YAO Zhixin and XIAO Shaoqiu. Wide-angle, ultra-wideband, and polarization-insensitive circuit analog absorbers[J]. Journal of Radars, 2021, 10(2): 274–280. doi: 10.12000/JR21017
Citation: LIU Yuzhou, CAI Tianyi, LI Yachao, et al. A range and azimuth combined two-dimensional NCS algorithm for spaceborne-missile bistatic forward-looking SAR[J]. Journal of Radars, 2023, 12(6): 1202–1214. doi: 10.12000/JR23144

A Range and Azimuth Combined Two-dimensional NCS Algorithm for Spaceborne-missile Bistatic Forward-looking SAR

DOI: 10.12000/JR23144
Funds:  The National Key R&D Program of China (2018YFB2202500), The National Natural Science Foundation of China (62171337, 62101396), The Key R&D program of Shaanxi Province (2017KW-ZD-12), The Shaanxi Province Funds for Distinguished Young Youths (S2020-JC-JQ-0056), The Fundamental Research Funds for the Central Universities (XJS212205), The Innovation Fund of Xidian University (YJSJ23016)
More Information
  • Corresponding author: LI Yachao, ycli@mail.xidian.edu.cn
  • Received Date: 2023-08-29
  • Rev Recd Date: 2023-11-11
  • Available Online: 2023-11-16
  • Publish Date: 2023-12-11
  • The spaceborne-missile bistatic forward-looking Synthetic Aperture Radar (SAR) is a promising imaging guidance technology that can obtain high-resolution images of the area in front of the missile all day and in all weather types. However, the coupling and spatial variations in range and azimuth parameters hinder the development of high-resolution spaceborne-missile bistatic forward-looking SAR imaging. In this study, the accurate-range Doppler domain analytical formula for echo signals was derived based on the low-orbit spaceborne illuminator and high-speed forward-looking missile-borne receiving platform configuration. Subsequently, in range processing, a range Nonlinear Chirp Scaling (NCS) was proposed to equalize the range cell migration and range Frequency Modulation (FM) rate, and both can be uniformly compensated in the two-dimensional frequency domain. In azimuth processing, the proposed method decomposed the azimuth FM rates of the transmitter and receiver. Then, the azimuth NCS was used to eliminate the high-order spatial variation of the azimuth FM rate. Finally, a two-dimensional matched filtering was performed to obtain a SAR image with a good global focus. The point and scene simulation verify the effectiveness of the proposed algorithm.

     

  • [1]
    CHEN Hongmeng, LI Yachao, GAO Wenquan, et al. Bayesian forward-looking superresolution imaging using Doppler deconvolution in expanded beam space for high-speed platform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5105113. doi: 10.1109/TGRS.2021.3107717
    [2]
    李亚超, 王家东, 张廷豪, 等. 弹载雷达成像技术发展现状与趋势[J]. 雷达学报, 2022, 11(6): 943–973. doi: 10.12000/JR22119

    LI Yachao, WANG Jiadong, ZHANG Tinghao, et al. Present situation and prospect of missile-borne radar imaging technology[J]. Journal of Radars, 2022, 11(6): 943–973. doi: 10.12000/JR22119
    [3]
    林春辉. 单基/双基SAR成像若干关键问题研究[D]. [博士论文], 西安电子科技大学, 2019.

    LIN Chunhui. Study on some imaging issues of monostatic and bistatic SAR[D]. [Ph.D. dissertation], Xidian University, 2019.
    [4]
    NEO Y L, WONG F H, and CUMMING I G. Processing of azimuth-invariant bistatic SAR data using the range Doppler algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 14–21. doi: 10.1109/TGRS.2007.909090
    [5]
    刘婵. 双基地前视SAR频域成像算法研究[D]. [硕士论文], 电子科技大学, 2015.

    LIU Chan. Study on frequency-domain imaging algorithms for bistatic forward-looking SAR[D]. [Master dissertation], University of Electronic Science and Technology of China, 2015.
    [6]
    CHEN Si, YUAN Yue, ZHANG Shuning, et al. A new imaging algorithm for forward-looking missile-borne bistatic SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1543–1552. doi: 10.1109/JSTARS.2015.2507260
    [7]
    ZHANG Qianghui, WU Junjie, SONG Yue, et al. Bistatic-range-Doppler-aperture wavenumber algorithm for forward-looking spotlight SAR with stationary transmitter and maneuvering receiver[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2080–2094. doi: 10.1109/TGRS.2020.3004726
    [8]
    PU Wei, LI Wenchao, LV Youxin, et al. An extended omega-K algorithm with integrated motion compensation for bistatic forward-looking SAR[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 1291–1295.
    [9]
    FENG Dong, AN Daoxiang, and HUANG Xiaotao. An extended fast factorized back projection algorithm for missile-borne bistatic forward-looking SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2724–2734. doi: 10.1109/TAES.2018.2828238
    [10]
    LI Yachao, XU Gaotian, ZHOU Song, et al. A novel CFFBP algorithm with noninterpolation image merging for bistatic forward-looking SAR focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–16. doi: 10.1109/TGRS.2022.3162230
    [11]
    DESAI M D and JENKINS W K. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar[J]. IEEE Transactions on Image Processing, 1992, 1(4): 505–517. doi: 10.1109/83.199920
    [12]
    XU Gaotian, ZHOU Song, YANG Lei, et al. Efficient fast time-domain processing framework for airborne bistatic SAR continuous imaging integrated with data-driven motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5208915. doi: 10.1109/TGRS.2021.3099204
    [13]
    AN Hongyang, WU Junjie, HE Zhiwei, et al. Geosynchronous spaceborne-airborne multichannel bistatic SAR imaging using weighted fast factorized backprojection method[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(10): 1590–1594. doi: 10.1109/LGRS.2019.2902036
    [14]
    蒲巍. 机载双基地前视SAR运动补偿方法研究[D]. [博士论文], 电子科技大学, 2018.

    PU Wei. Research on airborne bistatic forward-looking SAR motion compensation[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2018.
    [15]
    QIU Xiaolan, HU Donghui, and DING Chibiao. Some reflections on bistatic SAR of forward-looking configuration[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 735–739. doi: 10.1109/LGRS.2008.2004506
    [16]
    WU Junjie, YANG Jianyu, HUANG Yulin, et al. A frequency-domain imaging algorithm for translational invariant bistatic forward-looking SAR[J]. IEICE Transactions on Communications, 2013, E96.B(2): 605–612. doi: 10.1587/transcom.E96.B.605
    [17]
    WU Junjie, YANG Jianyu, HUANG Yulin, et al. Focusing bistatic forward-looking SAR using Chirp Scaling algorithm[C]. 2011 IEEE RadarCon, Kansas City, USA, 2011: 1036–1039. doi: 10.1109/RADAR.2011.5960693.
    [18]
    QI C D, SHI X M, BIAN M M, et al. Focusing forward-looking bistatic SAR data with chirp scaling[J]. Electronics Letters, 2014, 50(3): 206–207. doi: 10.1049/el.2013.3978
    [19]
    WU Junjie, PU Wei, HUANG Yulin, et al. Bistatic forward-looking SAR focusing using ω-k based on spectrum modeling and optimization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4500–4512.
    [20]
    ZHANG Xiaohu, GU Hong, and SU Weimin. Focusing bistatic forward-looking SAR images use omega-k algorithm based on modified hyperbolic approximating[C]. 2019 International Conference on Control, Automation and Information Sciences, Chengdu, China, 2019: 1–5. doi: 10.1109/ICCAIS46528.2019.9074596.
    [21]
    张强辉. 高速机动平台双基前视SAR成像方法研究[D]. [博士论文], 电子科技大学, 2019.

    ZHANG Qianghui. Imaging method research for bistatic forward-looking SAR mounted on high-speed maneuvering platform[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2019.
    [22]
    LI Yachao, ZHANG Tinghao, MEI Haiwen, et al. Focusing translational-variant bistatic forward-looking SAR data using the modified omega-K algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5203916. doi: 10.1109/TGRS.2021.3063780
    [23]
    ZENG Tao, WANG Rui, LI Feng, et al. A modified nonlinear chirp scaling algorithm for spaceborne/stationary bistatic SAR based on series reversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3108–3118. doi: 10.1109/TGRS.2012.2219057
    [24]
    SONG Xuan, LI Yachao, ZHANG Tinghao, et al. Focusing high-maneuverability bistatic forward-looking SAR using extended azimuth nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5240814. doi: 10.1109/TGRS.2022.3228803
    [25]
    陈溅来, 熊毅, 徐刚, 等. 基于子图像变标的非线性轨迹SAR成像及其自聚焦方法[J]. 雷达学报, 2022, 11(6): 1098–1109. doi: 10.12000/JR22171

    CHEN Jianlai, XIONG Yi, XU Gang, et al. Nonlinear trajectory synthetic aperture radar imaging and autofocus algorithm based on sub-image nonlinear chirp scaling[J].Journal of Radars, 2022, 11(6): 1098–1109. doi: 10.12000/JR22171
    [26]
    WONG F H, CUMMING I G, and LAM NEO Y. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2493–2505. doi: 10.1109/TGRS.2008.917599
    [27]
    QIU Xiaolan, HU Donghui, and DING Chibiao. An improved NLCS algorithm with capability analysis for one-stationary BiSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3179–3186. doi: 10.1109/TGRS.2008.921569
    [28]
    WU Junjie, SUN Zhichao, LI Zhongyu, et al. Focusing translational variant bistatic forward-looking SAR using keystone transform and extended nonlinear chirp scaling[J]. Remote Sensing, 2016, 8(10): 840. doi: 10.3390/rs8100840
    [29]
    MEI Haiwen, LI Yachao, XING Mengdao, et al. A frequency-domain imaging algorithm for translational variant bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1502–1515. doi: 10.1109/TGRS.2019.2943743
    [30]
    LIANG Mu, SU Weimin, and GU Hong. Focusing high-resolution high forward-looking bistatic SAR with nonequal platform velocities based on keystone transform and modified nonlinear chirp scaling algorithm[J]. IEEE Sensors Journal, 2019, 19(3): 901–908. doi: 10.1109/JSEN.2018.2877387
    [31]
    DING Jiabiao, LI Yachao, LI Ming, et al. Focusing high maneuvering bistatic forward-looking SAR with stationary transmitter using extended keystone transform and modified frequency nonlinear chirp scaling[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 2476–2492. doi: 10.1109/JSTARS.2022.3153824
    [32]
    CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and ImpleMentation[M]. Boston, MA, USA: Artech House, 2005: 225–362.

    CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and ImpleMentation[M]. Boston, MA, USA: Artech House, 2005: 225–362.
    [33]
    李燕平, 张振华, 邢孟道, 等. 基于级数反演和数值计算的广义双基SAR距离徙动成像算法[J]. 电子与信息学报, 2008, 30(12): 2800–2804. doi: 10.3724/SP.J.1146.2007.00810

    LI Yanping, ZHANG Zhenhua, XING Mengdao, et al. A novel range migration algorithm for general bistatic SAR imaging based on series reversion and numerical computation[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2800–2804. doi: 10.3724/SP.J.1146.2007.00810
    [34]
    王谋, 韦顺军, 沈蓉, 等. 基于自学习稀疏先验的三维SAR成像方法[J]. 雷达学报, 2023, 12(1): 36–52. doi: 10.12000/JR22101

    WANG Mou, WEI Shunjun, SHEN Rong, et al. 3D SAR imaging method based on learned sparse prior[J]. Journal of Radars, 2023, 12(1): 36–52. doi: 10.12000/JR22101
    [35]
    CARDILLO G P. On the use of the gradient to determine bistatic SAR resolution[C]. International Symposium on Antennas and Propagation Society, Merging Technologies for the 90’s, Dallas, USA, 1990: 1032–1035.
  • Relative Articles

    [1]LI Yi, DU Lan, DU Yuang. Convolutional Neural Network Based on Feature Decomposition for Target Detection in SAR Images[J]. Journal of Radars, 2023, 12(5): 1069-1080. doi: 10.12000/JR23004
    [2]QI Cheng, XIE Junwei, ZHANG Haowei, DING Zihang, YANG Xiao. Element Configuration Optimization of Hybrid Distributed PA-MIMO Radar System Based on Target Detection[J]. Journal of Radars, 2023, 12(3): 576-589. doi: 10.12000/JR22159
    [3]DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037
    [4]DU Lan, WANG Zilin, GUO Yuchen, DU Yuang, YAN Junkun. Adaptive Region Proposal Selection for SAR Target Detection Using Reinforcement Learning[J]. Journal of Radars, 2022, 11(5): 884-896. doi: 10.12000/JR22121
    [5]HUANG Yinli, SUN Lu, GUO Liang, SUN Guangcai, XING Mengdao, YANG Jun, HU Yihua. Ship Detection Algorithm Based on Spatially Variant Apodization Sidelobe Suppression and Order Statistic-Constant False Alarm Rate[J]. Journal of Radars, 2020, 9(2): 335-342. doi: 10.12000/JR19082
    [6]DU Lan, WANG Zhaocheng, WANG Yan, WEI Di, LI Lu. Survey of Research Progress on Target Detection and Discrimination of Single-channel SAR Images for Complex Scenes[J]. Journal of Radars, 2020, 9(1): 34-54. doi: 10.12000/JR19104
    [7]CHEN Shichao, GAO Heting, LUO Feng. Target Detection in Sea Clutter Based on Combined Characteristics of Polarization[J]. Journal of Radars, 2020, 9(4): 664-673. doi: 10.12000/JR20072
    [8]CHEN Shichao, LUO Feng, HU Chong, NIE Xueya. Small Target Detection in Sea Clutter Background Based on Tsallis Entropy of Doppler Spectrum[J]. Journal of Radars, 2019, 8(3): 344-354. doi: 10.12000/JR19012
    [9]ZUO Lei, CHAN Xiuxiu, LU Xiaofei, LI Ming. A Weak Target Detection Method in Sea Clutter Based on Joint Space-time-frequency Decomposition[J]. Journal of Radars, 2019, 8(3): 335-343. doi: 10.12000/JR19035
    [10]WANG Jinghe, YI Wei, KONG Lingjiang. Multi-frame Track Before Detect Method for the Netted Radar System[J]. Journal of Radars, 2019, 8(4): 490-500. doi: 10.12000/JR18092
    [11]PEI Jiazheng, HUANG Yong, DONG Yunlong, HE You, CHEN Xiaolong. Track-Before-Detect Algorithm Based on Improved Auxiliary Particle PHD Filter under Clutter Background[J]. Journal of Radars, 2019, 8(3): 355-365. doi: 10.12000/JR18060
    [12]Zeng Lina, Zhou Deyun, Li Xiaoyang, Zhang Kun. Novel SAR Target Detection Algorithm Using Free Training[J]. Journal of Radars, 2017, 6(2): 177-185. doi: 10.12000/JR16114
    [13]Liu Junkai, Li Jianbing, Ma Liang, Chen Zhongkuan, Cai Yichao. Radar Target Detection Method of Aircraft Wake Vortices Based on Matrix Information Geometry[J]. Journal of Radars, 2017, 6(6): 699-708. doi: 10.12000/JR17058
    [14]Wu Sunyong, Xue Qiutiao, Zhu Shengqi, Yan Qingzhu, Sun Xiyan. Track-Before-Detect Algorithm for Weak Extended Target Based on Particle Filter under Clutter Environment[J]. Journal of Radars, 2017, 6(3): 252-258. doi: 10.12000/JR16128
    [15]Zhang Zenghui, Yu Wenxian. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images[J]. Journal of Radars, 2016, 5(1): 42-56. doi: 10.12000/JR15097
    [16]Wang Lulu, Wang Hongqiang, Wang Manxi, Li Xiang. An Overview of Radar Waveform Optimization for Target Detection[J]. Journal of Radars, 2016, 5(5): 487-498. doi: 10.12000/JR16084
    [17]Zhao Yong-ke, Lü Xiao-De. A Joint-optimized Real-time Target Detection Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 666-674. doi: 10.12000/JR14005
    [18]Xu Jia, Peng Ying-ning, Xia Xiang-gen, Long Teng, Mao Er-ke. Radar Signal Processing Method of Space-Time-Frequency Focus-Before-Detects[J]. Journal of Radars, 2014, 3(2): 129-141. doi: 10.3724/SP.J.1300.2014.14023
    [19]Wu Yong, Wang Jun. Application of Mixed Kalman Filter to Passive Radar Target Tracking[J]. Journal of Radars, 2014, 3(6): 652-659. doi: 10.12000/JR14113
    [20]Chen Xiao-lng, Guan jian, He You. Applications and Prospect of Micro-motion Theory in the Detection of Sea Surface Target[J]. Journal of Radars, 2013, 2(1): 123-134. doi: 10.3724/SP.J.1300.2012.20102
  • Cited by

    Periodical cited type(10)

    1. 陈小龙,何肖阳,邓振华,关键,杜晓林,薛伟,苏宁远,王金豪. 雷达微弱目标智能化处理技术与应用. 雷达学报. 2024(03): 501-524 . 本站查看
    2. 李文哲,李开明,岳屹峰,王金昊,许慧革,罗迎. 基于时空注意力-Seq2Seq网络的ISAR包络对齐方法. 信号处理. 2024(09): 1659-1673 .
    3. 李晓帆,邓彬,罗成高,王宏强,范磊,付强. 基于深度学习的雷达成像研究进展. 太赫兹科学与电子信息学报. 2023(09): 1086-1099 .
    4. 张群,张宏伟,倪嘉成,罗迎. 合成孔径雷达深度学习成像研究综述. 信号处理. 2023(09): 1521-1551 .
    5. 黄钟泠,姚西文,韩军伟. 面向SAR图像解译的物理可解释深度学习技术进展与探讨. 雷达学报. 2022(01): 107-125 . 本站查看
    6. 刘通,赵志钦,曹兰英. 基于截获因子评价的双基前视SAR成像LPI设计. 雷达科学与技术. 2022(04): 449-456+463 .
    7. 陈鹭伟,罗迎,倪嘉成,熊世超. 基于深度展开的SAR大斜视RD成像算法. 空军工程大学学报. 2022(04): 43-51 .
    8. 张云,穆慧琳,姜义成,丁畅. 基于深度学习的雷达成像技术研究进展. 雷达科学与技术. 2021(05): 467-478 .
    9. 卞粱,晋良念,刘庆华. 衍射层析模型下穿墙雷达三维学习成像方法. 雷达科学与技术. 2021(06): 669-676+688 .
    10. 陈小龙,陈唯实,饶云华,黄勇,关键,董云龙. 飞鸟与无人机目标雷达探测与识别技术进展与展望. 雷达学报. 2020(05): 803-827 . 本站查看

    Other cited types(15)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04050100150200
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.8 %FULLTEXT: 19.8 %META: 58.4 %META: 58.4 %PDF: 21.8 %PDF: 21.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.5 %其他: 5.5 %其他: 0.3 %其他: 0.3 %China: 0.5 %China: 0.5 %Indianapolis: 0.1 %Indianapolis: 0.1 %Seattle: 0.4 %Seattle: 0.4 %三门峡: 0.1 %三门峡: 0.1 %上海: 1.6 %上海: 1.6 %东京: 0.1 %东京: 0.1 %伦敦: 0.1 %伦敦: 0.1 %伯克利: 0.1 %伯克利: 0.1 %佛山: 0.1 %佛山: 0.1 %信阳: 0.1 %信阳: 0.1 %六安: 0.2 %六安: 0.2 %内江: 0.1 %内江: 0.1 %北京: 12.0 %北京: 12.0 %十堰: 0.1 %十堰: 0.1 %南京: 2.4 %南京: 2.4 %南充: 0.7 %南充: 0.7 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %卡拉奇: 0.1 %卡拉奇: 0.1 %卢瓦尔省: 0.1 %卢瓦尔省: 0.1 %厦门: 0.2 %厦门: 0.2 %台州: 0.3 %台州: 0.3 %合肥: 12.5 %合肥: 12.5 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %基辅: 0.1 %基辅: 0.1 %大连: 0.5 %大连: 0.5 %天津: 0.7 %天津: 0.7 %太原: 0.2 %太原: 0.2 %威海: 0.1 %威海: 0.1 %宁波: 0.4 %宁波: 0.4 %安庆: 0.3 %安庆: 0.3 %安康: 0.9 %安康: 0.9 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.7 %宣城: 0.7 %巴中: 1.3 %巴中: 1.3 %常州: 0.7 %常州: 0.7 %常德: 0.2 %常德: 0.2 %广元: 0.1 %广元: 0.1 %广州: 3.4 %广州: 3.4 %库比蒂诺: 0.3 %库比蒂诺: 0.3 %开封: 0.3 %开封: 0.3 %弗吉: 0.2 %弗吉: 0.2 %张家口: 1.3 %张家口: 1.3 %惠州: 0.3 %惠州: 0.3 %成都: 2.1 %成都: 2.1 %扬州: 1.1 %扬州: 1.1 %新加坡: 0.1 %新加坡: 0.1 %新德里: 0.1 %新德里: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 2.7 %昆明: 2.7 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.7 %杭州: 1.7 %桂林: 0.1 %桂林: 0.1 %武汉: 0.4 %武汉: 0.4 %池州: 0.1 %池州: 0.1 %沈阳: 0.3 %沈阳: 0.3 %泉州: 0.1 %泉州: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.4 %济南: 0.4 %海口: 6.0 %海口: 6.0 %淮南: 0.7 %淮南: 0.7 %深圳: 1.8 %深圳: 1.8 %清远: 0.1 %清远: 0.1 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.3 %湖州: 0.3 %漯河: 1.5 %漯河: 1.5 %澳门: 0.1 %澳门: 0.1 %珠海: 0.2 %珠海: 0.2 %白沙瓦: 0.1 %白沙瓦: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.4 %福州: 0.4 %纽约: 0.7 %纽约: 0.7 %绵阳: 0.5 %绵阳: 0.5 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 6.7 %芒廷维尤: 6.7 %芝加哥: 2.0 %芝加哥: 2.0 %苏州: 0.2 %苏州: 0.2 %衡水: 0.4 %衡水: 0.4 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 3.0 %西宁: 3.0 %西安: 2.1 %西安: 2.1 %诺沃克: 6.6 %诺沃克: 6.6 %贵阳: 0.4 %贵阳: 0.4 %赤峰: 0.1 %赤峰: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.2 %运城: 0.2 %遵义: 0.1 %遵义: 0.1 %郑州: 0.4 %郑州: 0.4 %鄂州: 0.1 %鄂州: 0.1 %酒泉: 0.1 %酒泉: 0.1 %重庆: 0.4 %重庆: 0.4 %银川: 0.3 %银川: 0.3 %长沙: 1.7 %长沙: 1.7 %阿什本: 0.1 %阿什本: 0.1 %青岛: 0.1 %青岛: 0.1 %香港: 0.4 %香港: 0.4 %黄冈: 0.4 %黄冈: 0.4 %齐齐哈尔: 0.3 %齐齐哈尔: 0.3 %其他其他ChinaIndianapolisSeattle三门峡上海东京伦敦伯克利佛山信阳六安内江北京十堰南京南充南昌南通卡拉奇卢瓦尔省厦门台州合肥吉林呼和浩特咸阳哈尔滨哥伦布嘉兴基辅大连天津太原威海宁波安庆安康宜昌宣城巴中常州常德广元广州库比蒂诺开封弗吉张家口惠州成都扬州新加坡新德里无锡昆明朝阳杭州桂林武汉池州沈阳泉州洛阳济南海口淮南深圳清远温州渭南湖州漯河澳门珠海白沙瓦石家庄福州纽约绵阳舟山芒廷维尤芝加哥苏州衡水衡阳衢州西宁西安诺沃克贵阳赤峰达州运城遵义郑州鄂州酒泉重庆银川长沙阿什本青岛香港黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(695) PDF downloads(184) Cited by(25)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint