Citation: | ZHANG Jiaxiang, ZHANG Kaixiang, LIANG Zhennan, et al. An intelligent frequency decision method for a frequency agile radar based on deep reinforcement learning[J]. Journal of Radars, 2024, 13(1): 227–239. doi: 10.12000/JR23197 |
[1] |
李永祯, 黄大通, 邢世其, 等. 合成孔径雷达干扰技术研究综述[J]. 雷达学报, 2020, 9(5): 753–764. doi: 10.12000/JR20087.
LI Yongzhen, HUANG Datong, XING Shiqi, et al. A review of synthetic aperture radar jamming technique[J]. Journal of Radars, 2020, 9(5): 753–764. doi: 10.12000/JR20087.
|
[2] |
崔国龙, 余显祥, 魏文强, 等. 认知智能雷达抗干扰技术综述与展望[J]. 雷达学报, 2022, 11(6): 974–1002. doi: 10.12000/JR22191.
CUI Guolong, YU Xianxiang, WEI Wenqiang, et al. An overview of antijamming methods and future works on cognitive intelligent radar[J]. Journal of Radars, 2022, 11(6): 974–1002. doi: 10.12000/JR22191.
|
[3] |
李康. 雷达智能抗干扰策略学习方法研究[D]. [博士论文], 西安电子科技大学, 2021. doi: 10.27389/d.cnki.gxadu.2021.003098.
LI Kang. Research on radar intelligent antijamming strategy learning method[D]. [Ph.D. dissertation], Xidian University, 2021. doi: 10.27389/d.cnki.gxadu.2021.003098.
|
[4] |
JIANG Wangkui, LI Yan, LIAO Mengmeng, et al. An improved LPI radar waveform recognition framework with LDC-Unet and SSR-Loss[J]. IEEE Signal Processing Letters, 2022, 29: 149–153. doi: 10.1109/LSP.2021.3130797.
|
[5] |
GARMATYUK D S and NARAYANAN R M. ECCM capabilities of an ultrawideband bandlimited random noise imaging radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1243–1255. doi: 10.1109/TAES.2002.1145747.
|
[6] |
GOVONI M A, LI Hongbin, and KOSINSKI J A. Low probability of interception of an advanced noise radar waveform with linear-FM[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1351–1356. doi: 10.1109/TAES.2013.6494419.
|
[7] |
CUI Guolong, JI Hongmin, CAROTENUTO V, et al. An adaptive sequential estimation algorithm for velocity jamming suppression[J]. Signal Processing, 2017, 134: 70–75. doi: 10.1016/j.sigpro.2016.11.012.
|
[8] |
YU K B and MURROW D J. Adaptive digital beamforming for angle estimation in jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 508–523. doi: 10.1109/7.937465.
|
[9] |
DAI Huanyao, WANG Xuesong, LI Yongzhen, et al. Main-lobe jamming suppression method of using spatial polarization characteristics of antennas[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2167–2179. doi: 10.1109/TAES.2012.6237586.
|
[10] |
鲍秋香. 频率随机捷变雷达抗扫频干扰性能仿真[J]. 舰船电子对抗, 2021, 44(5): 78–81. doi: 10.16426/j.cnki.jcdzdk.2021.05.017.
BAO Qiuxiang. Simulation of anti-sweep jamming performance of frequency random agility radar[J]. Shipboard Electronic Countermeasure, 2021, 44(5): 78–81. doi: 10.16426/j.cnki.jcdzdk.2021.05.017.
|
[11] |
全英汇, 方文, 沙明辉, 等. 频率捷变雷达波形对抗技术现状与展望[J]. 系统工程与电子技术, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11.
QUAN Yinghui, FANG Wen, SHA Minghui, et al. Present situation and prospects of frequency agility radar wave form countermeasures[J]. Systems Engineering and Electronics, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11.
|
[12] |
MINSKY M. Steps toward artificial intelligence[J]. Proceedings of the IRE, 1961, 49(1): 8–30. doi: 10.1109/JRPROC.1961.287775.
|
[13] |
ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: A brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26–38. doi: 10.1109/MSP.2017.2743240.
|
[14] |
JIANG Wen, REN Yihui, and WANG Yanping. Improving anti-jamming decision-making strategies for cognitive radar via multi-agent deep reinforcement learning[J]. Digital Signal Processing, 2023, 135: 103952. doi: 10.1016/j.dsp.2023.103952.
|
[15] |
JIANG Wen, WANG Yanping, LI Yang, et al. An intelligent anti-jamming decision-making method based on deep reinforcement learning for cognitive radar[C]. 2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Rio de Janeiro, Brazil, 2023: 1662–1666. doi: 10.1109/CSCWD57460.2023.10152833.
|
[16] |
WEI Jingjing, WEI Yinsheng, YU Lei, et al. Radar anti-jamming decision-making method based on DDPG-MADDPG algorithm[J]. Remote Sensing, 2023, 15(16): 4046. doi: 10.3390/rs15164046.
|
[17] |
AZIZ M M, MAUD A, and HABIB A. Reinforcement learning based techniques for radar anti-jamming[C]. 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 2021: 1021–1025. doi: 10.1109/IBCAST51254.2021.9393209.
|
[18] |
LI Kang, JIU Bo, LIU Hongwei, et al. Reinforcement learning based anti-jamming frequency hopping strategies design for cognitive radar[C]. 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Qingdao, China, 2018: 1–5. doi: 10.1109/ICSPCC.2018.8567751.
|
[19] |
LI Kang, JIU Bo, and LIU Hongwei. Deep Q-network based anti-jamming strategy design for frequency agile radar[C]. 2019 International Radar Conference (RADAR), Toulon, France, 2019: 1–5. doi: 10.1109/RADAR41533.2019.171227.
|
[20] |
LI Kang, JIU Bo, WANG Penghui, et al. Radar active antagonism through deep reinforcement learning: A way to address the challenge of mainlobe jamming[J]. Signal Processing, 2021, 186: 108130. doi: 10.1016/j.sigpro.2021.108130.
|
[21] |
WU Qinhao, WANG Hongqiang, LI Xiang, et al. Reinforcement learning-based anti-jamming in networked UAV radar systems[J]. Applied Sciences, 2019, 9(23): 5173. doi: 10.3390/app9235173.
|
[22] |
AK S and BRÜGGENWIRTH S. Avoiding jammers: A reinforcement learning approach[C]. 2020 IEEE International Radar Conference (RADAR), Washington, USA, 2020: 321–326. doi: 10.1109/RADAR42522.2020.9114797.
|
[23] |
AILIYA, YI Wei, and YUAN Ye. Reinforcement learning-based joint adaptive frequency hopping and pulse-width allocation for radar anti-jamming[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–6. doi: 10.1109/RadarConf2043947.2020.9266402.
|
[24] |
ZHANG Jiaxiang and ZHOU Chao. Interrupted sampling repeater jamming suppression method based on hybrid modulated radar signal[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–4. doi: 10.1109/ICSIDP47821.2019.9173093.
|