WANG Yingfu, YIN Jiapeng, LU Zhonghao, et al. Analysis of the influence of distributed interrupted-sampling repeating signals on airborne interferometer parameter measurements[J]. Journal of Radars, 2024, 13(5): 1037–1048. doi: 10.12000/JR24090
Citation: XIE Feng, LIU Huanyu, HU Xikun, et al. A radar anti-jamming method under multi-jamming scenarios based on deep reinforcement learning in complex domains[J]. Journal of Radars, 2023, 12(6): 1290–1304. doi: 10.12000/JR23139

A Radar Anti-jamming Method under Multi-jamming Scenarios Based on Deep Reinforcement Learning in Complex Domains

DOI: 10.12000/JR23139 CSTR: 32380.14.JR23139
Funds:  The National Natural Science Foundation of China (62271166), Interdisciplinary Research Foundation of HIT (IR2021104)
More Information
  • Corresponding author: LIU Huanyu, liuhuanyu@hit.edu.cn
  • Received Date: 2023-07-31
  • Rev Recd Date: 2023-10-19
  • Available Online: 2023-10-24
  • Publish Date: 2023-11-09
  • In modern electronic warfare, the jamming environment of radar is more complex than ever. The airborne jammer adapts its jamming method based on diverse raid missions and stages. Recently, the reinforcement learning–based radar anti-jamming method has made some progress in the confrontation scenario of single jamming; however, the gap with respect to actual complex multi-jamming scenarios is large. To address this issue, this paper proposes a multi-jamming scenario radar anti-jamming method based on deep reinforcement learning in the complex domain to optimize the anti-jamming strategy of frequency agile radar. First, according to the stage characteristics of the raid mission, noise spot jamming, range deception jamming , and dense false target forwarding jamming models are established. The three jamming sequence strategies were designed to simulate actual jamming scenarios. Second, a reinforcement learning reward function that integrates the signal-to-noise ratio and target trajectory integrity is constructed for the multi-jamming scenario model. Thus, a multi-jamming scenario radar anti-jamming method based on deep reinforcement learning in a complex domain is proposed, which is based on the complex domain characteristics of the jamming signal. Finally, radar anti-jamming simulation experiments are performed based on the three jamming sequence strategies. The results show that the proposed method can effectively deal with the main-lobe jamming problem of complex multi-jamming scenarios under time-sequence conditions. Moreover, the average decision-making accuracy was improved, and the average decision-making time was reduced to 405.3 ms compared with the two classical reinforcement learning algorithms.

     

  • [1]
    KOGON S M, HOLDER E J, and WILLIAMS D B. Mainbeam jammer suppression using multipath returns[C]. Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 1997: 279–283.
    [2]
    GRECO M, GINI F, and FARINA A. Radar detection and classification of jamming signals belonging to a cone class[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1984–1993. doi: 10.1109/TSP.2007.909326
    [3]
    NERI F. Introduction to Electronic Defense Systems[M]. SciTech Publishing, Raleigh, NC, 2006.
    [4]
    李宇环, 岳显昌, 张兰. 基于压缩感知的时域抗射频干扰方法[J]. 科学技术与工程, 2020, 20(7): 2767–2772. doi: 10.3969/j.issn.671-1815.2020.07.035

    LI Yuhuan, YUE Xianchang, and ZHANG Lan. Time-domain radio frequency interference suppression method based on compressed sensing[J]. Science Technology and Engineering, 2020, 20(7): 2767–2772. doi: 10.3969/j.issn.671-1815.2020.07.035
    [5]
    杜思予, 刘智星, 吴耀君, 等. 基于SVM的捷变频雷达密集转发干扰智能抑制方法[J]. 雷达学报, 2023, 12(1): 173–185. doi: 10.12000/JR22065

    DU Siyu, LIU Zhixing, WU Yaojun, et al. Dense-repeated jamming suppression algorithm based on the support vector machine for frequency agility radar[J]. Journal of Radars, 2023, 12(1): 173–185. doi: 10.12000/JR22065
    [6]
    董淑仙, 吴耀君, 方文, 等. 频率捷变雷达联合模糊C均值抗间歇采样干扰[J]. 雷达学报, 2022, 11(2): 289–300. doi: 10.12000/JR21205

    DONG Shuxian, WU Yaojun, FANG Wen, et al. Anti-interrupted sampling repeater jamming method based on frequency-agile radar joint fuzzy C-means[J]. Journal of Radars, 2022, 11(2): 289–300. doi: 10.12000/JR21205
    [7]
    施龙飞, 任博, 马佳智, 等. 雷达极化抗干扰技术进展[J]. 现代雷达, 2016, 38(4): 1–7, 29.

    SHI Longfei, REN Bo, MA Jiazhi, et al. Recent developments of radar anti-interference techniques with polarimetry[J]. Modern Radar, 2016, 38(4): 1–7, 29.
    [8]
    陈新竹. 多功能数字阵列雷达空域抗有源干扰方法研究[D]. [博士论文], 上海交通大学, 2022.

    CHEN Xinzhu. Research on spatial jamming cancellation in mutifunction digital array radar[D]. [Ph.D. dissertation], Shanghai Jiao Tong University, 2022.
    [9]
    刘智星, 杜思予, 吴耀君, 等. 脉间-脉内捷变频雷达抗间歇采样干扰方法[J]. 雷达学报, 2022, 11(2): 301–312. doi: 10.12000/JR22001

    LIU Zhixing, DU Siyu, WU Yaojun, et al. Anti-interrupted sampling repeater jamming method for interpulse and intrapulse frequency-agile radar[J]. Journal of Radars, 2022, 11(2): 301–312. doi: 10.12000/JR22001
    [10]
    LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    [11]
    李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9): 2508–2515, 2565.

    LI Yandong, HAO Zongbo, and LEI Hang. Survey of convolutional neural network[J]. Journal of Computer Applications, 2016, 36(9): 2508–2515, 2565.
    [12]
    刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1–27. doi: 10.11897/SP.J.1016.2018.00001

    LIU Quan, ZHAI Jianwei, ZHANG Zongzhang, et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41(1): 1–27. doi: 10.11897/SP.J.1016.2018.00001
    [13]
    刘朝阳, 穆朝絮, 孙长银. 深度强化学习算法与应用研究现状综述[J]. 智能科学与技术学报, 2020, 2(4): 312–326. doi: 10.11959/j.issn.2096-6652.202034

    LIU Zhaoyang, MU Chaoxu, and SUN Changyin. An overview on algorithms and applications of deep reinforcement learning[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 312–326. doi: 10.11959/j.issn.2096-6652.202034
    [14]
    DAYAN P and DAW N D. Decision theory, reinforcement learning, and the brain[J]. Cognitive, Affective, & Behavioral Neuroscience, 2008, 8(4): 429–453. doi: 10.3758/CABN.8.4.429
    [15]
    CAROTENUTO V, DE MAIO A, ORLANDO D, et al. Adaptive radar detection using two sets of training data[J]. IEEE Transactions on Signal Processing, 2018, 66(7): 1791–1801. doi: 10.1109/TSP.2017.2778684
    [16]
    汪浩, 王峰. 强化学习算法在雷达智能抗干扰中的应用[J]. 现代雷达, 2020, 42(3): 40–44, 48.

    WANG Hao and WANG Feng. Application of reinforcement learning algorithms in anti-jamming of intelligent radar[J]. Modern Radar, 2020, 42(3): 40–44, 48.
    [17]
    XING Qiang, ZHU Weigang, and JIA Xin. Research on method of intelligent radar confrontation based on reinforcement learning[C]. 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), Beijing, China, 2017: 471–475.
    [18]
    LI Kang, JIU Bo, LIU Hongwei, et al. Reinforcement learning based anti-jamming frequency hopping strategies design for cognitive radar[C]. 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Qingdao, China, 2018: 1–5.
    [19]
    LI Kang, JIU Bo, and LIU Hongwei. Deep Q-network based anti-jamming strategy design for frequency agile radar[C]. 2019 International Radar Conference (RADAR), Toulon, France, 2019: 1–5.
    [20]
    WANG Shanshan, LIU Zheng, XIE Rong, et al. Reinforcement learning for compressed-sensing based frequency agile radar in the presence of active interference[J]. Remote Sensing, 2022, 14(4): 968. doi: 10.3390/rs14040968
    [21]
    LI Xinzhi and DONG Shengbo. Research on efficient reinforcement learning for adaptive frequency-agility radar[J]. Sensors, 2021, 21(23): 7931. doi: 10.3390/s21237931
    [22]
    崔国龙, 余显祥, 魏文强, 等. 认知智能雷达抗干扰技术综述与展望[J]. 雷达学报, 2022, 11(6): 974–1002. doi: 10.12000/JR22191

    CUI Guolong, YU Xianxiang, WEI Wenqiang, et al. An overview of antijamming methods and future works on cognitive intelligent radar[J]. Journal of Radars, 2022, 11(6): 974–1002. doi: 10.12000/JR22191
    [23]
    WATERS W M and LINDE G J. Frequency-agile radar signal processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979, AES-15(3): 459–464. doi: 10.1109/TAES.1979.308841
    [24]
    李尔康. 基于干扰认知的雷达反干扰波形设计与实现[D]. [硕士论文], 电子科技大学, 2022.

    LI Erkang. Design and implementation of radar anti-jamming waveform based on jamming cognition[D]. [Master dissertation], University of Electronic Science and Technology of China, 2022.
    [25]
    张昭建, 谢军伟, 杨春晓, 等. 掩护脉冲信号抗转发式欺骗干扰性能分析[J]. 弹箭与制导学报, 2016, 36(4): 149–152, 156.

    ZHANG Zhaojian, XIE Junwei, YANG Chunxiao, et al. Performance analysis of screening pulse signal confronts to deception jamming[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(4): 149–152, 156.
    [26]
    李研. 雷达抗干扰波形设计及仿真分析[D]. [硕士论文], 西安电子科技大学, 2022.

    LI Yan. Radar anti-jamming waveform design and simulation analysis[D]. [Master dissertation], Xidian University, 2022.
    [27]
    温鹏飞. 基于雷达数据的目标航迹识别和聚类研究[D]. [硕士论文], 合肥工业大学, 2020.

    WANG Pengfei. Research on track recognition and clustering based on radar data[D]. [Master dissertation], Hefei University of Technology, 2020.
    [28]
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
    [29]
    SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. https://arxiv.org/abs/1707.06347, 2017.
    [30]
    FUJIMOTO S, HOOF H, and MEGER D. Addressing function approximation error in actor-critic methods[C]. 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 1587–1596.
  • Relative Articles

    [1]YUAN Weijie, WU Jun, SHI Yuye. Multi-UAV Collaborative Covert Communications: An ISAC-Based Approach[J]. Journal of Radars. doi: 10.12000/JR25018
    [2]REN Hang, SUN Zhichao, YANG Jianyu, WU Junjie. A Task Allocation Method for Swarm UAV SAR Based on Low Redundancy Chromosome Encoding[J]. Journal of Radars. doi: 10.12000/JR24218
    [3]LIANG Xiao, YE Shengbo, SONG Chenyang, YUAN Yubing, ZHANG Qunying, LIU Xiaojun, JIANG Hejun, LI Hong. Automatic Multitarget Detection Method Based on Distributed Through-wall Radar[J]. Journal of Radars, 2025, 14(1): 28-44. doi: 10.12000/JR24127
    [4]LI Zhi, TANG Chengyao, DAI Yongpeng, JIN Tian. Multirotor UAV-borne Vital Signs Sensing Using 4D Imaging Radar[J]. Journal of Radars, 2025, 14(1): 62-72. doi: 10.12000/JR24128
    [5]YANG Xiaopeng, GAO Weicheng, QU Xiaodong. Human Anomalous Gait Termination Recognition via Through-the-wall Radar Based on Micro-Doppler Corner Features and Non-Local Mechanism[J]. Journal of Radars, 2024, 13(1): 68-86. doi: 10.12000/JR23181
    [6]XING Mengdao, MA Penghui, LOU Yishan, SUN Guangcai, LIN Hao. Review of Fast Back Projection Algorithms in Synthetic Aperture Radar[J]. Journal of Radars, 2024, 13(1): 1-22. doi: 10.12000/JR23183
    [7]CHEN Yifan, LIU Jiangang, JIA Yong, GUO Shisheng, CUI Guolong. High-resolution Imaging Method for Through-the-wall Radar Based on Transfer Learning with Simulation Samples[J]. Journal of Radars, 2024, 13(4): 807-821. doi: 10.12000/JR24049
    [8]SHI Chenguang, WANG Yijie, DAI Xiangrong, ZHOU Jianjiang. Joint Transmit Resources and Trajectory Planning for Target Tracking in Airborne Radar Networks[J]. Journal of Radars, 2022, 11(5): 778-793. doi: 10.12000/JR22005
    [9]ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004
    [10]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [11]LI Xiaofeng, ZHANG Biao, YANG Xiaofeng. Remote Sensing of Sea Surface Wind and Wave from Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(3): 425-443. doi: 10.12000/JR20079
    [12]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [13]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [14]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [15]Liu Yuqi, Yi Jianxin, Wan Xianrong, Cheng Feng, Rao Yunhua, Gong Ziping. Experimental Research on Micro-Doppler Effect of Multi-rotor Drone with Digital Television Based Passive Radar[J]. Journal of Radars, 2018, 7(5): 585-592. doi: 10.12000/JR18062
    [16]Zhang Pengfei, Li Gang, Huo Chaoying, Yin Hongcheng. Classification of Drones Based on Micro-Doppler Radar Signatures Using Dual Radar Sensors[J]. Journal of Radars, 2018, 7(5): 557-564. doi: 10.12000/JR18061
    [17]Ren Xiaozhen, Yang Ruliang. Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase[J]. Journal of Radars, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [18]Bai Yang, Wu Yang, Yin Hongcheng, Que Xiaofeng. Indoor Measurement Research on Polarimetric Scattering Characteristics of UAV[J]. Journal of Radars, 2016, 5(6): 647-657. doi: 10.12000/JR16032
    [19]Wang Yanfei, Liu Chang, Zhan Xueli, Han Song. Technology and Applications of UAV Synthetic Aperture Radar System[J]. Journal of Radars, 2016, 5(4): 333-349. doi: 10.12000/JR16089
    [20]Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114
  • Cited by

    Periodical cited type(9)

    1. 朱梦韬,张露瑶,李瑞,杨静. 基于HMM的逆雷达辐射源状态识别推理方法. 北京理工大学学报. 2024(02): 200-209 .
    2. 王沙飞,朱梦韬,李云杰,杨健,李岩. 对先进多功能雷达系统行为的识别、推理与预测:综述与展望. 信号处理. 2024(01): 17-55 .
    3. 付雨欣,黄洁,王建涛,党同心,李一鸣,孙震宇. 多功能相控阵雷达行为辨识综述. 电讯技术. 2024(04): 643-654 .
    4. 娄雨璇,孙闽红,尹帅. 基于近端策略优化算法和Mask-TIT网络的多功能雷达干扰决策方法. 数据采集与处理. 2024(06): 1355-1369 .
    5. 罗健,仇洪冰,周陬,顾宇,王若楠,费文浩. 基于SOM聚类平滑图信号生成的MFR工作模式识别方法. 桂林电子科技大学学报. 2023(02): 120-127 .
    6. 罗健. 一种基于图卷积网络的雷达工作模式识别方法. 成组技术与生产现代化. 2023(02): 14-19 .
    7. 廖艳苹,谢榕浩. 基于双层强化学习的多功能雷达认知干扰决策方法. 应用科技. 2023(06): 56-62 .
    8. 袁硕,拓世英,尚文秀,罗政昊,刘章孟. 电子侦察脉冲列中重频信息提取与应用综述. 信息对抗技术. 2023(06): 17-28 .
    9. 蒋能,张红敏,李一鸣. 基于分步变门限孤立森林的MFR波形单元无监督提取. 信息对抗技术. 2022(03): 76-85 .

    Other cited types(13)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.7 %FULLTEXT: 30.7 %META: 52.6 %META: 52.6 %PDF: 16.7 %PDF: 16.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.4 %其他: 9.4 %其他: 1.0 %其他: 1.0 %Central District: 0.1 %Central District: 0.1 %China: 0.2 %China: 0.2 %Ecole-Valentin: 0.2 %Ecole-Valentin: 0.2 %Falls Church: 0.3 %Falls Church: 0.3 %Herndon: 0.1 %Herndon: 0.1 %Russian Federation: 0.1 %Russian Federation: 0.1 %上海: 3.0 %上海: 3.0 %东莞: 0.1 %东莞: 0.1 %伦敦: 0.1 %伦敦: 0.1 %佛山: 0.3 %佛山: 0.3 %六安: 0.1 %六安: 0.1 %兰州: 0.2 %兰州: 0.2 %内江: 0.1 %内江: 0.1 %列克星敦: 0.1 %列克星敦: 0.1 %加利福尼亚州: 0.4 %加利福尼亚州: 0.4 %北京: 18.2 %北京: 18.2 %十堰: 0.2 %十堰: 0.2 %南京: 3.9 %南京: 3.9 %南宁: 0.1 %南宁: 0.1 %南昌: 0.6 %南昌: 0.6 %南通: 0.1 %南通: 0.1 %印多尔: 0.1 %印多尔: 0.1 %厦门: 0.3 %厦门: 0.3 %双鸭山: 0.1 %双鸭山: 0.1 %台北: 0.2 %台北: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.9 %合肥: 0.9 %吉安: 0.1 %吉安: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.5 %哈尔滨: 0.5 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.8 %嘉兴: 0.8 %圣克拉拉: 0.1 %圣克拉拉: 0.1 %圣安东尼奥: 0.1 %圣安东尼奥: 0.1 %大理: 0.3 %大理: 0.3 %大连: 0.2 %大连: 0.2 %大阪: 0.1 %大阪: 0.1 %天津: 0.6 %天津: 0.6 %太原: 0.3 %太原: 0.3 %威海: 0.3 %威海: 0.3 %宁波: 0.1 %宁波: 0.1 %安康: 0.3 %安康: 0.3 %安顺: 0.1 %安顺: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.3 %宣城: 0.3 %宿州: 0.1 %宿州: 0.1 %常州: 0.5 %常州: 0.5 %常德: 0.1 %常德: 0.1 %广安: 0.1 %广安: 0.1 %广州: 1.2 %广州: 1.2 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.1 %延安: 0.1 %开封: 0.8 %开封: 0.8 %张家口: 1.0 %张家口: 1.0 %张家界: 0.2 %张家界: 0.2 %德里: 0.1 %德里: 0.1 %德黑兰: 0.1 %德黑兰: 0.1 %慕尼黑: 0.1 %慕尼黑: 0.1 %成都: 2.9 %成都: 2.9 %扬州: 0.4 %扬州: 0.4 %揭阳: 0.1 %揭阳: 0.1 %新乡: 0.1 %新乡: 0.1 %新余: 0.1 %新余: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 1.9 %昆明: 1.9 %朝阳: 0.2 %朝阳: 0.2 %本溪: 0.1 %本溪: 0.1 %杭州: 2.2 %杭州: 2.2 %格林维尔: 0.1 %格林维尔: 0.1 %武汉: 0.6 %武汉: 0.6 %永州: 0.1 %永州: 0.1 %汕头: 0.4 %汕头: 0.4 %江门: 0.1 %江门: 0.1 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %河源: 0.2 %河源: 0.2 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.3 %济南: 0.3 %海口: 0.2 %海口: 0.2 %淄博: 0.1 %淄博: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 2.2 %深圳: 2.2 %温州: 0.5 %温州: 0.5 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.7 %漯河: 0.7 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %珠海: 0.4 %珠海: 0.4 %白城: 0.1 %白城: 0.1 %百色: 0.2 %百色: 0.2 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %纽约: 0.6 %纽约: 0.6 %绵阳: 1.4 %绵阳: 1.4 %罗马: 0.2 %罗马: 0.2 %芒廷维尤: 10.5 %芒廷维尤: 10.5 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.5 %苏州: 0.5 %莫斯科: 0.3 %莫斯科: 0.3 %营口: 0.1 %营口: 0.1 %衡水: 0.5 %衡水: 0.5 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 3.2 %西宁: 3.2 %西安: 3.8 %西安: 3.8 %诺沃克: 5.5 %诺沃克: 5.5 %贵阳: 0.3 %贵阳: 0.3 %赣州: 0.1 %赣州: 0.1 %运城: 0.3 %运城: 0.3 %通辽: 0.1 %通辽: 0.1 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.2 %邯郸: 0.2 %邵阳: 0.2 %邵阳: 0.2 %郑州: 0.3 %郑州: 0.3 %重庆: 1.1 %重庆: 1.1 %金昌: 0.1 %金昌: 0.1 %长春: 0.2 %长春: 0.2 %长沙: 2.2 %长沙: 2.2 %阜新: 0.1 %阜新: 0.1 %阿什本: 0.2 %阿什本: 0.2 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %陇南: 0.1 %陇南: 0.1 %陵水: 0.1 %陵水: 0.1 %青岛: 0.8 %青岛: 0.8 %首尔特别: 0.2 %首尔特别: 0.2 %香港: 0.2 %香港: 0.2 %马尔默: 0.1 %马尔默: 0.1 %马尼拉: 0.2 %马尼拉: 0.2 %驻马店: 0.1 %驻马店: 0.1 %黄石: 0.1 %黄石: 0.1 %齐齐哈尔: 0.5 %齐齐哈尔: 0.5 %其他其他Central DistrictChinaEcole-ValentinFalls ChurchHerndonRussian Federation上海东莞伦敦佛山六安兰州内江列克星敦加利福尼亚州北京十堰南京南宁南昌南通印多尔厦门双鸭山台北台州合肥吉安呼和浩特哈尔滨哥伦布嘉兴圣克拉拉圣安东尼奥大理大连大阪天津太原威海宁波安康安顺宜春宣城宿州常州常德广安广州库比蒂诺延安开封张家口张家界德里德黑兰慕尼黑成都扬州揭阳新乡新余无锡昆明朝阳本溪杭州格林维尔武汉永州汕头江门沈阳沧州河源洛杉矶洛阳济南海口淄博淮南深圳温州湖州湘潭漯河潍坊烟台珠海白城百色石家庄福州纽约绵阳罗马芒廷维尤芝加哥苏州莫斯科营口衡水衡阳衢州襄阳西宁西安诺沃克贵阳赣州运城通辽遵义邯郸邵阳郑州重庆金昌长春长沙阜新阿什本阿姆斯特丹陇南陵水青岛首尔特别香港马尔默马尼拉驻马店黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1417) PDF downloads(428) Cited by(22)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint