Wu Sunyong, Xue Qiutiao, Zhu Shengqi, Yan Qingzhu, Sun Xiyan. Track-Before-Detect Algorithm for Weak Extended Target Based on Particle Filter under Clutter Environment[J]. Journal of Radars, 2017, 6(3): 252-258. doi: 10.12000/JR16128
Citation: Zhou Chaowei, Li Zhenfang, Wang Yuekun, Xie Jinwei. Space-borne SAR Three-dimensional Imaging by Joint Multiple Azimuth Angle Doppler Frequency Rate Estimation[J]. Journal of Radars, 2018, 7(6): 696-704. doi: 10.12000/JR18094

Space-borne SAR Three-dimensional Imaging by Joint Multiple Azimuth Angle Doppler Frequency Rate Estimation

DOI: 10.12000/JR18094
Funds:  The National Natural Science Foundation of China (60890072, 60725103)
  • Received Date: 2018-11-12
  • Rev Recd Date: 2018-12-15
  • Publish Date: 2018-12-28
  • Using azimuth beam steering, space-borne Synthetic Aperture Radar (SAR) can observe from multiple azimuth angle in single pass. During multiple azimuth angle observation, the satellite orbit is equivalent to long three-dimensional (3-D) curvilinear array, which has the potential for 3-D imaging. Sampling by space-borne multiple azimuth angle SAR is sparse in height dimension, which makes unambiguous 3-D imaging by 3-D fast Fourier transform infeasible. Besides, the complex relationship between the targets’ projection in multi-angle SAR images and the height error is difficult to determine. To overcome this limitation, in this paper, we present a 3-D imaging method based on joint multiple azimuth angle Doppler frequency rate estimation. First, a relationship is proposed between the height error and Doppler frequency rate at different azimuth angle. Then, the Doppler frequency modulation rate error is estimated by Map Drift (MD) technique. Next, the height estimation results of different azimuth angle are combined to improve the estimation accuracy. From the estimated height and the target location in the SAR images, 3-D geometric information is retrieved and 3-D imaging is achieved. Our simulation experiments validate that the height estimation can achieve an accuracy of few meters with the proposed method.

     

  • [1]
    杨汝良, 李海英, 李世强, 等. 高分辨率微波成像[M]. 北京: 国防工业出版社, 2013: VII–IX.

    Yang Ru-liang, Li Hai-ying, Li Shi-qiang, et al.. High Resolution Microwave Imaging[M]. Beijing: National Defense Industry Press, 2013: VII–IX.
    [2]
    侯建国, 张勤, 杨成生. InSAR技术及其在地质灾害中的应用[J]. 测绘与空间地理信息, 2007, 30(6): 28–30, 35. DOI: 10.3969/j.issn.1672-5867.2007.06.008

    Hou Jian-guo, Zhang Qin, and Yang Cheng-sheng. Introduction to InSAR and its applications in geohazards[J]. Geomatics&Spatial Information Technology, 2007, 30(6): 28–30, 35. DOI: 10.3969/j.issn.1672-5867.2007.06.008
    [3]
    Krieger G, Hajnsek I, Younis M, et al. Interferometric synthetic aperture radar (SAR) missions employing formation flying[J]. Proceedings of the IEEE, 2010, 98(5): 816–843. DOI: 10.1109/JPROC.2009.2038948
    [4]
    Reigber A and Moreira A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. DOI: 10.1109/36.868873
    [5]
    Poncos V. On the use of TerraSAR-X and Radarsat-2 spotlight data for persistent scatterers and tomographic analysis[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012.
    [6]
    周汉飞, 李禹, 粟毅. 利用多角度SAR数据实现三维成像[J]. 电子与信息学报, 2013, 35(10): 2467–2474. DOI: 10.3724/SP.J.1146.2012.01534

    Zhou Han-fei, Li Yu, and Su Yi. Three-dimensional imaging with multi-aspect SAR data[J]. Journal of Electronics&Information Technology, 2013, 35(10): 2467–2474. DOI: 10.3724/SP.J.1146.2012.01534
    [7]
    周汉飞, 李禹, 粟毅. 基于压缩感知的多角度SAR特征提取[J]. 电子学报, 2013, 41(3): 543–548. DOI: 10.3969/j.issn.0372-2112.2013.03.021

    Zhou Han-fei, Li Yu, and Su Yi. Multi-aspect SAR feature extraction based on compressive sensing[J]. Acta Electronica Sinica, 2013, 41(3): 543–548. DOI: 10.3969/j.issn.0372-2112.2013.03.021
    [8]
    洪文. 圆迹SAR成像技术研究进展[J]. 雷达学报, 2012, 1(2): 124–135. DOI: 10.3724/SP.J.1300.2012.20046

    Hong Wen. Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1(2): 124–135. DOI: 10.3724/SP.J.1300.2012.20046
    [9]
    Ertin E, Austin C D, Sharma S, et al.. GOTCHA experience report: Three-dimensional SAR imaging with complete circular apertures[C]. Proceedings of SPIE 6568, Algorithms for Synthetic Aperture Radar Imagery XIV, Orlando, United States, 2007: 656802. DOI: 10.1117/12.723245.
    [10]
    Knaell K. Three-dimensional SAR from curvilinear apertures[C]. Proceedings of the 1996 IEEE National Radar Conference, Ann Arbor, USA, 1996: 220–225. DOI: 10.1109/NRC.1996.510684.
    [11]
    何峰, 杨阳, 董臻, 等. 曲线合成孔径雷达三维成像研究进展与展望[J]. 雷达学报, 2015, 4(2): 130–135. DOI: 10.12000/JR14119

    He Feng, Yang Yang, Dong Zhen, et al. Progress and prospects of curvilinear SAR 3-D imaging[J]. Journal of Radars, 2015, 4(2): 130–135. DOI: 10.12000/JR14119
    [12]
    Ferrara M, Jackson J A, and Austin C. Enhancement of multi-pass 3D circular SAR images using sparse reconstruction techniques[C]. Proceedings of SPIE 7337, Algorithms for Synthetic Aperture Radar Imagery XVI, Orlando, Florida, United States, 2009: 733702. DOI: 10.1117/12.820256.
    [13]
    Zhang J Q, Suo Z Y, Li Z F, et al. DEM Generation using circular SAR data based on low-rank and sparse matrix decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 724–728. DOI: 10.1109/LGRS.2018.2809905
    [14]
    Chen L P, An D X, Huang X T, et al. A 3D reconstruction strategy of vehicle outline based on single-pass single-polarization CSAR data[J]. IEEE Transactions on Image Processing, 2017, 26(11): 5545–5554. DOI: 10.1109/TIP.2017.2738566
    [15]
    Dungan K E and Potter L C. 3-D imaging of vehicles using wide aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 187–200. DOI: 10.1109/TAES.2011.5705669
    [16]
    Duque S, Breit H, Balss U, et al. Absolute height estimation using a single TerraSAR-X staring spotlight acquisition[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1735–1739. DOI: 10.1109/LGRS.2015.2422893
    [17]
    Curlander J C. Location of spaceborne SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982, GE-20(3): 359–364. DOI: 10.1109/TGRS.1982.350455
    [18]
    Ferretti A, Monti-Guarnieri A, Prati C, et al.. InSAR Principles - Guidelines for SAR Interferometry Processing and Interpretation[M]. The Netherlands: ESA Publications, 2007.
    [19]
    Cumming I G, Wong F H, 洪文, 胡东辉. 合成孔径雷达成像: 算法与实现[M]. 北京: 电子工业出版社, 2012: 385–389.

    Cumming I G, Wong F H, Hong Wen, Hu Dong-hui. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Beijing: Publishing House of Electronics Industry, 2012: 385–389.
    [20]
    Menon K R, Balakrishnan N, Janakiraman M, et al. Characterization of fluctuation statistics of radar clutter for Indian terrain[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 317–324. DOI: 10.1109/36.377931
  • Relative Articles

    [1]XIA Deping, ZHANG Liang, WU Tao, MENG Xiangdong. A Multiple Interference Suppression Algorithm Based on Airborne Bistatic Polarization Radar[J]. Journal of Radars, 2022, 11(3): 399-407. doi: 10.12000/JR21212
    [2]YASIR Saifullah, YANG Guomin, XU Feng. A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering[J]. Journal of Radars, 2021, 10(3): 382-390. doi: 10.12000/JR21061
    [3]WANG Jingjing, LIU Zheng, XIE Rong, RAN Lei. HRRP Target Recognition Method for Full Polarimetric Radars by Combining Cameron Decomposition and Fusing RKELM[J]. Journal of Radars, 2021, 10(6): 944-955. doi: 10.12000/JR21099
    [4]SUN Dou, LU Dongwei, XING Shiqi, YANG Xiao, LI Yongzhen, WANG Xuesong. Full-polarization SAR Joint Multidimensional Reconstruction Based on Sparse Reconstruction[J]. Journal of Radars, 2020, 9(5): 865-877. doi: 10.12000/JR20092
    [5]FANG Linlin, ZHOU Chao, WANG Rui, HU Cheng. RCS Feature-aided Insect Target Tracking Algorithm[J]. Journal of Radars, 2019, 8(5): 598-605. doi: 10.12000/JR19067
    [6]Wang Yuzhuo, Zhu Shengqi, Xu Jingwei. A Range-ambiguous Clutter Suppression Method for MIMO Bistatic Airborne Radar[J]. Journal of Radars, 2018, 7(2): 202-211. doi: 10.12000/JR18016
    [7]Wu Yang, Bai Yang, Yin Hongcheng, Zhang Liangcong. Terahertz Radar Cross Section Measurements Based on Millimeter-wave Converter[J]. Journal of Radars, 2018, 7(1): 147-152. doi: 10.12000/JR17099
    [8]Sun Xiang, Song Hongjun, Wang Robert, Li Ning. POA Correction Method Using High-resolution Full-polarization SAR Image[J]. Journal of Radars, 2018, 7(4): 465-474. doi: 10.12000/JR18026
    [9]Chen Gang, Dang Hongxing, Tan Xiaomin, Chen Hui, Cui Tiejun. Scattering Properties of Electromagnetic Waves from Randomly Oriented Rough Metal Plate in the Lower Terahertz Region[J]. Journal of Radars, 2018, 7(1): 75-82. doi: 10.12000/JR17093
    [10]Qian Lichang, Xu Jia, Hu Guoxu. Long-time Integration of a Multi-waveform for Weak Target Detection in Non-cooperative Passive Bistatic Radar[J]. Journal of Radars, 2017, 6(3): 259-266. doi: 10.12000/JR16137
    [11]Wei Min, Li Xiaobo, Wang Li. A Method for Reducing the Impact of Range Ambiguity[J]. Journal of Radars, 2017, 6(1): 106-113. doi: 10.12000/JR16082
    [12]Zhu Xiaojing, Li Fei, Wang Robert, Wang Wei, Sun Xiang. Range Ambiguity Suppression Approach for Quad-pol SAR Systems Based on Modified Azimuth Phase Coding[J]. Journal of Radars, 2017, 6(4): 420-431. doi: 10.12000/JR17015
    [13]Lu Dongwei, Que Xiaofeng, Qi Xin, Nie Zaiping. Simulation and Analysis of the Fully Polarimetric Scattering Characteristics of Aircraft in UHF Band[J]. Journal of Radars, 2016, 5(2): 182-189. doi: 10.12000/JR16030
    [14]Lin Chunfeng, Huang Chunlin, Su Yi. Target Integration and Detection with the Radon-Fourier Transform for Bistatic Radar[J]. Journal of Radars, 2016, 5(5): 526-530. doi: 10.12000/JR16049
    [15]Zhang Ran, Feng Dejun, Xu Letao. Design and Polarization Characteristics Analysis of Dihedral Based on Salisbury Screen[J]. Journal of Radars, 2016, 5(6): 658-665. doi: 10.12000/JR16055
    [16]Hu Cheng, Liu Changjiang, Zeng Tao. Bistatic Forward Scattering Radar Detection and Imaging[J]. Journal of Radars, 2016, 5(3): 229-243. doi: 10.12000/JR16058
    [17]Wang Jia-ning, Xu Xiao-jian. Simulation and Analysis for Wide-band Scattering Characteristics of 2-D Linear and Nonlinear Sea Surfaces[J]. Journal of Radars, 2015, 4(3): 343-350. doi: 10.12000/JR15053
    [18]Cheng Feng, Zeng Qing-ping, Gong Zi-ping. First-order Sea Clutter Modeling and Simulation of High Frequency Passive Radar[J]. Journal of Radars, 2014, 3(6): 720-726. doi: 10.12000/JR14131
    [19]Li Jun, Dang Bo, Liu Chang-zan, Liao Gui-sheng. Bistatic MIMO Radar Clutter Suppression by Exploiting the Transmit Angle[J]. Journal of Radars, 2014, 3(2): 208-216. doi: 10.3724/SP.J.1300.2014.13148
    [20]Zeng Tao. Bistatic SAR: State of the Art and Development Trend[J]. Journal of Radars, 2012, 1(4): 329-341. doi: 10.3724/SP.J.1300.2012.20093
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.6 %FULLTEXT: 23.6 %META: 62.4 %META: 62.4 %PDF: 14.0 %PDF: 14.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.7 %其他: 16.7 %其他: 0.1 %其他: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.9 %China: 0.9 %India: 0.1 %India: 0.1 %Matawan: 0.2 %Matawan: 0.2 %Mersin: 0.5 %Mersin: 0.5 %Rochester: 0.1 %Rochester: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.5 %[]: 0.5 %上海: 0.9 %上海: 0.9 %东莞: 0.1 %东莞: 0.1 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %佛山: 0.1 %佛山: 0.1 %兰州: 0.1 %兰州: 0.1 %包头: 0.1 %包头: 0.1 %北京: 13.7 %北京: 13.7 %南京: 0.8 %南京: 0.8 %南充: 0.1 %南充: 0.1 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %南阳: 0.1 %南阳: 0.1 %厦门: 0.1 %厦门: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.2 %合肥: 0.2 %大连: 0.8 %大连: 0.8 %天津: 0.4 %天津: 0.4 %宜昌: 0.1 %宜昌: 0.1 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.2 %宣城: 0.2 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 0.4 %广州: 0.4 %弗吉尼亚州: 0.1 %弗吉尼亚州: 0.1 %张家口: 1.9 %张家口: 1.9 %张家口市: 0.1 %张家口市: 0.1 %张家界: 0.1 %张家界: 0.1 %德州: 0.1 %德州: 0.1 %成都: 1.2 %成都: 1.2 %扬州: 0.1 %扬州: 0.1 %承德: 0.1 %承德: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.3 %无锡: 0.3 %旧金山: 0.1 %旧金山: 0.1 %昆明: 0.2 %昆明: 0.2 %晋城市高平: 0.1 %晋城市高平: 0.1 %朔州: 0.1 %朔州: 0.1 %杭州: 1.4 %杭州: 1.4 %株洲: 0.1 %株洲: 0.1 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %河内: 0.3 %河内: 0.3 %济南: 0.1 %济南: 0.1 %深圳: 0.4 %深圳: 0.4 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %滁州: 0.1 %滁州: 0.1 %漯河: 0.2 %漯河: 0.2 %烟台: 0.1 %烟台: 0.1 %焦作: 0.1 %焦作: 0.1 %珠海: 0.1 %珠海: 0.1 %益阳: 0.2 %益阳: 0.2 %石家庄: 0.8 %石家庄: 0.8 %石家庄市: 0.1 %石家庄市: 0.1 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 14.3 %芒廷维尤: 14.3 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.2 %苏州: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 35.7 %西宁: 35.7 %西安: 0.8 %西安: 0.8 %运城: 0.1 %运城: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.1 %重庆: 0.1 %金华: 0.1 %金华: 0.1 %铜仁: 0.1 %铜仁: 0.1 %长沙: 0.1 %长沙: 0.1 %阳江: 0.1 %阳江: 0.1 %青岛: 0.1 %青岛: 0.1 %龙岩: 0.1 %龙岩: 0.1 %其他其他Central DistrictChinaIndiaMatawanMersinRochesterUnited States[]上海东莞中卫中山临汾佛山兰州包头北京南京南充南宁南昌南通南阳厦门台北台州合肥大连天津宜昌宝鸡宣城常州常德广州弗吉尼亚州张家口张家口市张家界德州成都扬州承德新乡无锡旧金山昆明晋城市高平朔州杭州株洲武汉沈阳沧州河内济南深圳湖州湘潭滁州漯河烟台焦作珠海益阳石家庄石家庄市秦皇岛纽约绵阳芒廷维尤芝加哥苏州衢州西宁西安运城邯郸郑州重庆金华铜仁长沙阳江青岛龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2858) PDF downloads(216) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint