Volume 7 Issue 6
Feb.  2019
Turn off MathJax
Article Contents
Zhou Chaowei, Li Zhenfang, Wang Yuekun, Xie Jinwei. Space-borne SAR Three-dimensional Imaging by Joint Multiple Azimuth Angle Doppler Frequency Rate Estimation[J]. Journal of Radars, 2018, 7(6): 696-704. doi: 10.12000/JR18094
Citation: Zhou Chaowei, Li Zhenfang, Wang Yuekun, Xie Jinwei. Space-borne SAR Three-dimensional Imaging by Joint Multiple Azimuth Angle Doppler Frequency Rate Estimation[J]. Journal of Radars, 2018, 7(6): 696-704. doi: 10.12000/JR18094

Space-borne SAR Three-dimensional Imaging by Joint Multiple Azimuth Angle Doppler Frequency Rate Estimation

doi: 10.12000/JR18094
Funds:  The National Natural Science Foundation of China (60890072, 60725103)
  • Received Date: 2018-11-12
  • Rev Recd Date: 2018-12-15
  • Publish Date: 2018-12-28
  • Using azimuth beam steering, space-borne Synthetic Aperture Radar (SAR) can observe from multiple azimuth angle in single pass. During multiple azimuth angle observation, the satellite orbit is equivalent to long three-dimensional (3-D) curvilinear array, which has the potential for 3-D imaging. Sampling by space-borne multiple azimuth angle SAR is sparse in height dimension, which makes unambiguous 3-D imaging by 3-D fast Fourier transform infeasible. Besides, the complex relationship between the targets’ projection in multi-angle SAR images and the height error is difficult to determine. To overcome this limitation, in this paper, we present a 3-D imaging method based on joint multiple azimuth angle Doppler frequency rate estimation. First, a relationship is proposed between the height error and Doppler frequency rate at different azimuth angle. Then, the Doppler frequency modulation rate error is estimated by Map Drift (MD) technique. Next, the height estimation results of different azimuth angle are combined to improve the estimation accuracy. From the estimated height and the target location in the SAR images, 3-D geometric information is retrieved and 3-D imaging is achieved. Our simulation experiments validate that the height estimation can achieve an accuracy of few meters with the proposed method.

     

  • loading
  • [1]
    杨汝良, 李海英, 李世强, 等. 高分辨率微波成像[M]. 北京: 国防工业出版社, 2013: VII–IX.

    Yang Ru-liang, Li Hai-ying, Li Shi-qiang, et al.. High Resolution Microwave Imaging[M]. Beijing: National Defense Industry Press, 2013: VII–IX.
    [2]
    侯建国, 张勤, 杨成生. InSAR技术及其在地质灾害中的应用[J]. 测绘与空间地理信息, 2007, 30(6): 28–30, 35. DOI: 10.3969/j.issn.1672-5867.2007.06.008

    Hou Jian-guo, Zhang Qin, and Yang Cheng-sheng. Introduction to InSAR and its applications in geohazards[J]. Geomatics&Spatial Information Technology, 2007, 30(6): 28–30, 35. DOI: 10.3969/j.issn.1672-5867.2007.06.008
    [3]
    Krieger G, Hajnsek I, Younis M, et al. Interferometric synthetic aperture radar (SAR) missions employing formation flying[J]. Proceedings of the IEEE, 2010, 98(5): 816–843. DOI: 10.1109/JPROC.2009.2038948
    [4]
    Reigber A and Moreira A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. DOI: 10.1109/36.868873
    [5]
    Poncos V. On the use of TerraSAR-X and Radarsat-2 spotlight data for persistent scatterers and tomographic analysis[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012.
    [6]
    周汉飞, 李禹, 粟毅. 利用多角度SAR数据实现三维成像[J]. 电子与信息学报, 2013, 35(10): 2467–2474. DOI: 10.3724/SP.J.1146.2012.01534

    Zhou Han-fei, Li Yu, and Su Yi. Three-dimensional imaging with multi-aspect SAR data[J]. Journal of Electronics&Information Technology, 2013, 35(10): 2467–2474. DOI: 10.3724/SP.J.1146.2012.01534
    [7]
    周汉飞, 李禹, 粟毅. 基于压缩感知的多角度SAR特征提取[J]. 电子学报, 2013, 41(3): 543–548. DOI: 10.3969/j.issn.0372-2112.2013.03.021

    Zhou Han-fei, Li Yu, and Su Yi. Multi-aspect SAR feature extraction based on compressive sensing[J]. Acta Electronica Sinica, 2013, 41(3): 543–548. DOI: 10.3969/j.issn.0372-2112.2013.03.021
    [8]
    洪文. 圆迹SAR成像技术研究进展[J]. 雷达学报, 2012, 1(2): 124–135. DOI: 10.3724/SP.J.1300.2012.20046

    Hong Wen. Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1(2): 124–135. DOI: 10.3724/SP.J.1300.2012.20046
    [9]
    Ertin E, Austin C D, Sharma S, et al.. GOTCHA experience report: Three-dimensional SAR imaging with complete circular apertures[C]. Proceedings of SPIE 6568, Algorithms for Synthetic Aperture Radar Imagery XIV, Orlando, United States, 2007: 656802. DOI: 10.1117/12.723245.
    [10]
    Knaell K. Three-dimensional SAR from curvilinear apertures[C]. Proceedings of the 1996 IEEE National Radar Conference, Ann Arbor, USA, 1996: 220–225. DOI: 10.1109/NRC.1996.510684.
    [11]
    何峰, 杨阳, 董臻, 等. 曲线合成孔径雷达三维成像研究进展与展望[J]. 雷达学报, 2015, 4(2): 130–135. DOI: 10.12000/JR14119

    He Feng, Yang Yang, Dong Zhen, et al. Progress and prospects of curvilinear SAR 3-D imaging[J]. Journal of Radars, 2015, 4(2): 130–135. DOI: 10.12000/JR14119
    [12]
    Ferrara M, Jackson J A, and Austin C. Enhancement of multi-pass 3D circular SAR images using sparse reconstruction techniques[C]. Proceedings of SPIE 7337, Algorithms for Synthetic Aperture Radar Imagery XVI, Orlando, Florida, United States, 2009: 733702. DOI: 10.1117/12.820256.
    [13]
    Zhang J Q, Suo Z Y, Li Z F, et al. DEM Generation using circular SAR data based on low-rank and sparse matrix decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 724–728. DOI: 10.1109/LGRS.2018.2809905
    [14]
    Chen L P, An D X, Huang X T, et al. A 3D reconstruction strategy of vehicle outline based on single-pass single-polarization CSAR data[J]. IEEE Transactions on Image Processing, 2017, 26(11): 5545–5554. DOI: 10.1109/TIP.2017.2738566
    [15]
    Dungan K E and Potter L C. 3-D imaging of vehicles using wide aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 187–200. DOI: 10.1109/TAES.2011.5705669
    [16]
    Duque S, Breit H, Balss U, et al. Absolute height estimation using a single TerraSAR-X staring spotlight acquisition[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1735–1739. DOI: 10.1109/LGRS.2015.2422893
    [17]
    Curlander J C. Location of spaceborne SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982, GE-20(3): 359–364. DOI: 10.1109/TGRS.1982.350455
    [18]
    Ferretti A, Monti-Guarnieri A, Prati C, et al.. InSAR Principles - Guidelines for SAR Interferometry Processing and Interpretation[M]. The Netherlands: ESA Publications, 2007.
    [19]
    Cumming I G, Wong F H, 洪文, 胡东辉. 合成孔径雷达成像: 算法与实现[M]. 北京: 电子工业出版社, 2012: 385–389.

    Cumming I G, Wong F H, Hong Wen, Hu Dong-hui. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Beijing: Publishing House of Electronics Industry, 2012: 385–389.
    [20]
    Menon K R, Balakrishnan N, Janakiraman M, et al. Characterization of fluctuation statistics of radar clutter for Indian terrain[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 317–324. DOI: 10.1109/36.377931
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2602) PDF downloads(206) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint