Volume 11 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
LI Zhiyuan, GUO Jiayi, ZHANG Yueting, et al. A novel autofocus algorithm of ship target in SAR image based on the adaptive momentum estimation optimizer and space-variant minimum entropy criteria[J]. Journal of Radars, 2022, 11(1): 83–94. doi: 10.12000/JR21159
Citation: LI Zhiyuan, GUO Jiayi, ZHANG Yueting, et al. A novel autofocus algorithm of ship target in SAR image based on the adaptive momentum estimation optimizer and space-variant minimum entropy criteria[J]. Journal of Radars, 2022, 11(1): 83–94. doi: 10.12000/JR21159

A Novel Autofocus Algorithm for Ship Targets in SAR Images Based on the Adaptive Momentum Estimation Optimizer and Space-variant Minimum Entropy Criteria

doi: 10.12000/JR21159
Funds:  The National Natural Science Foundation of China (61991421)
More Information
  • Corresponding author: GUO Jiayi, jyguo@mail.ie.ac.cn
  • Received Date: 2021-10-28
  • Accepted Date: 2022-01-05
  • Rev Recd Date: 2022-01-05
  • Available Online: 2022-01-11
  • Publish Date: 2022-01-21
  • In SAR defocused ship images, the defocusing phenomenon of some ship targets is space-variant along the distance. In this context, a novel autofocus algorithm combining the adaptive momentum estimation optimizer and space-variant minimum entropy criteria is proposed to address these defocused ship targets. The algorithm can directly process complex images and compensate for any order phase errors. The effectiveness of the proposed method is proved by the experimental results on the simulation data and GF-3 data. Moreover, the entropy and contrast of the refocused image have been improved, and the focusing speed of the algorithm has been greatly enhanced.

     

  • loading
  • [1]
    NAKAMURA K, WAKABAYASHI H, NAOKI K, et al. Observation of sea-ice thickness in the sea of Okhotsk by using dual-frequency and fully polarimetric airborne SAR (pi-SAR) data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(11): 2460–2469. doi: 10.1109/TGRS.2005.853928
    [2]
    KRIEGER G, GEBERT N, and MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. doi: 10.1109/LGRS.2004.832700
    [3]
    REIGBER A, SCHEIBER R, JAGER M, et al. Very-high-resolution airborne synthetic aperture radar imaging: Signal processing and applications[J]. Proceedings of the IEEE, 2013, 101(3): 759–783. doi: 10.1109/JPROC.2012.2220511
    [4]
    MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301
    [5]
    JING Wenbo, JIN Tian, and XIANG Deliang. Content-sensitive superpixel generation for SAR images with edge penalty and contraction-expansion search strategy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210715. doi: 10.1109/TGRS.2021.3077407
    [6]
    NOVIELLO C, FORNARO G, and MARTORELLA M. Focused SAR image formation of moving targets based on Doppler parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3460–3470. doi: 10.1109/TGRS.2014.2377293
    [7]
    SUN Huadong, ZHO Lei, MA Jinzhao, et al. The hybrid SAR-ISAR imaging algorithm applied to SAR moving target imaging[C]. The IEEE 9th International Conference on Fuzzy Systems and Knowledge Discovery, Chongqing, China, 2012: 1985–1988, doi: 10.1109/FSKD.2012.6234082.
    [8]
    邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008

    DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008
    [9]
    CALLOWAY T M and DONOHOE G W. Subaperture autofocus for synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2): 617–621. doi: 10.1109/7.272285
    [10]
    MANCILL C E and SWIGER J M. A map drift autofocus technique for correcting higher order SAR phase errors[C]. The 27th Annual Tri-Service Radar Symposium Record, Monterey, USA, 1981: 391–400.
    [11]
    侯育星, 邢孟道, 陈士超, 等. 稳健多子孔径图像偏移的SAR自聚焦算法[J]. 系统工程与电子技术, 2014, 36(9): 1731–1739. doi: 10.3969/j.issn.1001-506X.2014.09.10

    HOU Yuxing, XING Mengdao, CHEN Shichao, et al. Robust autofocus algorithm of multiple subaperture mapdrift in SAR[J]. Systems Engineering and Electronics, 2014, 36(9): 1731–1739. doi: 10.3969/j.issn.1001-506X.2014.09.10
    [12]
    WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752
    [13]
    BERIZZI F, CORSINI G, DIANI M, et al. Autofocus of wide azimuth angle SAR images by contrast optimisation[C]. 1996 International Geoscience and Remote Sensing Symposium, Lincoln, USA, 1996. doi: 10.1109/IGARSS.1996.516624.
    [14]
    ZENG Tao, WANG Rui, and LI Feng. SAR image autofocus utilizing minimum-entropy criterion[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1552–1556. doi: 10.1109/LGRS.2013.2261975
    [15]
    武昕伟, 朱兆达. 一种基于最小熵准则的SAR图像自聚焦算法[J]. 系统工程与电子技术, 2003, 25(7): 867–869. doi: 10.3321/j.issn:1001-506X.2003.07.027

    WU Xinwei and ZHU Zhaoda. A novel autofocus algorithm based on minimum entropy criteria for SAR images[J]. Systems Engineering and Electronics, 2003, 25(7): 867–869. doi: 10.3321/j.issn:1001-506X.2003.07.027
    [16]
    CARRARA W G, GOODMAN R S, and MAJEWSKI R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995: 203–206
    [17]
    KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [18]
    XI Li, LIU Guosui, and NI Jinlin. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240–1252. doi: 10.1109/7.805442
    [19]
    KASILINGAM D, WANG Junfeng, LEE J S, et al. Focusing of synthetic aperture radar images of moving targets using minimum entropy adaptive filters[C]. IEEE 2000 International Geoscience and Remote Sensing Symposium on Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Honolulu, USA, 2000: 74–76. doi: 10.1109/IGARSS.2000.860426.
    [20]
    WU Haishan and BARBA J. Minimum entropy restoration of star field images[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 1998, 28(2): 227–231. doi: 10.1109/3477.662762
    [21]
    马琳, 潘宗序, 黄钟泠, 等. 基于子孔径与全孔径特征学习的SAR多通道虚假目标鉴别[J]. 雷达学报, 2021, 10(1): 159–172. doi: 10.12000/JR20106

    MA Lin, PAN Zongxu, HUANG Zhongling, et al. Multichannel false-target discrimination in SAR images based on sub-aperture and full-aperture feature learning[J]. Journal of Radars, 2021, 10(1): 159–172. doi: 10.12000/JR20106
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1128) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint