Volume 14 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
LI Zhi, TANG Chengyao, DAI Yongpeng, et al. Multirotor UAV-borne vital signs sensing using 4D imaging radar[J]. Journal of Radars, 2025, 14(1): 62–72. doi: 10.12000/JR24128
Citation: LI Zhi, TANG Chengyao, DAI Yongpeng, et al. Multirotor UAV-borne vital signs sensing using 4D imaging radar[J]. Journal of Radars, 2025, 14(1): 62–72. doi: 10.12000/JR24128

Multirotor UAV-borne Vital Signs Sensing Using 4D Imaging Radar

DOI: 10.12000/JR24128
Funds:  Natural Science Foundation of Chongqing China (CSTB2024NSCQ-MSX1143)
More Information
  • Corresponding author: JIN Tian, tianjin@nudt.edu.cn
  • Received Date: 2024-06-21
  • Rev Recd Date: 2024-09-25
  • Available Online: 2024-10-08
  • Publish Date: 2024-10-16
  • Unmanned Aerial Vehicle (UAV)-borne radar technology can solve the problems associated with noncontact vital sign sensing, such as limited detection range, slow moving speed, and difficult access to certain areas. In this study, we mount a 4D imaging radar on a multirotor UAV and propose a UAV-borne radar-based method for sensing vital signs through point cloud registration. Through registration and motion compensation of the radar point cloud, the motion error interference of UAV hovering is eliminated; vital sign signals are then obtained after aligning the human target. Simulation results show that the proposed method can effectively align the 4D radar point cloud sequence and accurately extract the respiration and heartbeat signals of human targets, thereby providing a way to realize UAV-borne vital sign sensing.

     

  • loading
  • [1]
    LI Changzhi. Vital-sign monitoring on the go[J]. Nature Electronics, 2019, 2(6): 219–220. doi: 10.1038/s41928-019-0260-z.
    [2]
    RONG Yu, GUTIERREZ R, MISHRA K V, et al. Noncontact vital sign detection with UAV-borne radars: An overview of recent advances[J]. IEEE Vehicular Technology Magazine, 2021, 16(3): 118–128. doi: 10.1109/MVT.2021.3086442.
    [3]
    ISLAM S M M, OBA L, LUBECKE L, et al. Contactless vital sign monitoring with unmanned aerial vehicle-borne radar[J]. IEEE Potentials, 2023, 42(1): 27–34. doi: 10.1109/MPOT.2021.3138726.
    [4]
    STOCKEL P, WALLRATH P, HERSCHEL R, et al. Motion compensation in six degrees of freedom for a MIMO radar mounted on a hovering UAV[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 5791–5801. doi: 10.1109/TAES.2023.3266181.
    [5]
    李悦丽, 李泽森, 王建, 等. 多旋翼无人机载SAR的视线运动误差修正与补偿[J]. 雷达学报, 2022, 11(6): 1061–1080. doi: 10.12000/JR22082.

    LI Yueli, LI Zesen, WANG Jian, et al. Modification and compensation of the line-of-sight motion error for multirotor UAV SAR[J]. Journal of Radars, 2022, 11(6): 1061–1080. doi: 10.12000/JR22082.
    [6]
    CHEN Jianlai, XING Mengdao, YU Hanwen, et al. Motion compensation/autofocus in airborne synthetic aperture radar: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1): 185–206. doi: 10.1109/MGRS.2021.3113982.
    [7]
    NAKATA R H, HARUNA B, YAMAGUCHI T, et al. Motion compensation for an unmanned aerial vehicle remote radar life sensor[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8(2): 329–337. doi: 10.1109/JETCAS.2018.2821624.
    [8]
    ISLAM S M M, LUBECKE L C, GRADO C, et al. An adaptive filter technique for platform motion compensation in unmanned aerial vehicle based remote life sensing radar[C]. 2020 50th European Microwave Conference (EuMC), Utrecht, Netherlands, 2021: 937–940. doi: 10.23919/EuMC48046.2021.9338011.
    [9]
    RONG Yu, HERSCHFELT A, HOLTOM J, et al. Cardiac and respiratory sensing from a hovering UAV radar platform[C]. 2021 IEEE Statistical Signal Processing Workshop (SSP), Rio de Janeiro, Brazil, 2021: 541–545. doi: 10.1109/SSP49050.2021.9513771.
    [10]
    JING Yu, QI Fugui, YANG Fang, et al. Respiration detection of ground injured human target using UWB radar mounted on a hovering UAV[J]. Drones, 2022, 6(9): 235. doi: 10.3390/drones6090235.
    [11]
    MA Junqi, CHANG Zhaoxin, ZHANG Fusang, et al. Mobi2Sense: Enabling wireless sensing under device motions[C]. The 28th Annual International Conference on Mobile Computing and Networking, Sydney, Australia, 2022: 766–768. doi: 10.1145/3495243.3558748.
    [12]
    ZHANG Binbin, ZHANG Dongheng, SONG Ruiyuan, et al. RF-search: Searching unconscious victim in smoke scenes with RF-enabled drone[C]. The 29th Annual International Conference on Mobile Computing and Networking, Madrid, Spain, 2023: 91. doi: 10.1145/3570361.3613305.
    [13]
    LI Zhi, JIN Tian, HU Xikun, et al. Remote respiratory and cardiac motion patterns separation with 4D imaging radars[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(6): 2717–2728. doi: 10.1109/JBHI.2022.3171554.
    [14]
    LI Zhi, JIN Tian, LI Lianlin, et al. Spatiotemporal processing for remote sensing of trapped victims using 4-D imaging radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5103412. doi: 10.1109/TGRS.2023.3266039.
    [15]
    TOSTI F, GENNARELLI G, LANTINI L, et al. The use of GPR and microwave tomography for the assessment of the internal structure of hollow trees[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2002314. doi: 10.1109/TGRS.2021.3115408.
    [16]
    DOERRY A W, BISHOP E E, and MILLER J A. Basics of backprojection algorithm for processing synthetic aperture radar images[R]. SAND2016-1682, 2016: 19–50.
    [17]
    LI Zhi, JIN Tian, DAI Yongpeng, et al. Through-wall multi-subject localization and vital signs monitoring using UWB MIMO imaging radar[J]. Remote Sensing, 2021, 13(15): 2905. doi: 10.3390/rs13152905.
    [18]
    WANG Jingyu, WANG Xiang, CHEN Lei, et al. Noncontact distance and amplitude-independent vibration measurement based on an extended DACM algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(1): 145–153. doi: 10.1109/TIM.2013.2277530.
    [19]
    RAMACHANDRAN G and SINGH M. Three-dimensional reconstruction of cardiac displacement patterns on the chest wall during the P, QRS and T-segments of the ECG by laser speckle inteferometry[J]. Medical and Biological Engineering and Computing, 1989, 27(5): 525–530. doi: 10.1007/BF02441473.
    [20]
    ZHANG Juyong, YAO Yuxin, and DENG Bailin. Fast and robust iterative closest point[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3450–3466. doi: 10.1109/TPAMI.2021.3054619.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(204) PDF downloads(187) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint