Volume 12 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
HE Mi, PING Qinwen, and DAI Ran. Fall detection based on deep learning fusing ultrawideband radar spectrograms[J]. Journal of Radars, 2023, 12(2): 343–355. doi: 10.12000/JR22169
Citation: HE Mi, PING Qinwen, and DAI Ran. Fall detection based on deep learning fusing ultrawideband radar spectrograms[J]. Journal of Radars, 2023, 12(2): 343–355. doi: 10.12000/JR22169

Fall Detection Based on Deep Learning Fusing Ultrawideband Radar Spectrograms

DOI: 10.12000/JR22169
Funds:  Army Medical University-level Project (2019XYY04), The National Ministry Fundation (BLJ18J005)
More Information
  • Corresponding author: HE Mi, hmcherry@126.com
  • Received Date: 2022-08-16
  • Rev Recd Date: 2022-10-05
  • Available Online: 2022-10-09
  • Publish Date: 2022-10-16
  • Compared with narrowband Doppler radar, ultrawideband radar can simultaneously acquire the range and Doppler information of targets, which is more beneficial for behavior recognition. To improve the recognition performance of fall behavior, frequency-modulated continuous-wave ultrawideband (UWB) radar was applied to collect daily behavior and fall data of 36 subjects in two real indoor complex scenes, and a multi-scene fall detection dataset was established with various action types; the range-time, time-Doppler, and range-Doppler spectrograms of the subjects were obtained after preprocessing radar data; based on the MobileNet-V3 lightweight network, three types of deep learning fusion networks at the data level, feature level, and decision level were designed for the radar spectrograms, respectively. A statistical analysis shows that the decision level fusion method proposed in this paper can improve fall detection performance compared with those using one type of spectrogram, the data level and the feature level fusion methods (all P values by significance test method are less than 0.003). The accuracies of 5-fold cross-validation and testing in the new scene of the decision level fusion method are 0.9956 and 0.9778, respectively, which indicates the good generalization ability of the proposed method.

     

  • loading
  • [1]
    DOS SANTOS R B, LAGO G N, JENCIUS M C, et al. Older adults’ views on barriers and facilitators to participate in a multifactorial falls prevention program: Results from Prevquedas Brasil[J]. Archives of Gerontology and Geriatrics, 2021, 92: 104287. doi: 10.1016/j.archger.2020.104287
    [2]
    HU Zhan and PENG Xizhe. Strategic changes and policy choices in the governance of China’s aging society[J]. Social Sciences in China, 2020, 41(4): 185–208. doi: 10.1080/02529203.2020.1844451
    [3]
    DAVIS J C, ROBERTSON M C, ASHE M C, et al. International comparison of cost of falls in older adults living in the community: A systematic review[J]. Osteoporosis International, 2010, 21(8): 1295–1306. doi: 10.1007/s00198-009-1162-0
    [4]
    IIO T, SHIOMI M, KAMEI K, et al. Social acceptance by senior citizens and caregivers of a fall detection system using range sensors in a nursing home[J]. Advanced Robotics, 2016, 30(3): 190–205. doi: 10.1080/01691864.2015.1120241
    [5]
    NOORUDDIN S, ISLAM M, SHARNA F A, et al. Sensor-based fall detection systems: A Review[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(5): 2735–2751. doi: 10.1007/s12652-021-03248-z
    [6]
    XEFTERIS V R, TSANOUSA A, MEDITSKOS G, et al. Performance, challenges, and limitations in multimodal fall detection systems: A review[J]. IEEE Sensors Journal, 2021, 21(17): 18398–18409. doi: 10.1109/JSEN.2021.3090454
    [7]
    SALEH M and LE BOUQUIN JEANNÈS R. Elderly fall detection using wearable sensors: A low cost highly accurate algorithm[J]. IEEE Sensors Journal, 2019, 19(8): 3156–3164. doi: 10.1109/JSEN.2019.2891128
    [8]
    RASTOGI S and SINGH J. A systematic review on machine learning for fall detection system[J]. Computational Intelligence, 2021, 37(2): 951–974. doi: 10.1111/coin.12441
    [9]
    GRACEWELL J J and PAVALARAJAN S. RETRACTED ARTICLE: Fall detection based on posture classification for smart home environment[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(3): 3581–3588. doi: 10.1007/s12652-019-01600-y
    [10]
    LU Na, WU Yidan, FENG Li, et al. Deep learning for fall detection: Three-dimensional CNN combined with LSTM on video kinematic data[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(1): 314–323. doi: 10.1109/JBHI.2018.2808281
    [11]
    CIPPITELLI E, FIORANELLI F, GAMBI E, et al. Radar and RGB-depth sensors for fall detection: A review[J]. IEEE Sensors Journal, 2017, 17(12): 3585–3604. doi: 10.1109/JSEN.2017.2697077
    [12]
    TARAMASCO C, RODENAS T, MARTINEZ F, et al. A novel monitoring system for fall detection in older people[J]. IEEE Access, 2018, 6: 43563–43574. doi: 10.1109/ACCESS.2018.2861331
    [13]
    ABOBAKR A, HOSSNY M, and NAHAVANDI S. A skeleton-free fall detection system from depth images using random decision forest[J]. IEEE Systems Journal, 2018, 12(3): 2994–3005. doi: 10.1109/JSYST.2017.2780260
    [14]
    LE H T, PHUNG S L, and BOUZERDOUM A. A fast and compact deep Gabor network for micro-Doppler signal processing and human motion classification[J]. IEEE Sensors Journal, 2021, 21(20): 23085–23097. doi: 10.1109/JSEN.2021.3106300
    [15]
    SU W C, WU Xuanxin, HORNG T S, et al. Hybrid continuous-wave and self-injection-locking monopulse radar for posture and fall detection[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(3): 1686–1695. doi: 10.1109/TMTT.2022.3142142
    [16]
    SAHO K, HAYASHI S, TSUYAMA M, et al. Machine learning-based classification of human behaviors and falls in restroom via dual Doppler radar measurements[J]. Sensors, 2022, 22(5): 1721. doi: 10.3390/s22051721
    [17]
    WANG Yongchuan, YANG Song, LI Fan, et al. FallViewer: A fine-grained indoor fall detection system with ubiquitous Wi-Fi devices[J]. IEEE Internet of Things Journal, 2021, 8(15): 12455–12466. doi: 10.1109/JIOT.2021.3063531
    [18]
    GURBUZ S Z and AMIN M G. Radar-based human-motion recognition with deep learning: Promising applications for indoor monitoring[J]. IEEE Signal Processing Magazine, 2019, 36(4): 16–28. doi: 10.1109/MSP.2018.2890128
    [19]
    MAITRE J, BOUCHARD K, and GABOURY S. Fall detection with UWB radars and CNN-LSTM architecture[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(4): 1273–1283. doi: 10.1109/JBHI.2020.3027967
    [20]
    SADREAZAMI H, BOLIC M, and RAJAN S. Contactless fall detection using time-frequency analysis and convolutional neural networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6842–6851. doi: 10.1109/TII.2021.3049342
    [21]
    GURBUZ S Z, CLEMENTE C, BALLERI A, et al. Micro-Doppler-based in-home aided and unaided walking recognition with multiple radar and sonar systems[J]. IET Radar, Sonar & Navigation, 2017, 11(1): 107–115. doi: 10.1049/iet-rsn.2016.0055
    [22]
    AMIN M G, ZHANG Y D, AHMAD F, et al. Radar signal processing for elderly fall detection: The future for in-home monitoring[J]. IEEE Signal Processing Magazine, 2016, 33(2): 71–80. doi: 10.1109/MSP.2015.2502784
    [23]
    MA Liang, LIU Meng, WANG Na, et al. Room-level fall detection based on ultra-wideband (UWB) monostatic radar and convolutional long short-term memory (LSTM)[J]. Sensors, 2020, 20(4): 1105. doi: 10.3390/s20041105
    [24]
    JOKANOVIĆ B and AMIN M. Fall detection using deep learning in range-Doppler radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 180–189. doi: 10.1109/TAES.2017.2740098
    [25]
    EROL B and AMIN M G. Radar data cube analysis for fall detection[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 2446–2450.
    [26]
    WANG Mingyang, CUI Guolong, YANG Xiaobo, et al. Human body and limb motion recognition via stacked gated recurrent units network[J]. IET Radar, Sonar & Navigation, 2018, 12(9): 1046–1051. doi: 10.1049/iet-rsn.2018.5054
    [27]
    TAYLOR W, DASHTIPOUR K, SHAH S A, et al. Radar sensing for activity classification in elderly people exploiting micro-Doppler signatures using machine learning[J]. Sensors, 2021, 21(11): 3881. doi: 10.3390/s21113881
    [28]
    ANISHCHENKO L, ZHURAVLEV A, and CHIZH M. Fall detection using multiple bioradars and convolutional neural networks[J]. Sensors, 2019, 19(24): 5569. doi: 10.3390/s19245569
    [29]
    ARAB H, GHAFFARI I, CHIOUKH L, et al. A convolutional neural network for human motion recognition and classification using a millimeter-wave Doppler radar[J]. IEEE Sensors Journal, 2022, 22(5): 4494–4502. doi: 10.1109/JSEN.2022.3140787
    [30]
    HE Mi, YANG Yi, PING Qinwen, et al. Optimum target range bin selection method for time-frequency analysis to detect falls using wideband radar and a lightweight network[J]. Biomedical Signal Processing and Control, 2022, 77: 103741. doi: 10.1016/j.bspc.2022.103741
    [31]
    HE Mi, NIAN Yongjian, and GONG Yushun. Novel signal processing method for vital sign monitoring using FMCW radar[J]. Biomedical Signal Processing and Control, 2017, 33: 335–345. doi: 10.1016/j.bspc.2016.12.008
    [32]
    HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 1314–1324.
    [33]
    SU Boyu, HO K C, RANTZ M J, et al. Doppler radar fall activity detection using the wavelet transform[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(3): 865–875. doi: 10.1109/TBME.2014.2367038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1819) PDF downloads(314) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint