Citation: | Hon Kaikwong, Chan Pakwai. Aircraft Wake Vortex Observations in Hong Kong[J]. Journal of Radars, 2017, 6(6): 709-718. doi: 10.12000/JR17072 |
[1] |
Hallock J N. Aircraft wake vortices: An assessment of the current situation[R]. U.S. Department of Transportation Report. DOT-FAA-RD-90-29. Washington, D.C.: U.S. Department of Transportation, 1991: 59.
|
[2] |
Rubin W L. Radar-acoustic detection of aircraft wake vortices[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(8): 1058–1065. DOI: 10.1175/1520-0426(2000)017<1058:RADOAW>2.0.CO;2
|
[3] |
Holzäpfel F, Gerz T, Köpp F, et al. Strategies for circulation evaluation of aircraft wake vortices measured by Lidar[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(8): 1183–1195. DOI: 10.1175/1520-0426(2003)020<1183:SFCEOA>2.0.CO;2
|
[4] |
Liu Zhong-xun, Jeannin N, Vincent F, et al. Modeling the radar signature of raindrops in aircraft wake vortices[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(3): 470–484. DOI: 10.1175/JTECH-D-11-00220.1
|
[5] |
Holzäpfel F and Robins R E. Probabilistic two-phase aircraft wake vortex model: Application and assessment[J]. Journal of Aircraft, 2004, 41(5): 1117–1126. DOI: 10.2514/1.2280
|
[6] |
Holzäpfel F, Kladetzke J, Amelsberg S, et al. Aircraft wake vortex scenarios simulation package for takeoff and departure[J]. Journal of Aircraft, 2009, 46(2): 713–717. DOI: 10.2514/1.39346
|
[7] |
ICAO. Procedures for air navigation services—air traffic management (Doc 4444)[Z]. 2016, 5: 1–36 (Technical document of the International Civil Aviation Organisation).
|
[8] |
EUROCONTROL. European wake vortex mitigation benefits study (EuroBen)[Z]. High Level Benefits Analysis & Systemic Analysis, 2005 (Technical report of EUROCONTROL).
|
[9] |
Tittsworth J A, Lang S R, Johnson E J, et al.. Federal aviation administration wake turbulence program-recent highlights[C]. 57th Air Traffic Control Association (ATCA) Annual Conference & Exposition, Cambridge, MA, USA, 2012.
|
[10] |
Federal Aviation Administration. Wake turbulence recategorization[Z]. Order JO 7110.659C, 2016 (Administrative order form FAA of USA).
|
[11] |
Treve V and Rooseleer F. RECAT-EU proposal, validation and consultation[R]. WakeNet-EU, EUROCONTROL Experimental Centre, Bretigny, France, 2014.
|
[12] |
Morris C, Peters J and Choroba P. Validation of the time based separation concept at London Heathrow Airport[C]. Tenth USA/Europe Air Traffic Management Research and Development Seminar, 2013.
|
[13] |
French Civil Aviation Authority. Implementation of the RECAT-EU wake turbulence separation scheme at Paris Charles de Gaulle, Paris-le Bourget and Pontoise-Cormeilles-en-Vexin airports from March 22nd 2016[R]. AIC France A 03/16. 2016.
|
[14] |
Federal Aviation Administration. Re-categorization (RECAT) of FAA wake turbulence separation categories at specific airports[R]. SAFO 12007. Washington, DC: SAFO, 2013.
|
[15] |
Airport Authority Hong Kong. Hong Kong international airport fact sheet[EB/OL]. http://www.hongkongairport.com/eng/media/facts-figures/facts-sheets.html, 2016.
|
[16] |
Airport Authority Hong Kong. Finalized civil international air traffic statistics at HKIA, Year 2016[EB/OL]. http://www.hongkongairport.com/eng/pdf/business/statistics/2016e.pdf, 2016.
|
[17] |
Shun C M and Chan P W. Applications of an infrared Doppler Lidar in detection of wind shear[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(5): 637–655. DOI: 10.1175/2007JTECHA1057.1
|
[18] |
Hon K K, Chan P W, Chiu Y Y, et al.. Application of short-range LIDAR in early alerting for low-level windshear and turbulence at Hong Kong International Airport[J]. Advances in Meteorology, 2014, 2014: Article ID 162748.
|
[19] |
Hon K K. First wake vortex measurements at the Hong Kong International Airport[EB/OL]. News bulletin for the aviation community, Hong Kong Observatory. http://www.hko.gov.hk/aviat/outreach/32nd/wakevortex.htm, 2015, January.
|
[20] |
Smalikho I N, Banakh V A, Holzäpfel F, et al. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler Lidar[J]. Optics Express, 2015, 23(19): A1194–A1207. DOI: 10.1364/OE.23.0A1194
|
[21] |
Loaec S, Thobois L, Cariou J P, et al.. Monitoring wake vortices with a scanning Doppler LIDAR[C]. Proceedings of the 9th International Symposium on Tropospheric Profiling, 2012.
|
[22] |
Smalikho I, Köpp F, and Rahm S. Measurement of atmospheric turbulence by 2-μm Doppler Lidar[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(11): 1733–1747. DOI: 10.1175/JTECH1815.1
|
[23] |
Chan P W and Hon K K. Performance of super high resolution numerical weather prediction model in forecasting terrain-disrupted airflow at the Hong Kong International Airport: Case studies[J]. Meteorological Applications, 2016, 23(1): 101–114. DOI: 10.1002/met.2016.23.issue-1
|
[24] |
Hon K K and Chan P W. Sub-kilometer simulation of terrain-disrupted airflow at the Hong Kong International Airport-aviation applications and inter-comparison with LIDAR observations[C]. 16th Conference on Mountain Meteorology, 2014.
|
[25] |
Wassaf H S, Tabrizi A, Wang F Y, et al.. Atmospheric turbulence effects on near-ground wake vortex demise[C]. 13th Conference on Aviation, Range and Aerospace Meteorology, 2008.
|
[26] |
Chan P W. Generation of an eddy dissipation rate map at the Hong Kong International airport based on Doppler Lidar data[J]. Journal of Atmospheric and Oceanic Technology, 2011, 28(1): 37–49. DOI: 10.1175/2010JTECHA1458.1
|
1. | 董军,杜晓林,何肖阳,李建波,田团伟. 基于CNN-BiLSTM-AM的雷达波形设计. 现代雷达. 2025(03): 72-79 . ![]() | |
2. | 贲德. 机载有源相控阵火控雷达技术发展. 现代雷达. 2024(02): 1-15 . ![]() | |
3. | 王兴家,王彬,刘岳巍,晏学成,丁峰. 基于元知识转移的认知雷达波形设计. 雷达科学与技术. 2024(04): 443-453 . ![]() | |
4. | 沙印,陈虎威. 基于PLC的雷达自动控制系统设计与应用. 长春师范大学学报. 2024(10): 63-68 . ![]() | |
5. | 朱宏鹏,朱赛,安婷. 一种多材料综合的装备多波段兼容隐身方法. 现代电子技术. 2023(01): 1-5 . ![]() | |
6. | 岳帅英,彭芃,任渊. 舰载多功能相控阵雷达发展现状与趋势. 舰船科学技术. 2023(02): 141-147 . ![]() | |
7. | 张应奎,孙国皓,钟苏川,余显祥. 杂波先验数据缺失条件下基于级联优化处理的雷达波形设计方法. 雷达学报. 2023(01): 235-246 . ![]() | |
8. | 陈涛,张颖,胡学晶,肖易寒. 基于DQN的探测干扰一体化波形优化设计. 系统工程与电子技术. 2023(03): 638-646 . ![]() | |
9. | 冯翔,李风从,范羽,刘涛,崔文卿,赵宜楠. 基于粒子采样投影的雷达低旁瓣复合波形设计. 系统工程与电子技术. 2023(04): 1008-1015 . ![]() | |
10. | 杨婧,余显祥,沙明辉,崔国龙,孔令讲. MIMO系统探通一体化信号矩阵设计方法. 雷达学报. 2023(02): 262-274 . ![]() | |
11. | 王佳欢,范平志,时巧,周正春. 一种具有多普勒容忍性的通感一体化波形设计. 雷达学报. 2023(02): 275-286 . ![]() | |
12. | 汪敏,冯一伦,蒋彦雯,范红旗. 雷达波形通用调制引擎设计. 系统工程与电子技术. 2023(06): 1684-1692 . ![]() | |
13. | 李康,纠博,赵宇,刘宏伟. 雷达智能博弈抗干扰技术综述与展望. 现代雷达. 2023(05): 15-26 . ![]() | |
14. | 范文,李淳泽,赵勇,张航. 复杂环境下雷达抗干扰及多功能一体化波形设计方法研究. 无线电通信技术. 2023(05): 960-970 . ![]() | |
15. | 林瑜,卜祎,余显祥,崔国龙. 面向多主瓣干扰的波形与滤波器联合认知设计方法. 系统工程与电子技术. 2023(11): 3437-3448 . ![]() | |
16. | 谢壮,朱家华,徐舟,范崇祎,金添,黄晓涛. 基于智能反射面辅助雷达的恒模多相波形-反射面联合优化算法. 电子与信息学报. 2023(11): 3848-3859 . ![]() | |
17. | 李志汇,唐波,周青松,师俊朋,张剑云. 新体制机载雷达波形优化设计研究综述. 系统工程与电子技术. 2023(12): 3852-3865 . ![]() | |
18. | 辛祺,辛增献,马亮,辛升,陈涛. 基于双层强化学习的干扰策略与干扰波形优化设计. 制导与引信. 2023(04): 35-41 . ![]() | |
19. | 陈唯实,黄毅峰,陈小龙,卢贤锋,张洁. 机场探鸟雷达技术发展与应用综述. 航空学报. 2022(01): 184-204 . ![]() | |
20. | 刘治东,张群,罗迎,李瑞. 基于孪生波形设计的频谱弥散干扰抑制方法. 航空学报. 2022(02): 352-361 . ![]() | |
21. | 余若峰,杨威,付耀文,张文鹏. 面向不同雷达任务的认知波形优化综述. 电子学报. 2022(03): 726-752 . ![]() | |
22. | 崔国龙,樊涛,孔昱凯,余显祥,沙明辉,孔令讲. 机载雷达脉间波形参数伪随机跳变技术. 雷达学报. 2022(02): 213-226 . ![]() | |
23. | 余显祥,路晴辉,杨婧,沙明辉,崔国龙,孔令讲. 短基线收发分置频域协同波形设计方法. 雷达学报. 2022(02): 227-239 . ![]() | |
24. | 田团伟,邓浩,鲁建华,杜晓林. 智能反射面辅助雷达通信双功能系统的多载波波形优化方法. 雷达学报. 2022(02): 240-254 . ![]() | |
25. | 刘红亮,张思思,赵庆媛,岳凯. 一种跟踪信息辅助的认知目标检测方法. 太赫兹科学与电子信息学报. 2022(04): 340-345 . ![]() | |
26. | 陈辉,刘雅婷,张双庆,韩崇昭. 多扩展目标跟踪中基于加权最优子模式分配距离的传感器管理方法. 控制理论与应用. 2022(05): 887-896 . ![]() | |
27. | 吴文俊,唐波,汤俊,胡元奎. 杂波环境中雷达通信一体化系统波形设计算法研究. 雷达学报. 2022(04): 570-580 . ![]() | |
28. | 姚誉,李泽清,范文,杜晓林,吴乐南. 基于ABSUM的MIMO雷达频谱兼容波形设计. 雷达学报. 2022(04): 543-556 . ![]() | |
29. | 范文,蔚保国,陈镜,张航,李淳泽. 基于波形优化和天线位置选择的MIMO雷达波束扫描算法研究. 雷达学报. 2022(04): 530-542 . ![]() | |
30. | 杨华明,卞美琴,刘亚帅. 船舶雷达系统智能化发展研究. 雷达与对抗. 2022(03): 1-5+65 . ![]() | |
31. | 董军,杜晓林,崔国龙,余显祥,田团伟. 基于加权准则的雷达博弈波形设计. 电子科技大学学报. 2022(06): 866-874 . ![]() | |
32. | 崔国龙,余显祥,魏文强,熊奎,孔昱凯,孔令讲. 认知智能雷达抗干扰技术综述与展望. 雷达学报. 2022(06): 974-1002 . ![]() | |
33. | 曹亚丽,李梅梅,屈诗涵,宋昕. 联合准则下的认知雷达波形设计. 系统工程与电子技术. 2022(11): 3364-3370 . ![]() | |
34. | 赵俊龙,李伟,王泓霖,黄腾,甘奕夫,王也. 基于长短时记忆网络的雷达波形设计. 系统工程与电子技术. 2021(02): 376-382 . ![]() | |
35. | 陈涛,张颖,黄湘松. 基于强化学习的自适应干扰波形设计. 空天防御. 2021(02): 59-66 . ![]() | |
36. | 周仕霖. 基于改进粒子群的重频组多目标优化算法. 探测与控制学报. 2021(03): 92-97 . ![]() | |
37. | 葛萌萌,余显祥,严正欣,方学立,崔国龙,孔令讲. 脉间波形幅相联合设计抗欺骗干扰方法. 电子科技大学学报. 2021(04): 481-487 . ![]() | |
38. | 周凯,李德鑫,粟毅,何峰,刘涛. 雷达脉冲压缩低旁瓣发射波形和非匹配滤波联合设计方法. 电子学报. 2021(09): 1701-1707 . ![]() | |
39. | 张吉建,谢文冲,沈伟,赵思明. 基于低PAR的机载雷达自适应发射抗噪声卷积干扰方法. 空军预警学院学报. 2020(05): 313-318 . ![]() |