZHANG Liqing. Saliency detection: A spectral residual approach[C]. 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1–8.
|
[66] |
YU Ying, WANG Bin, and ZHANG Liming. Pulse discrete cosine transform for saliency-based visual attention[C]. The IEEE 8th International Conference on Development and Learning, Shanghai, China, 2009: 1–6.
|
[67] |
CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569–582. doi: 10.1109/TPAMI.2014.2345401
|
[68] |
WANG Zhaocheng, DU Lan, and SU Hongtao. Target detection via bayesian-morphological saliency in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5455–5466. doi: 10.1109/TGRS.2017.2707672
|
[69] |
王兆成. 复杂场景下SAR图像目标检测及鉴别方法研究[D]. [博士论文], 西安电子科技大学, 2018.
WANG Zhaocheng. Study on target detection and discrimination for SAR images in complex scenes[D]. [Ph.D. dissertation], Xidian University, 2018.
|
[70] |
YU Ying, WANG Bin, and ZHANG Liming. Hebbian-based neural networks for bottom-up visual attention and its applications to ship detection in SAR images[J]. Neurocomputing, 2011, 74(11): 2008–2017. doi: 10.1016/j.neucom.2010.06.026
|
[71] |
LIU Shuo, CAO Zongjie, and LI Jin. A SVD-based Visual Attention Detection Algorithm of SAR Image[M]. ZHANG Baoju, MU Jiasong, WAMG Wei, et al. The Proceedings of the Second International Conference on Communications, Signal Processing, and Systems. Cham: Springer, 2014: 479–486.
|
[72] |
ZHAO Juanping, ZHANG Zenghui, YU Wenxian, et al. A cascade coupled convolutional neural network guided visual attention method for ship detection from SAR images[J]. IEEE Access, 2018, 6: 50693–50708. doi: 10.1109/ACCESS.2018.2869289
|
[73] |
WANG Haipeng, XU Feng, and CHEN Shanshan. Saliency detector for SAR images based on pattern recurrence[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 2891–2900. doi: 10.1109/JSTARS.2016.2521709
|
[74] |
NI Weiping, MA Long, YAN Weidong, et al. Background context-aware-based SAR image saliency detection[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(9): 1392–1396. doi: 10.1109/LGRS.2018.2838151
|
[75] |
HOU Biao, YANG Wei, WANG Shuang, et al. SAR image ship detection based on visual attention model[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 2003–2006.
|
[76] |
WANG Zhaocheng, DU Lan, ZHANG Peng, et al. Visual attention-based target detection and discrimination for high-resolution SAR images in complex scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1855–1872. doi: 10.1109/TGRS.2017.2769045
|
[77] |
ZHAI Liang, LI Yu, and SU Yi. Inshore ship detection via saliency and context information in high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1870–1874. doi: 10.1109/LGRS.2016.2616187
|
[78] |
LI Lu, DU Lan, and WANG Zhaocheng. Target detection based on dual-domain sparse reconstruction saliency in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4230–4243. doi: 10.1109/JSTARS.2018.2874128
|
[79] |
TU Song and SU Yi. Fast and accurate target detection based on multiscale saliency and active contour model for high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5729–5744. doi: 10.1109/TGRS.2016.2571309
|
[80] |
MARINO A, SANJUAN-FERRER M J, HAJNSEK I, et al. Ship detection with spectral analysis of synthetic aperture radar: A comparison of new and well-known algorithms[J]. Remote Sensing, 2015, 7(5): 5416–5439. doi: 10.3390/rs70505416
|
[81] |
ARNAUD A. Ship detection by SAR interferometry[C]. IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 1999: 2616–2618.
|
[82] |
LENG Xiangguang, JI Kefeng, ZHOU Shilin, et al. Ship detection based on complex signal kurtosis in single-channel SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6447–6461. doi: 10.1109/TGRS.2019.2906054
|
[83] |
EL-DARYMLI K, MOLONEY C, GILL E W, et al. Nonlinearity and the effect of detection on single-channel synthetic aperture radar imagery[C]. Proceedings of Oceans 14, Taipei, China, 2014: 1–7.
|
[84] |
EL-DARYMLI K, MCGUIRE P, GILL E W, et al. Characterization and statistical modeling of phase in single-channel synthetic aperture radar imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2071–2092. doi: 10.1109/TAES.2015.140711
|
[85] |
LENG Xiangguang, JI Kefeng, ZHOU Shilin, et al. Fast shape parameter estimation of the complex generalized gaussian distribution in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, (in press). doi: 10.1109/LGRS.2019.2960095
|
[86] |
LENG Xiangguang, JI Kefeng, ZHOU Shilin, et al. Discriminating ship from radio frequency interference based on noncircularity and non-gaussianity in Sentinel-1 SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 352–363. doi: 10.1109/TGRS.2018.2854661
|
[87] |
ZHANG Zhimian, WANG Haipeng, XU Feng, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177–7188. doi: 10.1109/TGRS.2017.2743222
|
[88] |
BURL M C, OWIRKA G J, and NOVAK L M. Texture discrimination in synthetic aperture radar imagery[C]. The Twenty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 1989: 399–404.
|
[89] |
GAO Gui. An improved scheme for target discrimination in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 277–294. doi: 10.1109/TGRS.2010.2052623
|
[90] |
刘轩, 王卫红, 唐晓斌, 等. 遗传算法在SAR图像目标鉴别特征选择上的应用[J]. 电子科技, 2014, 27(5): 140–144. doi: 10.3969/j.issn.1007-7820.2014.05.041
LIU Xuan, WANG Weihong, TANG Xiaobin, et al. Feature selection for target discrimination in SAR images based on genetic algorithm[J]. Electronic Science and Technology, 2014, 27(5): 140–144. doi: 10.3969/j.issn.1007-7820.2014.05.041
|
[91] |
李礼. SAR目标检测与鉴别算法研究及软件设计[D]. [硕士论文], 西安电子科技大学, 2013.
LI Li. Research on SAR target detection and discrimination algorithms and software design[D]. [Master dissertation], Xidian University, 2013.
|
[92] |
AMOON M, REZAI-RAD G A, and DALIRI M R. PSO-based optimal selection of zernike moments for target discrimination in high-resolution SAR imagery[J]. Journal of the Indian Society of Remote Sensing, 2014, 42(3): 483–493. doi: 10.1007/s12524-013-0344-6
|
[93] |
陈琪, 陆军, 王娜, 等. 一种基于SAR图像鉴别的港口区域舰船目标新方法[J]. 宇航学报, 2011, 32(12): 2582–2588. doi: 10.3873/j.issn.1000-1328.2011.12.017
CHEN Qi, LU Jun, WANG Na, et al. An SAR images-based new method for ship discrimination in harbor region[J]. Journal of Astronautics, 2011, 32(12): 2582–2588. doi: 10.3873/j.issn.1000-1328.2011.12.017
|
[94] |
王斐. 特征变换方法及其在SAR目标鉴别上的应用[D]. [硕士论文], 西安电子科技大学, 2014.
WANG Fei. Feature transformation with applications to SAR target discrimination[D]. [Master dissertation], Xidian University, 2014.
|
[95] |
DU Lan, DAI Hui, WANG Yan, et al. Target discrimination based on weakly supervised learning for high-resolution sar images in complex scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 461–472. doi: 10.1109/TGRS.2019.2937175
|
[96] |
WANG Zhaocheng, DU Lan, and SU Hongtao. Superpixel-level target discrimination for high-resolution SAR images in complex scenes[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9): 3127–3143. doi: 10.1109/JSTARS.2018.2850043
|
[97] |
WANG Ning, WANG Yinghua, LIU Hongwei, et al. Feature-fused SAR target discrimination using multiple convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1695–1699. doi: 10.1109/LGRS.2017.2729159
|
[98] |
WANG Yan, DU Lan, and DAI Hui. Target discrimination method for SAR images based on semisupervised co-training[J]. Journal of Applied Remote Sensing, 2018, 12(1): 015004.
|
[99] |
DU Lan, WANG Yan, XIE Weitong, et al. A semisupervised infinite latent Dirichlet allocation model for target discrimination in SAR images with complex scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 666–679. doi: 10.1109/TGRS.2019.2939001
|
[100] |
DENG Li. The MNIST database of handwritten digit images for machine learning research[Best of the Web][J]. IEEE Signal Processing Magazine, 2012, 29(6): 141–142. doi: 10.1109/MSP.2012.2211477
|
[101] |
CARVALHO E F and ENGEL P M. Convolutional sparse feature descriptor for object recognition in CIFAR-10[C]. 2013 Brazilian Conference on Intelligent Systems, Fortaleza, Brazil, 2013: 131–135.
|
[102] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A Large-Scale Hierarchical Image Database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255.
|
[103] |
杜兰, 刘彬, 王燕, 等. 基于卷积神经网络的SAR图像目标检测算法[J]. 电子与信息学报, 2016, 38(12): 3018–3025. doi: 10.11999/JEIT161032
DU Lan, LIU Bin, WANG Yan, et al. Target detection method based on convolutional neural network for SAR image[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3018–3025. doi: 10.11999/JEIT161032
|
[104] |
WANG Zhaocheng, DU Lan, MAO Jiashun, et al. SAR target detection based on SSD with data augmentation and transfer learning[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1): 150–154. doi: 10.1109/LGRS.2018.2867242
|
[105] |
王思雨, 高鑫, 孙皓, 等. 基于卷积神经网络的高分辨率SAR图像飞机目标检测方法[J]. 雷达学报, 2017, 6(2): 195–203. doi: 10.12000/JR17009
WANG Siyu, GAO Xin, SUN Hao, et al. An aircraft detection method based on convolutional neural networks in high-resolution SAR images[J]. Journal of Radars, 2017, 6(2): 195–203. doi: 10.12000/JR17009
|
[106] |
COZZOLINO D, DI MARTINO G, POGGI G, et al. A fully convolutional neural network for low-complexity single-stage ship detection in Sentinel-1 SAR images[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 886–889.
|
[107] |
李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40(9): 1953–1959. doi: 10.3969/j.issn.1001-506X.2018.09.09
LI Jianwei, QU Changwen, PENG Shujuan, et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40(9): 1953–1959. doi: 10.3969/j.issn.1001-506X.2018.09.09
|
[108] |
JIAO Jiao, ZHANG Yue, SUN Hao, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6: 20881–20892. doi: 10.1109/ACCESS.2018.2825376
|
[109] |
LIU Lei, CHEN Guowei, PAN Zongxu, et al. Inshore ship detection in SAR images based on deep neural networks[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 25–28.
|
[110] |
李健伟, 曲长文, 彭书娟, 等. 基于生成对抗网络和线上难例挖掘的SAR图像舰船目标检测[J]. 电子与信息学报, 2019, 41(1): 143–149. doi: 10.11999/JEIT180050
LI Jianwei, QU Changwen, PENG Shujuan, et al. Ship detection in SAR images based on generative adversarial network and online hard examples mining[J]. Journal of Electronics &Information Technology, 2019, 41(1): 143–149. doi: 10.11999/JEIT180050
|
[111] |
孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852–862. doi: 10.12000/JR19097
SUN Xian, WANG Zhirui, SUN Yuanrui, et al. AIR-SARShip-1.0: High-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852–862. doi: 10.12000/JR19097
|
[112] |
ZHAO Juanping, GUO Weiwei, ZHANG Zenghui, et al. A coupled convolutional neural network for small and densely clustered ship detection in SAR images[J]. Science China Information Sciences, 2019, 62(4): 42301. doi: 10.1007/s11432-017-9405-6
|
[113] |
陈慧元, 刘泽宇, 郭炜炜, 等. 基于级联卷积神经网络的大场景遥感图像舰船目标快速检测方法[J]. 雷达学报, 2019, 8(3): 413–424. doi: 10.12000/JR19041
CHEN Huiyuan, LIU Zeyu, GUO Weiwei, et al. Fast detection of ship targets for large-scale remote sensing image based on a cascade convolutional neural network[J]. Journal of Radars, 2019, 8(3): 413–424. doi: 10.12000/JR19041
|
[114] |
DU Lan, LI Lu, WEI Di, et al. Saliency-guided single shot multibox detector for target detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, (in press). doi: 10.1109/TGRS.2019.2953936
|
[115] |
杜兰, 魏迪, 李璐, 等. 基于半监督学习的SAR目标检测网络[J]. 电子与信息学报, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783
DU Lan, WEI Di, LI Lu, et al. SAR target detection network via semi-supervised learning[J]. Journal of Electronics &Information Technology, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783
|