SONG Jiaqi and TAO Haihong. A fast parameter estimation algorithm for near-field non-circular signals[J]. Journal of Radars, 2020, 9(4): 632–639. doi: 10.12000/JR20053
Citation: CHEN Shichao, LUO Feng, HU Chong, et al. Small target detection in sea clutter background based on Tsallis entropy of Doppler spectrum[J]. Journal of Radars, 2019, 8(3): 344–354. doi: 10.12000/JR19012

Small Target Detection in Sea Clutter Background Based on Tsallis Entropy of Doppler Spectrum

DOI: 10.12000/JR19012
Funds:  The National Key Scientific Instrument and Equipment Development (2013YQ20060705)
More Information
  • Corresponding author: LUO Feng, luofeng@xidian.edu.cn
  • Received Date: 2019-01-24
  • Rev Recd Date: 2019-02-09
  • Available Online: 2019-03-22
  • Publish Date: 2019-06-01
  • According to the different concentration levels of Doppler spectrum between sea clutter and target, small target in sea clutter background can be detected using Shannon entropy. However, Shannon entropy is merely a special case of Tsallis entropy and cannot reflect the multifractality of sea clutter. In this paper, the relation between Tsallis entropy and the generalized fractal dimension is first presented, and then the Doppler spectrum’s concentrative level and multifractality of sea clutter are combined; finally an algorithm for detecting small target in sea clutter background based on Tsallis entropy of Doppler spectrum rather than of Shannon entropy is proposed. By comparison via IPIX dataset, the detection’s performance of Tsallis entropy is better than that of Shannon entropy and Hurst exponent as per short observations.

     

  • [1]
    FARINA A and STUDER F A. A review of CFAR detection techniques in radar systems[J]. Microware Journal, 1986, 29(5): 115, 116, 118.
    [2]
    丁昊, 董云龙, 刘宁波, 等. 海杂波特性认知研究进展与展望[J]. 雷达学报, 2016, 5(5): 499–516. doi: 10.12000/JR16069

    DING Hao, DONG Yunlong, LIU Ningbo, et al. Overview and prospects of research on sea clutter property cognition[J]. Journal of Radars, 2016, 5(5): 499–516. doi: 10.12000/JR16069
    [3]
    HAYKIN S, CURRIE B W, and KESLER S B. Maximum-entropy spectral analysis of radar clutter[J]. Proceedings of the IEEE, 1982, 70(9): 953–962. doi: 10.1109/PROC.1982.12426
    [4]
    刘劲, 王雪, 刘宏伟. 基于多普勒谱特征的海杂波背景下小目标检测[J]. 现代雷达, 2008, 30(11): 63–66. doi: 10.3969/j.issn.1004-7859.2008.11.016

    LIU Jin, WANG Xue, and LIU Hongwei. Small target detection in sea clutter background based on Doppler spectrum characteristics[J]. Modern Radar, 2008, 30(11): 63–66. doi: 10.3969/j.issn.1004-7859.2008.11.016
    [5]
    SHUI Penglang, LI Dongchen, and XU Shuwen. Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1416–1430. doi: 10.1109/TAES.2014.120657
    [6]
    DUK V, ROSENBERG L, and NG B W H. Target detection in sea-clutter using stationary wavelet transforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1136–1146. doi: 10.1109/TAES.2017.2667558
    [7]
    HAYKIN S, BAKKER R, and CURRIE B W. Uncovering nonlinear dynamics-the case study of sea clutter[J]. Proceedings of the IEEE, 2002, 90(5): 860–881. doi: 10.1109/JPROC.2002.1015011
    [8]
    LO T, LEUNG H, LITVA J, et al. Fractal characterisation of sea-scattered signals and detection of sea-surface targets[J]. IEE Proceedings F - Radar and Signal Processing, 1993, 140(4): 243–250. doi: 10.1049/ip-f-2.1993.0034
    [9]
    孙康, 金钢, 朱晓华. 基于波动分析的海上小目标检测[J]. 电子与信息学报, 2013, 35(4): 882–887. doi: 10.3724/SP.J.1146.2012.00927

    SUN Kang, JIN Gang, and ZHU Xiaohua. Small target detection within sea clutter based on the fluctuation analysis[J]. Journal of Electronics &Information Technology, 2013, 35(4): 882–887. doi: 10.3724/SP.J.1146.2012.00927
    [10]
    GAN D and SHOUHONG Z. Detection of sea-surface radar targets based on multifractal analysis[J]. Electronics Letters, 2000, 36(13): 1144–1145. doi: 10.1049/el:20000800
    [11]
    刘宁波, 关键, 黄勇, 等. 基于频域多尺度Hurst指数的海杂波中目标检测方法[J]. 电子学报, 2013, 41(3): 424–431. doi: 10.3969/j.issn.0372-2112.2013.03.002

    LIU Ningbo, GUAN Jian, HUANG Yong, et al. Target detection within sea clutter based on multi-scale Hurst exponent in frequency domain[J]. Acta Electronica Sinica, 2013, 41(3): 424–431. doi: 10.3969/j.issn.0372-2112.2013.03.002
    [12]
    刘宁波, 黄勇, 关键, 等. 实测海杂波频域分形特性分析[J]. 电子与信息学报, 2012, 34(4): 929–935. doi: 10.3724/SP.J.11.1146.2011.00856

    LIU Ningbo, HUANG Yong, GUAN Jian, et al. Fractal analysis of real sea clutter in frequency domain[J]. Journal of Electronics &Information Technology, 2012, 34(4): 929–935. doi: 10.3724/SP.J.11.1146.2011.00856
    [13]
    刘宁波, 关键, 王国庆, 等. 基于海杂波FRFT谱多尺度Hurst指数的目标检测方法[J]. 电子学报, 2013, 41(9): 1847–1853. doi: 10.3969/j.issn.0372-2112.2013.09.029

    LIU Ningbo, GUAN Jian, WANG Guoqing, et al. Target detection within sea clutter based on multi-scale Hurst exponent in FRFT domain[J]. Acta Electronica Sinica, 2013, 41(9): 1847–1853. doi: 10.3969/j.issn.0372-2112.2013.09.029
    [14]
    陈小龙, 刘宁波, 宋杰, 等. 海杂波FRFT域分形特征判别及动目标检测方法[J]. 电子与信息学报, 2011, 33(4): 823–830. doi: 10.3724/SP.J.1146.2010.00486

    CHEN Xiaolong, LIU Ningbo, SONG Jie, et al. Fractal feature discriminant of sea clutter in FRFT domain and moving target detection algorithm[J]. Journal of Electronics & Information Technology, 2011, 33(4): 823–830. doi: 10.3724/SP.J.1146.2010.00486
    [15]
    LUO Feng, ZHANG Danting, and ZHANG Bo. The fractal properties of sea clutter and their applications in maritime target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1295–1299. doi: 10.1109/LGRS.2013.2237750
    [16]
    FAN Yifei, LUO Feng, LI Ming, et al. Weak target detection in sea clutter background using local-multifractal spectrum with adaptive window length[J]. IET Radar, Sonar & Navigation, 2015, 9(7): 835–842. doi: 10.1049/iet-rsn.2014.0286
    [17]
    FAN Yifei, LUO Feng, LI Ming, et al. Fractal properties of autoregressive spectrum and its application on weak target detection in sea clutter background[J]. IET Radar, Sonar & Navigation, 2015, 9(8): 1070–1077. doi: 10.1049/iet-rsn.2014.0473
    [18]
    TSALLIS C, PLASTINO A R, and ZHENG W M. Power-law sensitivity to initial conditions—New entropic representation[J]. Chaos, Solitons & Fractals, 1997, 8(6): 885–891. doi: 10.1016/S0960-0779(96)00167-1
    [19]
    TSALLIS C and BRIGATTI E. Nonextensive statistical mechanics: A brief introduction[J]. Continuum Mechanics and Thermodynamics, 2004, 16(3): 223–235. doi: 10.1007/s00161-004-0174-4
    [20]
    FURUICHI S. On uniqueness theorems for Tsallis entropy and Tsallis relative entropy[J]. IEEE Transactions on Information Theory, 2005, 51(10): 3638–3645. doi: 10.1109/TIT.2005.855606
    [21]
    曹克非, 王参军. Tsallis熵与非广延统计力学[J]. 云南大学学报(自然科学版), 2005, 27(6): 514–520. doi: 10.3321/j.issn:0258-7971.2005.06.011

    CAO Kefei and WANG Canjun. Tsallis entropy and nonextensive statistical mechanics[J]. Journal of Yunnan University, 2005, 27(6): 514–520. doi: 10.3321/j.issn:0258-7971.2005.06.011
    [22]
    BUNTE C and LAPIDOTH A. Maximum Rényi entropy rate[J]. IEEE Transactions on Information Theory, 2016, 62(3): 1193–1205. doi: 10.1109/TIT.2016.2521364
    [23]
    范一飞, 罗丰, 李明, 等. 海杂波AR谱多重分形特性及微弱目标检测方法[J]. 电子与信息学报, 2016, 38(2): 455–463. doi: 10.11999/JEIT150581

    FAN Yifei, LUO Feng, LI Ming, et al. The multifractal properties of AR spectrum and weak target detection in sea clutter background[J]. Journal of Electronics &Information Technology, 2016, 38(2): 455–463. doi: 10.11999/JEIT150581
    [24]
    STEIN D W J. Detection of random signals in Gaussian mixture noise[J]. IEEE Transactions on Information Theory, 1995, 41(6): 1788–1801. doi: 10.1109/18.476307
    [25]
    SHI Sainan and SHUI Penglang. Sea-surface floating small target detection by one-class classifier in time-frequency feature space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6395–6411. doi: 10.1109/TGRS.2018.2838260
  • Relative Articles

    [1]ZHANG Peng, YAN Junkun, GAO Chang, LI Kang, LIU Hongwei. Integrated Transmission Resource Management Scheme for Multifunctional Radars in Dynamic Electromagnetic Environments[J]. Journal of Radars, 2025, 14(2): 456-469. doi: 10.12000/JR24230
    [2]WANG Xiang, WANG Yumiao, CHEN Xingyu, ZANG Chuanfei, CUI Guolong. Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion[J]. Journal of Radars, 2024, 13(3): 554-564. doi: 10.12000/JR23105
    [3]NIE Lin, WEI Shunjun, LI Jiahui, ZHANG Hao, SHI Jun, WANG Mou, CHEN Siyuan, ZHANG Xinyan. Active Blanket Jamming Suppression Method for Spaceborne SAR Images Based on Regional Feature Refinement Perceptual Learning[J]. Journal of Radars, 2024, 13(5): 985-1003. doi: 10.12000/JR24072
    [4]ZHANG Jiaxiang, ZHANG Kaixiang, LIANG Zhennan, CHEN Xinliang, LIU Quanhua. An Intelligent Frequency Decision Method for a Frequency Agile Radar Based on Deep Reinforcement Learning[J]. Journal of Radars, 2024, 13(1): 227-239. doi: 10.12000/JR23197
    [5]CHEN Xiang, WANG Liandong, XU Xiong, SHEN Xujian, FENG Yuntian. A Review of Radio Frequency Fingerprinting Methods Based on Raw I/Q and Deep Learning[J]. Journal of Radars, 2023, 12(1): 214-234. doi: 10.12000/JR22140
    [6]ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133
    [7]DING Zihang, XIE Junwei, WANG Bo. Missing Covariance Matrix Recovery with the FDA-MIMO Radar Using Deep Learning Method[J]. Journal of Radars, 2023, 12(5): 1112-1124. doi: 10.12000/JR23002
    [8]LI Wanlu, XIANG Zheng, REN Peng. Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System[J]. Journal of Radars, 2023, 12(2): 287-296. doi: 10.12000/JR22064
    [9]ZHU Hongyu, HE Lili, LIU Zheng, XIE Rong, RAN Lei. Online Decision-making Method for Frequency-agile Radar Based on Multi-Armed Bandit[J]. Journal of Radars, 2023, 12(6): 1263-1274. doi: 10.12000/JR23206
    [10]TIAN Ye, DING Chibiao, ZHANG Fubo, SHI Min’an. SAR Building Area Layover Detection Based on Deep Learning[J]. Journal of Radars, 2023, 12(2): 441-455. doi: 10.12000/JR23033
    [11]HE Mi, PING Qinwen, DAI Ran. Fall Detection Based on Deep Learning Fusing Ultrawideband Radar Spectrograms[J]. Journal of Radars, 2023, 12(2): 343-355. doi: 10.12000/JR22169
    [12]ZHU Peikun, LIANG Jing, LUO Zihan, SHEN Xiaofeng. Waveform Selection Method of Cognitive Radar Target Tracking Based on Reinforcement Learning[J]. Journal of Radars, 2023, 12(2): 412-424. doi: 10.12000/JR22239
    [13]XIE Feng, LIU Huanyu, HU Xikun, ZHONG Ping, LI Junbao. A Radar Anti-jamming Method under Multi-jamming Scenarios Based on Deep Reinforcement Learning in Complex Domains[J]. Journal of Radars, 2023, 12(6): 1290-1304. doi: 10.12000/JR23139
    [14]ZHU Hangui, FENG Weike, FENG Cunqian, ZOU Bo, LU Fuyu. Deep Unfolding Based Space-Time Adaptive Processing Method for Airborne Radar[J]. Journal of Radars, 2022, 11(4): 676-691. doi: 10.12000/JR22051
    [15]HUANG Zhongling, YAO Xiwen, HAN Junwei. Progress and Perspective on Physically Explainable Deep Learning for Synthetic Aperture Radar Image Interpretation(in English)[J]. Journal of Radars, 2022, 11(1): 107-125. doi: 10.12000/JR21165
    [16]DU Lan, WANG Zilin, GUO Yuchen, DU Yuang, YAN Junkun. Adaptive Region Proposal Selection for SAR Target Detection Using Reinforcement Learning[J]. Journal of Radars, 2022, 11(5): 884-896. doi: 10.12000/JR22121
    [17]ZHANG Dalin, YI Wei, KONG Lingjiang. Optimal Joint Allocation of Multijammer Resources for Jamming Netted Radar System[J]. Journal of Radars, 2021, 10(4): 595-606. doi: 10.12000/JR21071
    [18]Zhao Feixiang, Liu Yongxiang, Huo Kai. A Radar Target Classification Algorithm Based on Dropout Constrained Deep Extreme Learning Machine[J]. Journal of Radars, 2018, 7(5): 613-621. doi: 10.12000/JR18048
    [19]Wang Jun, Zheng Tong, Lei Peng, Wei Shaoming. Study on Deep Learning in Radar[J]. Journal of Radars, 2018, 7(4): 395-411. doi: 10.12000/JR18040
    [20]Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. Journal of Radars, 2017, 6(2): 136-148. doi: 10.12000/JR16130
  • Cited by

    Periodical cited type(13)

    1. 赵金奇,李宇轩,刘子蓉,安庆,宋时雨,牛玉芬. 基于相似性衡量函数优化的SAR时空极化信息一体化洪涝变化检测方法. 测绘学报. 2024(12): 2375-2390 .
    2. 庄会富,王鹏,苏亚男,张祥,范洪冬. 基于多源时序SAR数据的涿州洪涝淹没动态监测. 自然资源遥感. 2024(04): 218-228 .
    3. 赵维谚,沈志,徐真,杨亮,雷明阳. 基于增强学习机制的SAR图像水域分割方法. 计算机应用与软件. 2023(05): 262-265+337 .
    4. 王磊,连增增. 基于Sentinel-1A的2020年鄱阳湖流域洪水灾害遥感监测. 地理空间信息. 2022(06): 43-46 .
    5. 李宁,郭志顺,毋琳,赵建辉. River-Net:面向河道提取的Refined-Lee Kernel深度神经网络模型. 雷达学报. 2022(03): 324-334 . 本站查看
    6. 黄平平,段盈宏,谭维贤,徐伟. 基于融合差异图的变化检测方法及其在洪灾中的应用. 雷达学报. 2021(01): 143-158 . 本站查看
    7. 董天成,杨肖,李卉,张志,齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取. 国土资源遥感. 2021(01): 129-137 .
    8. 李宁,吕宗森,郭拯危. 联合变化检测与子带对消技术的SAR图像干扰抑制方法. 系统工程与电子技术. 2021(09): 2484-2492 .
    9. 郭山川,杜培军,蒙亚平,王欣,唐鹏飞,林聪,夏俊士. 时序Sentinel-1A数据支持的长江中下游汛情动态监测. 遥感学报. 2021(10): 2127-2141 .
    10. 李宁,牛世林. 基于局部超分辨重建的高精度SAR图像水域分割方法. 雷达学报. 2020(01): 174-184 . 本站查看
    11. 吴瑞娟,何秀凤,王静. 结合像元级与对象级的滨海湿地变化检测方法. 地球信息科学学报. 2020(10): 2078-2087 .
    12. 冀广宇,董勇伟,卜运成,李焱磊,周良将,梁兴东. 基于目标相干性表征差异的多波段SAR相干变化检测方法. 雷达学报. 2018(04): 455-464 . 本站查看
    13. 牛世林,郭拯危,李宁,毋琳,赵建辉. 星载SAR水域分割研究进展与趋势分析. 聊城大学学报(自然科学版). 2018(02): 72-86 .

    Other cited types(16)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 36.7 %FULLTEXT: 36.7 %META: 58.2 %META: 58.2 %PDF: 5.1 %PDF: 5.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %其他: 0.4 %其他: 0.4 %Central District: 0.0 %Central District: 0.0 %China: 0.5 %China: 0.5 %Falls Church: 0.0 %Falls Church: 0.0 %India: 0.0 %India: 0.0 %Jonquiere: 0.1 %Jonquiere: 0.1 %Rochester: 0.0 %Rochester: 0.0 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %Tiruchi: 0.1 %Tiruchi: 0.1 %United States: 0.0 %United States: 0.0 %[]: 0.7 %[]: 0.7 %三亚: 0.1 %三亚: 0.1 %上海: 1.1 %上海: 1.1 %东莞: 0.1 %东莞: 0.1 %临汾: 0.0 %临汾: 0.0 %临沂: 0.3 %临沂: 0.3 %丹东: 0.0 %丹东: 0.0 %丽江: 0.0 %丽江: 0.0 %亳州: 0.1 %亳州: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %信阳: 0.0 %信阳: 0.0 %六安: 0.0 %六安: 0.0 %兰州: 0.0 %兰州: 0.0 %兰辛: 0.0 %兰辛: 0.0 %内蒙古自治区包头: 0.1 %内蒙古自治区包头: 0.1 %加利福尼亚: 0.1 %加利福尼亚: 0.1 %包头: 0.0 %包头: 0.0 %北京: 15.6 %北京: 15.6 %北京市: 0.2 %北京市: 0.2 %北海: 0.1 %北海: 0.1 %十堰: 0.0 %十堰: 0.0 %南京: 1.3 %南京: 1.3 %南京市: 0.0 %南京市: 0.0 %南充: 0.0 %南充: 0.0 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %南阳: 0.1 %南阳: 0.1 %厦门: 0.2 %厦门: 0.2 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %台湾省: 0.0 %台湾省: 0.0 %合肥: 0.2 %合肥: 0.2 %合肥市: 0.0 %合肥市: 0.0 %呼和浩特: 0.3 %呼和浩特: 0.3 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %哈尔滨市: 0.0 %哈尔滨市: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %四平: 0.2 %四平: 0.2 %大同: 0.1 %大同: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.4 %天津: 0.4 %威海: 0.0 %威海: 0.0 %孟买: 0.2 %孟买: 0.2 %宁夏回族自治区中卫: 0.0 %宁夏回族自治区中卫: 0.0 %宁波: 0.0 %宁波: 0.0 %安康: 0.1 %安康: 0.1 %宜春: 0.0 %宜春: 0.0 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.1 %宿迁: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.9 %广州: 0.9 %庆阳: 0.0 %庆阳: 0.0 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.0 %延安: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 0.9 %张家口: 0.9 %张家界: 0.0 %张家界: 0.0 %德罕: 0.2 %德罕: 0.2 %德里: 0.1 %德里: 0.1 %成都: 0.4 %成都: 0.4 %成都市: 0.0 %成都市: 0.0 %扬州: 0.1 %扬州: 0.1 %新乡: 0.5 %新乡: 0.5 %无锡: 0.1 %无锡: 0.1 %昆明: 0.2 %昆明: 0.2 %昌吉: 0.0 %昌吉: 0.0 %晋城: 0.0 %晋城: 0.0 %普洱: 0.1 %普洱: 0.1 %杭州: 0.9 %杭州: 0.9 %枣庄: 0.1 %枣庄: 0.1 %株洲: 0.2 %株洲: 0.2 %格兰特县: 0.1 %格兰特县: 0.1 %榆林: 0.0 %榆林: 0.0 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.2 %沈阳: 0.2 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %济宁: 0.0 %济宁: 0.0 %海口: 0.0 %海口: 0.0 %淮南: 0.0 %淮南: 0.0 %淮安: 0.0 %淮安: 0.0 %深圳: 0.7 %深圳: 0.7 %温州: 0.1 %温州: 0.1 %渭南: 0.0 %渭南: 0.0 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.1 %潍坊: 0.1 %潍坊市寿光: 0.1 %潍坊市寿光: 0.1 %烟台: 0.2 %烟台: 0.2 %玉林: 0.1 %玉林: 0.1 %珠海: 4.0 %珠海: 4.0 %白银: 0.0 %白银: 0.0 %益阳: 0.0 %益阳: 0.0 %石家庄: 0.2 %石家庄: 0.2 %石家庄市: 0.0 %石家庄市: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.2 %纽约: 0.2 %绵阳: 0.1 %绵阳: 0.1 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 16.0 %芒廷维尤: 16.0 %芜湖: 0.0 %芜湖: 0.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.3 %苏州: 0.3 %莆田: 0.1 %莆田: 0.1 %莫斯科: 0.0 %莫斯科: 0.0 %菏泽: 0.0 %菏泽: 0.0 %营口: 0.1 %营口: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 35.0 %西宁: 35.0 %西安: 1.0 %西安: 1.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵港: 0.3 %贵港: 0.3 %贵阳: 0.1 %贵阳: 0.1 %赤峰: 0.1 %赤峰: 0.1 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.4 %郑州: 1.4 %郴州: 0.0 %郴州: 0.0 %重庆: 0.2 %重庆: 0.2 %重庆市: 0.0 %重庆市: 0.0 %钱德勒: 0.1 %钱德勒: 0.1 %长春: 0.2 %长春: 0.2 %长沙: 0.8 %长沙: 0.8 %长治: 0.1 %长治: 0.1 %阳泉: 0.0 %阳泉: 0.0 %雅加达: 0.1 %雅加达: 0.1 %青岛: 1.5 %青岛: 1.5 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %其他其他Central DistrictChinaFalls ChurchIndiaJonquiereRochesterTaiwan, ChinaTiruchiUnited States[]三亚上海东莞临汾临沂丹东丽江亳州佛山保定信阳六安兰州兰辛内蒙古自治区包头加利福尼亚包头北京北京市北海十堰南京南京市南充南宁南昌南通南阳厦门台北台州台湾省合肥合肥市呼和浩特咸阳哈尔滨哈尔滨市哥伦布嘉兴四平大同大连天津威海孟买宁夏回族自治区中卫宁波安康宜春宝鸡宣城宿迁巴彦淖尔常州平顶山广州庆阳库比蒂诺延安开封张家口张家界德罕德里成都成都市扬州新乡无锡昆明昌吉晋城普洱杭州枣庄株洲格兰特县榆林武汉沈阳泰米尔纳德洛阳济南济宁海口淮南淮安深圳温州渭南湖州湘潭滨州漯河潍坊潍坊市寿光烟台玉林珠海白银益阳石家庄石家庄市秦皇岛纽约绵阳美国伊利诺斯芝加哥舟山芒廷维尤芜湖芝加哥苏州莆田莫斯科菏泽营口衡水衡阳衢州西宁西安诺沃克贵港贵阳赤峰运城连云港邢台邯郸郑州郴州重庆重庆市钱德勒长春长沙长治阳泉雅加达青岛香港特别行政区齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3381) PDF downloads(227) Cited by(29)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint