Volume 5 Issue 4
Aug.  2016
Turn off MathJax
Article Contents
Wang Yanfei, Liu Chang, Zhan Xueli, Han Song. Technology and Applications of UAV Synthetic Aperture Radar System[J]. Journal of Radars, 2016, 5(4): 333-349. doi: 10.12000/JR16089
Citation: Wang Yanfei, Liu Chang, Zhan Xueli, Han Song. Technology and Applications of UAV Synthetic Aperture Radar System[J]. Journal of Radars, 2016, 5(4): 333-349. doi: 10.12000/JR16089

Technology and Applications of UAV Synthetic Aperture Radar System

doi: 10.12000/JR16089
Funds:

The National Natural Science Foundation of China (61471340)

  • Received Date: 2016-08-05
  • Rev Recd Date: 2016-08-16
  • Publish Date: 2016-08-28
  • This paper provides a brief review of the development in Unmanned Aerial Vehicle (UAV) borne SAR technology, and gives a summary on the important areas of UAV SAR, including the operation mode, key facilitating technology, performance and specifications, typical systems and applications. According to the characteristics and attributes of UAV platform, the paper focuses on the current development of high resolution, motion compensation and innovative operation mode of the UAV SAR payload. On the demonstration of high resolution, full polarization and interferometric UAV SAR systems, the technologies of top level design on modular reconfiguration, real-time image formation and multi-dimentional motion compensation involved are introduced in detail. Also, the future development trends of UAV SAR technology is discussed as well.

     

  • loading
  • [1]
    Zaloga J, Rockwell D, and Finnegan P. World Unmanned Aerial Vehicle Systems Market Profile and Forecast[R]. Philip Finnegan, 2012.
    [2]
    李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5): 505513. DOI: 10.13203/ j.whugis20140045. Li Deren and Li Ming. Research advace and application prospect of unmanned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505513. DOI: 10.13203/j. whugis20140045.
    [3]
    Global Hawk Specifications[OL]. www.northropgrumman. com/Capabilities/GlobalHawk/Pages/default.aspx.2016.8.
    [4]
    Raytheon updates HISAR[OL]. https://www.flightglobal. com/news/articles/raytheon-updates-hisar-132426/.2016.8.
    [5]
    AN/ZPY-2 Multi-Platform Radar Technology Insertion Program (MP-RTIP)[OL]. www.northropgrumman.com/ Capabilities/mprtip.2016.8.
    [6]
    AN/ZPY-3 Multi-Function Active Sensor (MFAS)[OL]. www.northropgrumman.com/Capabilities/MFAS/Pages/ default.aspx.2016.8.
    [7]
    Predator_B persistent multi-mission ISR[OL]. www.ga-asi.com/Websites/gaasi/images/products/aircraft_systems/pdf/ Predator_B021915.pdf.2016.8.
    [8]
    Hensley W H, Doerry A W, and Walker B C. Lynx: a high-resolution synthetic aperture radar[J]. SPIE Aerosense, 1999, 3704: 5158. DOI: 10.1117/12.354602.
    [9]
    GA-ASI first two-channel Lynx radar demonstrates improved GMTI performance under Darpa dual beam project[OL]. www.ga.com/ga-asi-first-two-channel-lynx-radar- demonstrates-improved-gmti-performance-under-darpa-dual-beam-project.pdf.2016.8.
    [10]
    RDR-1700B radar series[OL]. https://www.telephonics.com/ soft-gate/gated-assets/uploads/39962-TC-RDR-1700B-Brochure- WEB.pdf.2016.8.
    [11]
    MiniSAR[OL]. http//www.sandia.gov/radar/images/ SAND2005-3445PMiniSAR-fact-sheetp2-v4-redo.pdf.2014.8.
    [12]
    Kinghorn A M and Nejman A. PicoSARan advanced lightweight SAR system[C]. European Radar Conference (EuRAD), Italy, 2009: 168171.
    [13]
    Goulding M M, Stonehouse A, and Nejman A. AESA based dual channel GMTI: mode design flight trials[C]. IEEE Radar Conference (RADAR), Kansas City, 2011: 917921. DOI: 10.1109/RADAR.2011.5960670.
    [14]
    Knapskog A O. Moving targets and multipath in SAR images of harbour scenes[C]. European Conference on Synthetic Aperture Radar (EUSAR), Nuremberg, 2012: 547550.
    [15]
    Halcrow G, Greig D W, Glass A, et al.. PicoSAR trials results[C]. 2013 14th International Radar Symposium (IRS), Dresden, 2013, 1: 4752.
    [16]
    I-Master GMTI/SAR radar[OL]. https://www.thalesgroup. com/sites/default/files/asset/document/I-Master%20 Datasheet.pdf.2016.8.
    [17]
    王岩飞, 刘畅, 李和平, 等. 基于多通道合成的优于0.1 m分辨率的机载SAR系统[J]. 电子与信息学报, 2013, 35(1): 2935. Wang Yanfei, Liu Chang, Li Heping, et al.. An airborne SAR with 0.1 m resolution using multi-channel synthetic bandwidth[J]. Journal of Electronics Information Technology, 2013, 35(1): 2935.
    [18]
    贾颖新, 王岩飞. 一种宽带多通道合成孔径雷达系统幅相特性测量与校正方法[J]. 电子与信息学报, 2013, 35(9): 21682174. Jia Yingxin and Wang Yanfei. Measurement and calibration of amplitude-phase errors in wideband multi-channel SAR[J]. Journal of Electronics Information Technology, 2013, 35(9): 21682174.
    [19]
    Hu Jianmin, Wang Yanfei, and Li Heping. Channel phase error estimation and compensation for ultra high-resolution airborne SAR system based on echo data[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 10691073. DOI: 10.1109/LGRS.2012.2190133.
    [20]
    张梅, 刘畅, 王岩飞. 频带合成超高分辨率机载SAR系统的相位误差校正[J]. 电子与信息学报, 2011, 33(12): 28132818. Zhang Mei, Liu Chang, and Wang Yanfei. Channel error correction for ultra-high resolution airborne SAR system with synthetic bandwidth[J]. Journal of Electronics Information Technology, 2011, 33(12): 28132818.
    [21]
    王岩飞, 刘畅, 詹学丽, 等. 一个高精度无人机载多功能SAR系统[J]. 电子与信息学报, 2013, 35(7): 15691574. Wang Yanfei, Liu Chang, Zhan Xueli, et al.. An ultrafine multifunctional unmanned aerial vehicle SAR system[J]. Journal of Electronics Information Technology, 2013, 35(7): 15691574.
    [22]
    高许岗, 雍延梅. 无人机载微型SAR系统设计与实现[J]. 雷达科学与技术, 2014, 12(1): 3538. Gao Xugang and Yong Yanmei. Design and realization of UAV high resolution miniature SAR[J]. Radar Science and Technology, 2014, 12(1): 3538.
    [23]
    Mo Shasha, Wang Yanfei, and Liu Chang. An estimation algorithm for phase errors in synthetic aperture radar imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 18181822. DOI: 10.1109/LGRS.2015.2429744.
    [24]
    Fan Bangkui, Ding Zegang, Gao Wenbin, et al.. An improved motion compensation method for high resolution UAV SAR imaging[J]. Science China Information Sciences, 2014, 57(12): 113.
    [25]
    Li Yake, Liu Chang, Wang Yanfei, et al.. A robust motion error estimation method based on raw SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 27802790. DOI: 10.1109/TGRS.2011.2175737.
    [26]
    Edwards M, Provo U T, Madsen D, et al.. microASAR: a small, robust LFM-CW SAR for operation on UAVs and small aircraft[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008: 514517. DOI: 10.1109/IGARSS.2008.4780142.
    [27]
    Edrich M and Weiss M. Second-generation Ka-band UAV SAR system[C]. European Radar Conference (EuRAD), Amsterdam, 2008: 479482. DOI: 10.1109/EUMC.2008. 4751786.
    [28]
    Otten M, van Rossum W, van der Graaf M, et al.. Multichannel imaging with the AMBER FMCW SAR[C]. European Conference on Synthetic Aperture Radar (EUSAR), Berlin, 2014: 209212.
    [29]
    Rossum W, Otten M, and van Dorp P. Multichannel FMCW SAR[C]. European Conference on Synthetic Aperture Radar (EUSAR), Nuremberg, 2012: 279282.
    [30]
    Samczyski P, Kulpa K, Malanowski M, et al.. SARENKA: C-band SAR radar for UAV application[C]. European Conference on Synthetic Aperture Radar (EUSAR), Berlin, 2014: 12871290.
    [31]
    Wielgo M, Samczynski P, Malanowski M, et al.. The SARENKA SAR system-experimental results of ISAR imaging[C]. International Radar Symposium (IRS), Gdansk, 2014: 14. DOI: 10.1109/IRS.2014.6869263.
    [32]
    Gromek D, Samczynski P, Kulpa K, et al.. C-band SAR radar trials using UAV platform: experimental results of SAR system integration on a UAV carrier[C]. International Radar Symposium (IRS), Cracow, 2016: 15. DOI: 10.1109/ IRS.2016.7497305.
    [33]
    Jones C, Minchew B, and Holt B. Polarimetric decomposition analysis of the deepwater horizonoil slick using L-ban UAVSAR data[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, 2011: 22782281. DOI: 10.1109/IGARSS.2011.6049663.
    [34]
    Lee J, Strovers B, and Lin V. C-20A/GIII precision autopilot development in support of NASAs UAVSAR program[OL]. https://esto.nasa.gov/conferences/nstc2007/ papers/Lee_James_B4P3_NSTC-07-0013.pdf.2016.8.
    [35]
    Fore G, Chapman D, Hawkins P, et al.. UAVSAR polarimetric calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 34813491. DOI: 10.1109/TGRS.2014.2377637.
    [36]
    Kim D, Hensley S, and Yun S. Robust change detection in urban area using multi-temporal polarimetric UAVSAR data[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015: 28012804. DOI: 10.1109/IGARSS.2015.7326396.
    [37]
    Acevo R, Aguasca A, Mallorqui J J, et al.. High-compacted FM-CW SAR for boarding on small UAVs[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, 2009: 543546. DOI: 10.1109/IGARSS.2009. 5418139.
    [38]
    Cuerda J M, Gonz lez, M J, Gmez M, et al.. INTAs developments for UAS and small platforms: QUASAR[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, 2009: 9991002. DOI: 10.1109/IGARSS.2009.5417548.
    [39]
    del Castillo Mena, Sanchez Sevilleja J, Larraaga Sudupe S, et al.. RF design for QUASAR Ku-band polarimetric SAR system[C]. European Radar Conference (EuRAD), Paris, 2010: 459462.
    [40]
    Remy A, de Macedo A C, and Moreira R. The first UAV-based P-band X-band interferometric SAR system[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Munich, 2012: 50415044. DOI: 10.1109/ IGARSS.2012.6352478.
    [41]
    Shiroma G, de Macedo K A C, Wimmer C, et al.. The dual-band PolInSAR method for forest parametrization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 31893201. DOI: 10.1109/ JSTARS.2016.2520900.
    [42]
    Alberti G, Citarella L, Ciofaniello L, et al.. Current status of the development of an Italian airborne SAR system (MINISAR)[J]. SPIE, 2004, 5236: 5359. DOI: 10.1117/12.512224.
    [43]
    Essen H, Brutigam M, Sommer R, et al.. SUMATRA-A UAV based miniaturized SAR system[C]. European Conference on Synthetic Aperture Radar (EUSAR), Nuremberg, 2012: 437440.
    [44]
    Caris M, Stanko S, Sommer R, et al.. SARapesynthetic aperture radar for all weather penetrating UAV application[C]. International Radar Symposium (IRS), Dresden, 2013, 1: 4146.
    [45]
    Klare J, Wei M, Brenner A, et al.. ARTINO: A new high resolution 3D imagingradar system on an autonomous airborne platform[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Denver, 2006: 38423845. DOI: 10.1109/IGARSS.2006.985.
    [46]
    Klare J, Cerutti D, Brenner A, et al.. Image quality analysis of the vibratingsparse MIMO antenna array of the airborne 3D imaging radar ARTINO[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, 2007: 53105314. DOI: 10.1109/IGARSS.2007.4424061.
    [47]
    Weiss M and Gilles M. Initial ARTINO radar experiments[C]. European Conference on Synthetic Aperture Radar (EUSAR), Berlin, 2010: 14.
    [48]
    Weiss M, Peters O, and Ender J. First flight trials with ARTINO[C]. European Conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, 2008: 14.
    [49]
    Nouvel F, Jeuland H, Bonin G, et al.. A Ka-band imaging radar: DRIVE on board ONERA Motorglider[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Denver, 2006: 134136. DOI: 10.1109/ IGARSS.2006.39.
    [50]
    Nouvel F, Roques S, and Plessis O. A low-cost imaging radar: DRIVE on board ONERA motor glider[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, 2007: 53065309. DOI: 10.1109/IGARSS.2007.4424060.
    [51]
    Nouvel F, Dubois-Fernandez P, and Dupuis X. The Ka SAR airborne compaign[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Australia, 2013: 44714474. DOI: 10.1109/IGARSS.2013.6723828.
    [52]
    Nouvel F and Plessis O. The ONERA compact SAR in Ka band[C]. European Conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, 2008: 14.
    [53]
    Sumantyo S, Chet K V, and Triharjanto R. Development of circularly polarized synthetic aperture radar onboard unmanned aerial vehicle (CP-SAR UAV)[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Australia, 2013: 23012304. DOI: 10.1109/IGARSS. 2013.6723278.
    [54]
    Sumantyo S. Progress on development of synthetic aperture radar onboard UAV and microsatellite[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Qubec, 2014: 10811084. DOI: 10.1109/IGARSS.2014. 6946616.
    [55]
    Rodriguez-Cassola M, Younis M, Krieger G, et al.. Spaceborne to UAV bistatic radar system for high-resolution imaging and autonomous navigation[C]. European Conference on Synthetic Aperture Radar (EUSAR), Berlin, 2010: 740743.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(6436) PDF downloads(2303) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint