Citation: | XIE Feng, LIU Huanyu, HU Xikun, et al. A radar anti-jamming method under multi-jamming scenarios based on deep reinforcement learning in complex domains[J]. Journal of Radars, 2023, 12(6): 1290–1304. doi: 10.12000/JR23139 |
[1] |
KOGON S M, HOLDER E J, and WILLIAMS D B. Mainbeam jammer suppression using multipath returns[C]. Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 1997: 279–283.
|
[2] |
GRECO M, GINI F, and FARINA A. Radar detection and classification of jamming signals belonging to a cone class[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1984–1993. doi: 10.1109/TSP.2007.909326
|
[3] |
NERI F. Introduction to Electronic Defense Systems[M]. SciTech Publishing, Raleigh, NC, 2006.
|
[4] |
李宇环, 岳显昌, 张兰. 基于压缩感知的时域抗射频干扰方法[J]. 科学技术与工程, 2020, 20(7): 2767–2772. doi: 10.3969/j.issn.671-1815.2020.07.035
LI Yuhuan, YUE Xianchang, and ZHANG Lan. Time-domain radio frequency interference suppression method based on compressed sensing[J]. Science Technology and Engineering, 2020, 20(7): 2767–2772. doi: 10.3969/j.issn.671-1815.2020.07.035
|
[5] |
杜思予, 刘智星, 吴耀君, 等. 基于SVM的捷变频雷达密集转发干扰智能抑制方法[J]. 雷达学报, 2023, 12(1): 173–185. doi: 10.12000/JR22065
DU Siyu, LIU Zhixing, WU Yaojun, et al. Dense-repeated jamming suppression algorithm based on the support vector machine for frequency agility radar[J]. Journal of Radars, 2023, 12(1): 173–185. doi: 10.12000/JR22065
|
[6] |
董淑仙, 吴耀君, 方文, 等. 频率捷变雷达联合模糊C均值抗间歇采样干扰[J]. 雷达学报, 2022, 11(2): 289–300. doi: 10.12000/JR21205
DONG Shuxian, WU Yaojun, FANG Wen, et al. Anti-interrupted sampling repeater jamming method based on frequency-agile radar joint fuzzy C-means[J]. Journal of Radars, 2022, 11(2): 289–300. doi: 10.12000/JR21205
|
[7] |
施龙飞, 任博, 马佳智, 等. 雷达极化抗干扰技术进展[J]. 现代雷达, 2016, 38(4): 1–7, 29.
SHI Longfei, REN Bo, MA Jiazhi, et al. Recent developments of radar anti-interference techniques with polarimetry[J]. Modern Radar, 2016, 38(4): 1–7, 29.
|
[8] |
陈新竹. 多功能数字阵列雷达空域抗有源干扰方法研究[D]. [博士论文], 上海交通大学, 2022.
CHEN Xinzhu. Research on spatial jamming cancellation in mutifunction digital array radar[D]. [Ph.D. dissertation], Shanghai Jiao Tong University, 2022.
|
[9] |
刘智星, 杜思予, 吴耀君, 等. 脉间-脉内捷变频雷达抗间歇采样干扰方法[J]. 雷达学报, 2022, 11(2): 301–312. doi: 10.12000/JR22001
LIU Zhixing, DU Siyu, WU Yaojun, et al. Anti-interrupted sampling repeater jamming method for interpulse and intrapulse frequency-agile radar[J]. Journal of Radars, 2022, 11(2): 301–312. doi: 10.12000/JR22001
|
[10] |
LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
|
[11] |
李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9): 2508–2515, 2565.
LI Yandong, HAO Zongbo, and LEI Hang. Survey of convolutional neural network[J]. Journal of Computer Applications, 2016, 36(9): 2508–2515, 2565.
|
[12] |
刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1–27. doi: 10.11897/SP.J.1016.2018.00001
LIU Quan, ZHAI Jianwei, ZHANG Zongzhang, et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41(1): 1–27. doi: 10.11897/SP.J.1016.2018.00001
|
[13] |
刘朝阳, 穆朝絮, 孙长银. 深度强化学习算法与应用研究现状综述[J]. 智能科学与技术学报, 2020, 2(4): 312–326. doi: 10.11959/j.issn.2096-6652.202034
LIU Zhaoyang, MU Chaoxu, and SUN Changyin. An overview on algorithms and applications of deep reinforcement learning[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 312–326. doi: 10.11959/j.issn.2096-6652.202034
|
[14] |
DAYAN P and DAW N D. Decision theory, reinforcement learning, and the brain[J]. Cognitive, Affective, & Behavioral Neuroscience
|
[15] |
CAROTENUTO V, DE MAIO A, ORLANDO D, et al. Adaptive radar detection using two sets of training data[J]. IEEE Transactions on Signal Processing, 2018, 66(7): 1791–1801. doi: 10.1109/TSP.2017.2778684
|
[16] |
汪浩, 王峰. 强化学习算法在雷达智能抗干扰中的应用[J]. 现代雷达, 2020, 42(3): 40–44, 48.
WANG Hao and WANG Feng. Application of reinforcement learning algorithms in anti-jamming of intelligent radar[J]. Modern Radar, 2020, 42(3): 40–44, 48.
|
[17] |
XING Qiang, ZHU Weigang, and JIA Xin. Research on method of intelligent radar confrontation based on reinforcement learning[C]. 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), Beijing, China, 2017: 471–475.
|
[18] |
LI Kang, JIU Bo, LIU Hongwei, et al. Reinforcement learning based anti-jamming frequency hopping strategies design for cognitive radar[C]. 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Qingdao, China, 2018: 1–5.
|
[19] |
LI Kang, JIU Bo, and LIU Hongwei. Deep Q-network based anti-jamming strategy design for frequency agile radar[C]. 2019 International Radar Conference (RADAR), Toulon, France, 2019: 1–5.
|
[20] |
WANG Shanshan, LIU Zheng, XIE Rong, et al. Reinforcement learning for compressed-sensing based frequency agile radar in the presence of active interference[J]. Remote Sensing, 2022, 14(4): 968. doi: 10.3390/rs14040968
|
[21] |
LI Xinzhi and DONG Shengbo. Research on efficient reinforcement learning for adaptive frequency-agility radar[J]. Sensors, 2021, 21(23): 7931. doi: 10.3390/s21237931
|
[22] |
崔国龙, 余显祥, 魏文强, 等. 认知智能雷达抗干扰技术综述与展望[J]. 雷达学报, 2022, 11(6): 974–1002. doi: 10.12000/JR22191
CUI Guolong, YU Xianxiang, WEI Wenqiang, et al. An overview of antijamming methods and future works on cognitive intelligent radar[J]. Journal of Radars, 2022, 11(6): 974–1002. doi: 10.12000/JR22191
|
[23] |
WATERS W M and LINDE G J. Frequency-agile radar signal processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979, AES-15(3): 459–464. doi: 10.1109/TAES.1979.308841
|
[24] |
李尔康. 基于干扰认知的雷达反干扰波形设计与实现[D]. [硕士论文], 电子科技大学, 2022.
LI Erkang. Design and implementation of radar anti-jamming waveform based on jamming cognition[D]. [Master dissertation], University of Electronic Science and Technology of China, 2022.
|
[25] |
张昭建, 谢军伟, 杨春晓, 等. 掩护脉冲信号抗转发式欺骗干扰性能分析[J]. 弹箭与制导学报, 2016, 36(4): 149–152, 156.
ZHANG Zhaojian, XIE Junwei, YANG Chunxiao, et al. Performance analysis of screening pulse signal confronts to deception jamming[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(4): 149–152, 156.
|
[26] |
李研. 雷达抗干扰波形设计及仿真分析[D]. [硕士论文], 西安电子科技大学, 2022.
LI Yan. Radar anti-jamming waveform design and simulation analysis[D]. [Master dissertation], Xidian University, 2022.
|
[27] |
温鹏飞. 基于雷达数据的目标航迹识别和聚类研究[D]. [硕士论文], 合肥工业大学, 2020.
WANG Pengfei. Research on track recognition and clustering based on radar data[D]. [Master dissertation], Hefei University of Technology, 2020.
|
[28] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
|
[29] |
SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. https://arxiv.org/abs/1707.06347, 2017.
|
[30] |
FUJIMOTO S, HOOF H, and MEGER D. Addressing function approximation error in actor-critic methods[C]. 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 1587–1596.
|