XIA Deping, ZHANG Liang, WU Tao, et al. A multiple interference suppression algorithm based on airborne bistatic polarization radar[J]. Journal of Radars, 2022, 11(3): 399–407. doi: 10.12000/JR21212
Citation: Bai Yang, Wu Yang, Yin Hongcheng, Que Xiaofeng. Indoor Measurement Research on Polarimetric Scattering Characteristics of UAV[J]. Journal of Radars, 2016, 5(6): 647-657. doi: 10.12000/JR16032

Indoor Measurement Research on Polarimetric Scattering Characteristics of UAV

DOI: 10.12000/JR16032
Funds:

The National Natural Science Foundation of China (61490690,61490695-06)

  • Received Date: 2016-01-31
  • Rev Recd Date: 2016-12-21
  • Publish Date: 2016-12-28
  • Knowledge of target polarization characteristics is valuable for radar target detection, classification, and identification.We conducted experimental research on an Unmanned Aerial Vehicle (UAV) with complex materials and structures to determine the differences in polarimetric scattering between the UAV and its perfect electric conductor model.To illustrate the coherence of the entire UAV and its components using polarimetric scattering, we measured and analyzed each part.The results reveal that the airframe and aerofoils directly influence the depolarization, and that the polarimetric scattering characteristics of the airframe represent the primary source for the whole UAV.

     

  • [1]
    黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005.Huang Pei-kang,Yin Hong-cheng,and Xu Xiao-jian.Characteristics of Radar Target[M].Beijing:Publishing House of Electronics Industry,2005.
    [2]
    Alexander N T,Currie N C,and Tuley M T.Calibration of bistatic RCS measurements[C].Proceedings of Antenna and Propagation Techniques Association 1995 Symposium,Columbus,USA,1995:13-17.
    [3]
    Jersak B D B.Bistatic,fully polarimetric radar cross-section calibration techniques and measurement error analysis[D].[Ph.D.dissertation],University of Texas at Arlington,1993:116-128.
    [4]
    Eigel R L.Bistatic radar cross section characterization of complex objects[D].[Master dissertation],Air Force Institute of Technology,1999:25-33.
    [5]
    Saraband I K,Ulaby F T,and Tassoudji M A.Calibration of polarimetric radar systems with good polarization isolation[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(1):70-75.
    [6]
    Mortensen H B.Implementation of bistatic polarimetric calibration procedure for the EMSL[R].European Microwave Signature Laboratory,Internal memorandum,1995.
    [7]
    Riegger S and Wiesbeck W.Wide-band polarimetry and complex radar cross section signatures[J].Proceedings of the IEEE,1989,77(5):649-658.
    [8]
    Monzon J C.A cross-polarized bistatic calibration device for RCS measurements[J].IEEE Transactions on Antennas and Propagation,2003,51(4):833-839.
    [9]
    Huang Pei-kang,Ning Chao,Xu Xiao-jian,et al..Solution for polarimetric radar cross section measurement and calibration[J].Journal of Systems Engineering and Electronics,2014,25(2):211-216.
    [10]
    庄钊文,袁乃昌,莫锦军,等.军用目标雷达散射截面预估与测量[M].北京:科学出版社,2007.Zhuang Zhao-wen,Yuan Nai-chang,Mo Jin-jun,et al..Estimation and Measurement of Radar Cross Section of Military Targets[M].Beijing:Science Press,2007.
  • Relative Articles

    [1]LAN Lan, ZHANG Xiang, XU Jingwei, LIAO Guisheng. Main-lobe Deceptive Jammers with Array Radars Using Space-time Multidimensional Coding[J]. Journal of Radars, 2025, 14(2): 439-455. doi: 10.12000/JR24229
    [2]LAN Xiaoyu, HU Jiyan, LIANG Mingshen, MA Shuang. Sparse DOA Estimation Method Based on Riemann Averaging under Strong Intermittent Jamming[J]. Journal of Radars, 2025, 14(2): 280-292. doi: 10.12000/JR24175
    [3]SU Hanning, PAN Jiameng, BAO Qinglong, GUO Fucheng, HU Weidong. Anti-interrupted Sampling Repeater Jamming Method in the Waveform Domain before Matched Filtering[J]. Journal of Radars, 2024, 13(1): 240-252. doi: 10.12000/JR23149
    [4]LI Zhongyu, GUI Liang, HAI Yu, WU Junjie, WANG Dangwei, WANG Anle, YANG Jianyu. Ultrahigh-resolution ISAR Micro-Doppler Suppression Methodology Based on Variational Mode Decomposition and Mode Optimization[J]. Journal of Radars, 2024, 13(4): 852-865. doi: 10.12000/JR24043
    [5]ZHAO Kaifa, SONG Hu, LIU Rong, WANG Xinhai. Distributed Radar Main-lobe Interference Suppression Method Via Joint Optimization of Array Configuration and Subarray Element Number[J]. Journal of Radars, 2024, 13(6): 1355-1369. doi: 10.12000/JR24192
    [6]CHEN Zirui, JI Yifei, LIU Xiwang, ZHANG Yongsheng, DONG Zhen, CHEN Alei, LIU Weijian. Transient Interference Suppression Algorithm Based on Time Frequency Sparse Prior for Skywave OTHR[J]. Journal of Radars, 2024, 13(6): 1157-1169. doi: 10.12000/JR24188
    [7]CHEN Yan, WANG Zhanling, PANG Chen, LI Yongzhen, WANG Zhuang. Radar Active Deception Jamming Recognition Method Based on the Time-varying Polarization-conversion Metasurface[J]. Journal of Radars, 2024, 13(4): 929-940. doi: 10.12000/JR24028
    [8]WANG Rongqing, XIE Jingyang, TIAN Biao, XU Shiyou, CHEN Zengping. Integrated Jamming Perception and Parameter Estimation Method for Anti-interrupted Sampling Repeater Jamming[J]. Journal of Radars, 2024, 13(6): 1337-1354. doi: 10.12000/JR24153
    [9]NIE Lin, WEI Shunjun, LI Jiahui, ZHANG Hao, SHI Jun, WANG Mou, CHEN Siyuan, ZHANG Xinyan. Active Blanket Jamming Suppression Method for Spaceborne SAR Images Based on Regional Feature Refinement Perceptual Learning[J]. Journal of Radars, 2024, 13(5): 985-1003. doi: 10.12000/JR24072
    [10]DU Siyu, LIU Zhixing, WU Yaojun, SHA Minghui, QUAN Yinghui. Dense-repeated Jamming Suppression Algorithm Based on the Support Vector Machine for Frequency Agility Radar[J]. Journal of Radars, 2023, 12(1): 173-185. doi: 10.12000/JR22065
    [11]HAN Zhaoyun, CEN Xi, CUI Jiahe, LI Yachao, ZHANG Peng. Self-supervised Learning Method for SAR Interference Suppression Based on Abnormal Texture Perception[J]. Journal of Radars, 2023, 12(1): 154-172. doi: 10.12000/JR22168
    [12]GAI Jiyu, JIANG Wei, ZHANG Kaixiang, LIANG Zhennan, CHEN Xinliang, LIU Quanhua. A Method for Interrupted-Sampling Repeater Jamming Identification and Suppression Based on Differential Features[J]. Journal of Radars, 2023, 12(1): 186-196. doi: 10.12000/JR22058
    [13]XIA Deping, ZHANG Liang, WU Tao, MENG Xiangdong. A Multiple Interference Suppression Algorithm Based on Airborne Bistatic Polarization Radar[J]. Journal of Radars, 2022, 11(3): 399-407. doi: 10.12000/JR21212
    [14]ZOU Kun, LAI Lei, LUO Yanbo, LI Wei. Suppression of Non-Gaussian Clutter from Subspace Interference[J]. Journal of Radars, 2020, 9(4): 715-722. doi: 10.12000/JR19050
    [15]LIU Pingyu, LYU Xiaode, LIU Zhongsheng, ZHANG Hanliang. Research on Co-channel Interference Suppression Method for Passive Radar Based on the Jiont Processing of Primary and Reference Channels[J]. Journal of Radars, 2020, 9(6): 974-986. doi: 10.12000/JR19047
    [16]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [17]MENG Zhichao, LU Jingyue, ZHANG Lei. Forward-looking Multi-channel SAR Adaptive Identification to Suppress Deception Jamming[J]. Journal of Radars, 2019, 8(1): 82-89. doi: 10.12000/JR18081
    [18]Zhou Chunhui, Li Fei, Li Ning, Zheng Huifang, Wang Xiangyu. Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image[J]. Journal of Radars, 2018, 7(2): 235-243. doi: 10.12000/JR17025
    [19]Li Yongzhen, Hu Wanqiu, Sun Dou, Li Zhongwei. Scheme for Polarization Detection and Suppression of TRAD[J]. Journal of Radars, 2016, 5(6): 666-672. doi: 10.12000/JR16115
    [20]Zhang Chi, Li Yue-li, Zhou Zhi-min. Wall Clutter Mitigation in Through-the-Wall Imaging Radar with Sparse Array Antenna Based on Independent Component Analysis[J]. Journal of Radars, 2014, 3(5): 524-532. doi: 10.3724/SP.J.1300.2014.14066
  • Cited by

    Periodical cited type(5)

    1. 王沙飞,朱梦韬,李云杰,杨健,李岩. 对先进多功能雷达系统行为的识别、推理与预测:综述与展望. 信号处理. 2024(01): 17-55 .
    2. 陈士超,魏靖彪,范俊,魏玺章,王泽朝,孙谦,刘明. 基于判别性无穷模糊受限玻尔兹曼机模型的HRRP序列识别. 兵工学报. 2024(S1): 43-50 .
    3. 赵娟娟. 基于统计模型的电子信息产业企业成长性分析. 中国电子商情. 2024(04): 64-66 .
    4. 苏海龙,水鹏朗. 采用双迭代寻优算法的舰船复HRRP估计. 西安电子科技大学学报. 2023(06): 105-119 .
    5. 赵春雷,姚嘉嵘,李京效,戚张行,魏汇赞. 地基雷达空中目标识别方法研究综述. 空天预警研究学报. 2023(05): 313-320+334 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.4 %FULLTEXT: 13.4 %META: 75.5 %META: 75.5 %PDF: 11.1 %PDF: 11.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.8 %其他: 17.8 %其他: 0.3 %其他: 0.3 %Absecon: 0.3 %Absecon: 0.3 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %Matawan: 0.0 %Matawan: 0.0 %Rochester: 0.0 %Rochester: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.5 %[]: 0.5 %上海: 1.1 %上海: 1.1 %上海市: 0.0 %上海市: 0.0 %东莞: 0.0 %东莞: 0.0 %中卫: 0.4 %中卫: 0.4 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %佛山: 0.0 %佛山: 0.0 %信阳: 0.0 %信阳: 0.0 %兰辛: 0.0 %兰辛: 0.0 %包头: 0.0 %包头: 0.0 %北京: 20.3 %北京: 20.3 %北京市: 0.2 %北京市: 0.2 %北海: 0.1 %北海: 0.1 %南京: 0.9 %南京: 0.9 %南京市: 0.0 %南京市: 0.0 %南宁: 0.1 %南宁: 0.1 %南昌: 0.6 %南昌: 0.6 %台北: 0.0 %台北: 0.0 %台州: 0.3 %台州: 0.3 %合肥: 0.2 %合肥: 0.2 %吕梁: 0.0 %吕梁: 0.0 %吴忠: 0.0 %吴忠: 0.0 %呼和浩特: 0.4 %呼和浩特: 0.4 %和田: 0.0 %和田: 0.0 %唐山: 0.2 %唐山: 0.2 %夏尔迦: 0.1 %夏尔迦: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %太原: 0.5 %太原: 0.5 %威海: 0.3 %威海: 0.3 %娄底: 0.0 %娄底: 0.0 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.3 %宿迁: 0.3 %岳阳: 0.0 %岳阳: 0.0 %崇左: 0.1 %崇左: 0.1 %巴中: 0.1 %巴中: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.0 %常州: 0.0 %常德市: 0.0 %常德市: 0.0 %平顶山: 0.0 %平顶山: 0.0 %平顶山市叶县: 0.0 %平顶山市叶县: 0.0 %广州: 0.5 %广州: 0.5 %广州市天河区: 0.1 %广州市天河区: 0.1 %廊坊: 0.0 %廊坊: 0.0 %张家口: 0.6 %张家口: 0.6 %张家口市: 0.0 %张家口市: 0.0 %惠州: 0.0 %惠州: 0.0 %成都: 0.9 %成都: 0.9 %成都市新都区: 0.0 %成都市新都区: 0.0 %扬州: 0.1 %扬州: 0.1 %新乡: 0.3 %新乡: 0.3 %无锡: 0.1 %无锡: 0.1 %昆明: 0.4 %昆明: 0.4 %曼谷: 0.0 %曼谷: 0.0 %杭州: 1.7 %杭州: 1.7 %株洲: 0.0 %株洲: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.0 %桂林: 0.0 %榆林: 0.0 %榆林: 0.0 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %海西: 0.0 %海西: 0.0 %淮南: 0.1 %淮南: 0.1 %淮安: 0.0 %淮安: 0.0 %深圳: 0.5 %深圳: 0.5 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.0 %潍坊: 0.0 %玉林: 0.1 %玉林: 0.1 %珠海: 0.1 %珠海: 0.1 %白银: 0.1 %白银: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %红河: 0.1 %红河: 0.1 %纽约: 0.2 %纽约: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 10.5 %芒廷维尤: 10.5 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.0 %苏州: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %衡水: 0.2 %衡水: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 27.3 %西宁: 27.3 %西安: 0.5 %西安: 0.5 %贵港: 0.1 %贵港: 0.1 %赤峰: 0.0 %赤峰: 0.0 %运城: 0.1 %运城: 0.1 %郑州: 1.4 %郑州: 1.4 %重庆: 0.0 %重庆: 0.0 %金华: 0.1 %金华: 0.1 %长沙: 0.5 %长沙: 0.5 %阜阳: 0.0 %阜阳: 0.0 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.8 %青岛: 0.8 %黔南: 0.0 %黔南: 0.0 %齐齐哈尔: 0.4 %齐齐哈尔: 0.4 %其他其他AbseconChinaIndiaMatawanRochesterUnited States[]上海上海市东莞中卫丽水乌鲁木齐佛山信阳兰辛包头北京北京市北海南京南京市南宁南昌台北台州合肥吕梁吴忠呼和浩特和田唐山夏尔迦大连天津太原威海娄底安康宣城宿迁岳阳崇左巴中巴彦淖尔常州常德市平顶山平顶山市叶县广州广州市天河区廊坊张家口张家口市惠州成都成都市新都区扬州新乡无锡昆明曼谷杭州株洲格兰特县桂林榆林武汉沈阳洛阳济南海西淮南淮安深圳温州渭南湖州湘潭漯河潍坊玉林珠海白银石家庄福州秦皇岛红河纽约绵阳芒廷维尤芝加哥苏州蚌埠衡水衢州西宁西安贵港赤峰运城郑州重庆金华长沙阜阳阳泉青岛黔南齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(11987) PDF downloads(988) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint