Volume 7 Issue 5
Nov.  2018
Turn off MathJax
Article Contents
Zhang Pengfei, Li Gang, Huo Chaoying, Yin Hongcheng. Classification of Drones Based on Micro-Doppler Radar Signatures Using Dual Radar Sensors[J]. Journal of Radars, 2018, 7(5): 557-564. doi: 10.12000/JR18061
Citation: Zhang Pengfei, Li Gang, Huo Chaoying, Yin Hongcheng. Classification of Drones Based on Micro-Doppler Radar Signatures Using Dual Radar Sensors[J]. Journal of Radars, 2018, 7(5): 557-564. doi: 10.12000/JR18061

Classification of Drones Based on Micro-Doppler Radar Signatures Using Dual Radar Sensors

DOI: 10.12000/JR18061
Funds:  Ministry Research Foundation, Ministry Key Laboratory Research Foundation
  • Received Date: 2018-08-23
  • Rev Recd Date: 2018-10-22
  • Publish Date: 2018-10-28
  • Classification of drones is important due to their increasing popularity and potential threats. The micro-Doppler signatures that depend on the rotation of rotor blades facilitate the classification of drones. To enhance the robustness of micro-Doppler based classification of drones, dual radar sensing classification scheme is proposed in this paper. First, time-frequency spectrograms are obtained by performing a short-time Fourier transform on the radar data collected by two radar sensors that have similar angular diversity. Then, principal components analysis is utilized to extract the features from the time-frequency spectrograms and the features obtained by the two radar sensors are fused together. Finally, the classification results are obtained by using the support vector machine. The experimental results show that the classification accuracy obtained by the fusion of dual radar sensors is 5% higher than that obtained by only using a single radar sensor.

     

  • loading
  • [1]
    De Wit J J M, Harmanny R I A, and Prémel-Cabic G. Micro-Doppler analysis of small UAVs[C]. Proceedings of the 9th European Radar Conference, Amsterdam, Netherlands, 2012: 210–213.
    [2]
    De Wit J J M, Harmanny R I A, and Molchanov P. Radar micro-Doppler feature extraction using the Singular Value Decomposition[C]. Proceedings of 2014 International Radar Conference, Lille, France, 2014: 1–6. DOI: 10.1109/RADAR.2014.7060268.
    [3]
    夏铭禹, 赵凯, 倪威. 要地防控反无人机系统及其关键技术[J]. 指挥控制与仿真, 2018, 40(2): 53–60, 71. DOI: 10.3969/j.issn.1673-3819.2018.02.010

    Xia Ming-yu, Zhao Kai, and Ni Wei. Anti-UAV system and key technology for key point defense[J]. Command Control&Simulation, 2018, 40(2): 53–60, 71. DOI: 10.3969/j.issn.1673-3819.2018.02.010
    [4]
    Mohajerin N, Histon J, Dizaji R, et al.. Feature extraction and radar track classification for detecting UAVs in civillian airspace[C]. Proceedings of 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 674–679. DOI: 10.1109/RADAR.2014.6875676.
    [5]
    Ritchie M, Fioranelli F, Griffiths H, et al.. Micro-drone RCS analysis[C]. Proceedings of 2015 IEEE Radar Conference, Johannesburg, South Africa, 2015: 452–456. DOI: 10.1109/RadarConf.2015.7411926.
    [6]
    Schroder A, Renker M, Aulenbacher U, et al.. Numerical and experimental radar cross section analysis of the quadrocopter DJI phantom 2[C]. Proceedings of 2015 IEEE Radar Conference, Johannesburg, South Africa, 2015: 463–468. DOI: 10.1109/RadarConf.2015.7411928.
    [7]
    白杨, 吴洋, 殷红成, 等. 无人机极化散射特性室内测量研究[J]. 雷达学报, 2016, 5(6): 647–657. DOI: 10.12000/JR16032

    Bai Yang, Wu Yang, Yin Hong-cheng, et al. Indoor measurement research on polarimetric scattering characteristics of UAV[J]. Journal of Radars, 2016, 5(6): 647–657. DOI: 10.12000/JR16032
    [8]
    Torvik B, Olsen K E, and Griffiths H. Classification of birds and UAVs based on radar polarimetry[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9): 1305–1309. DOI: 10.1109/LGRS.2016.2582538
    [9]
    Chen V C. The Micro-Doppler Effect in Radar[M]. Boston: Artech House, 2011: 35–60.
    [10]
    Kim Y and Ling H. Human activity classification based on micro-Doppler signatures using a support vector machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(5): 1328–1337. DOI: 10.1109/TGRS.2009.2012849
    [11]
    Fioranelli F, Ritchie M, and Griffiths H. Classification of unarmed/armed personnel using the NetRAD multistatic radar for micro-Doppler and singular value decomposition features[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1933–1937. DOI: 10.1109/LGRS.2015.2439393
    [12]
    Kim Y and Toomajian B. Hand gesture recognition using micro-Doppler signatures with convolutional neural network[J]. IEEE Access, 2016, 4: 7125–7130. DOI: 10.1109/ACCESS.2016.2617282
    [13]
    Li G, Zhang R, Ritchie M, et al. Sparsity-driven micro-Doppler feature extraction for dynamic hand gesture recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 655–665. DOI: 10.1109/TAES.2017.2761229
    [14]
    Stove A G and Sykes S R. A Doppler-based target classifier using linear discriminants and principal components[C]. Proceedings of 2003 International Conference on Radar, Adelaide, SA, Australia, 2003: 107–125. DOI: 10.1109/RADAR.2003.1278734.
    [15]
    熊丁丁, 崔国龙, 孔令讲, 等. 基于互相关熵的非高斯背景下微动参数估计方法[J]. 雷达学报, 2017, 6(3): 300–308. DOI: 10.12000/JR17007

    Xiong Dingding, Cui Guolong, Kong Lingjiang, et al. Micro-motion parameter estimation in non-Gaussian noise via mutual correntropy[J]. Journal of Radars, 2017, 6(3): 300–308. DOI: 10.12000/JR17007
    [16]
    王宝帅. 基于微多普勒效应的空中飞机目标分类研究[D]. [博士论文], 西安电子科技大学, 2015: 4–22.

    Wang Bao-shuai. Study on classification of airplane targets based on micro-Doppler effect[D]. [Ph.D. dissertation], Xidian University, 2015: 4–22.
    [17]
    Molchanov P, Egiazarian K, Astola J, et al. . Classification of small UAVs and birds by micro-Doppler signatures[C]. Proceedings of 2013 European Radar Conference, Nuremberg, Germany, 2013: 172–175.
    [18]
    Kim B K, Kang H S, and Park S O. Drone classification using convolutional neural networks with merged Doppler images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 38–42. DOI: 10.1109/LGRS.2016.2624820
    [19]
    Ren J F and Jiang X D. Regularized 2-D complex-log spectral analysis and subspace reliability analysis of micro-Doppler signature for UAV detection[J]. Pattern Recognition, 2017, 69: 225–237. DOI: 10.1016/j.patcog.2017.04.024
    [20]
    Ritchie M, Fioranelli F, Borrion H, et al. Multistatic micro-Doppler radar feature extraction for classification of unloaded/loaded micro-drones[J]. IET Radar,Sonar&Navigation, 2017, 11(1): 116–124. DOI: 10.1049/iet-rsn.2016.0063
    [21]
    Zhang R, Li G, Clemente C, et al. Multi-aspect micro-Doppler signatures for attitude-independent L/N quotient estimation and its application to helicopter classification[J]. IET Radar,Sonar&Navigation, 2017, 11(4): 701–708. DOI: 10.1049/iet-rsn.2016.0271
    [22]
    Van Der Maaten L and Hinton G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579–2605.
    [23]
    Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995: 112–150.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4594) PDF downloads(560) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint