Citation: | LIU Yuzhou, CAI Tianyi, LI Yachao, et al. A range and azimuth combined two-dimensional NCS algorithm for spaceborne-missile bistatic forward-looking SAR[J]. Journal of Radars, 2023, 12(6): 1202–1214. doi: 10.12000/JR23144 |
[1] |
CHEN Hongmeng, LI Yachao, GAO Wenquan, et al. Bayesian forward-looking superresolution imaging using Doppler deconvolution in expanded beam space for high-speed platform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5105113. doi: 10.1109/TGRS.2021.3107717
|
[2] |
李亚超, 王家东, 张廷豪, 等. 弹载雷达成像技术发展现状与趋势[J]. 雷达学报, 2022, 11(6): 943–973. doi: 10.12000/JR22119
LI Yachao, WANG Jiadong, ZHANG Tinghao, et al. Present situation and prospect of missile-borne radar imaging technology[J]. Journal of Radars, 2022, 11(6): 943–973. doi: 10.12000/JR22119
|
[3] |
林春辉. 单基/双基SAR成像若干关键问题研究[D]. [博士论文], 西安电子科技大学, 2019.
LIN Chunhui. Study on some imaging issues of monostatic and bistatic SAR[D]. [Ph.D. dissertation], Xidian University, 2019.
|
[4] |
NEO Y L, WONG F H, and CUMMING I G. Processing of azimuth-invariant bistatic SAR data using the range Doppler algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 14–21. doi: 10.1109/TGRS.2007.909090
|
[5] |
刘婵. 双基地前视SAR频域成像算法研究[D]. [硕士论文], 电子科技大学, 2015.
LIU Chan. Study on frequency-domain imaging algorithms for bistatic forward-looking SAR[D]. [Master dissertation], University of Electronic Science and Technology of China, 2015.
|
[6] |
CHEN Si, YUAN Yue, ZHANG Shuning, et al. A new imaging algorithm for forward-looking missile-borne bistatic SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1543–1552. doi: 10.1109/JSTARS.2015.2507260
|
[7] |
ZHANG Qianghui, WU Junjie, SONG Yue, et al. Bistatic-range-Doppler-aperture wavenumber algorithm for forward-looking spotlight SAR with stationary transmitter and maneuvering receiver[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2080–2094. doi: 10.1109/TGRS.2020.3004726
|
[8] |
PU Wei, LI Wenchao, LV Youxin, et al. An extended omega-K algorithm with integrated motion compensation for bistatic forward-looking SAR[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 1291–1295.
|
[9] |
FENG Dong, AN Daoxiang, and HUANG Xiaotao. An extended fast factorized back projection algorithm for missile-borne bistatic forward-looking SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2724–2734. doi: 10.1109/TAES.2018.2828238
|
[10] |
LI Yachao, XU Gaotian, ZHOU Song, et al. A novel CFFBP algorithm with noninterpolation image merging for bistatic forward-looking SAR focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–16. doi: 10.1109/TGRS.2022.3162230
|
[11] |
DESAI M D and JENKINS W K. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar[J]. IEEE Transactions on Image Processing, 1992, 1(4): 505–517. doi: 10.1109/83.199920
|
[12] |
XU Gaotian, ZHOU Song, YANG Lei, et al. Efficient fast time-domain processing framework for airborne bistatic SAR continuous imaging integrated with data-driven motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5208915. doi: 10.1109/TGRS.2021.3099204
|
[13] |
AN Hongyang, WU Junjie, HE Zhiwei, et al. Geosynchronous spaceborne-airborne multichannel bistatic SAR imaging using weighted fast factorized backprojection method[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(10): 1590–1594. doi: 10.1109/LGRS.2019.2902036
|
[14] |
蒲巍. 机载双基地前视SAR运动补偿方法研究[D]. [博士论文], 电子科技大学, 2018.
PU Wei. Research on airborne bistatic forward-looking SAR motion compensation[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2018.
|
[15] |
QIU Xiaolan, HU Donghui, and DING Chibiao. Some reflections on bistatic SAR of forward-looking configuration[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 735–739. doi: 10.1109/LGRS.2008.2004506
|
[16] |
WU Junjie, YANG Jianyu, HUANG Yulin, et al. A frequency-domain imaging algorithm for translational invariant bistatic forward-looking SAR[J]. IEICE Transactions on Communications, 2013, E96.B(2): 605–612. doi: 10.1587/transcom.E96.B.605
|
[17] |
WU Junjie, YANG Jianyu, HUANG Yulin, et al. Focusing bistatic forward-looking SAR using Chirp Scaling algorithm[C]. 2011 IEEE RadarCon, Kansas City, USA, 2011: 1036–1039. doi: 10.1109/RADAR.2011.5960693.
|
[18] |
QI C D, SHI X M, BIAN M M, et al. Focusing forward-looking bistatic SAR data with chirp scaling[J]. Electronics Letters, 2014, 50(3): 206–207. doi: 10.1049/el.2013.3978
|
[19] |
WU Junjie, PU Wei, HUANG Yulin, et al. Bistatic forward-looking SAR focusing using ω-k based on spectrum modeling and optimization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4500–4512.
|
[20] |
ZHANG Xiaohu, GU Hong, and SU Weimin. Focusing bistatic forward-looking SAR images use omega-k algorithm based on modified hyperbolic approximating[C]. 2019 International Conference on Control, Automation and Information Sciences, Chengdu, China, 2019: 1–5. doi: 10.1109/ICCAIS46528.2019.9074596.
|
[21] |
张强辉. 高速机动平台双基前视SAR成像方法研究[D]. [博士论文], 电子科技大学, 2019.
ZHANG Qianghui. Imaging method research for bistatic forward-looking SAR mounted on high-speed maneuvering platform[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2019.
|
[22] |
LI Yachao, ZHANG Tinghao, MEI Haiwen, et al. Focusing translational-variant bistatic forward-looking SAR data using the modified omega-K algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5203916. doi: 10.1109/TGRS.2021.3063780
|
[23] |
ZENG Tao, WANG Rui, LI Feng, et al. A modified nonlinear chirp scaling algorithm for spaceborne/stationary bistatic SAR based on series reversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3108–3118. doi: 10.1109/TGRS.2012.2219057
|
[24] |
SONG Xuan, LI Yachao, ZHANG Tinghao, et al. Focusing high-maneuverability bistatic forward-looking SAR using extended azimuth nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5240814. doi: 10.1109/TGRS.2022.3228803
|
[25] |
陈溅来, 熊毅, 徐刚, 等. 基于子图像变标的非线性轨迹SAR成像及其自聚焦方法[J]. 雷达学报, 2022, 11(6): 1098–1109. doi: 10.12000/JR22171
CHEN Jianlai, XIONG Yi, XU Gang, et al. Nonlinear trajectory synthetic aperture radar imaging and autofocus algorithm based on sub-image nonlinear chirp scaling[J].Journal of Radars, 2022, 11(6): 1098–1109. doi: 10.12000/JR22171
|
[26] |
WONG F H, CUMMING I G, and LAM NEO Y. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2493–2505. doi: 10.1109/TGRS.2008.917599
|
[27] |
QIU Xiaolan, HU Donghui, and DING Chibiao. An improved NLCS algorithm with capability analysis for one-stationary BiSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3179–3186. doi: 10.1109/TGRS.2008.921569
|
[28] |
WU Junjie, SUN Zhichao, LI Zhongyu, et al. Focusing translational variant bistatic forward-looking SAR using keystone transform and extended nonlinear chirp scaling[J]. Remote Sensing, 2016, 8(10): 840. doi: 10.3390/rs8100840
|
[29] |
MEI Haiwen, LI Yachao, XING Mengdao, et al. A frequency-domain imaging algorithm for translational variant bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1502–1515. doi: 10.1109/TGRS.2019.2943743
|
[30] |
LIANG Mu, SU Weimin, and GU Hong. Focusing high-resolution high forward-looking bistatic SAR with nonequal platform velocities based on keystone transform and modified nonlinear chirp scaling algorithm[J]. IEEE Sensors Journal, 2019, 19(3): 901–908. doi: 10.1109/JSEN.2018.2877387
|
[31] |
DING Jiabiao, LI Yachao, LI Ming, et al. Focusing high maneuvering bistatic forward-looking SAR with stationary transmitter using extended keystone transform and modified frequency nonlinear chirp scaling[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 2476–2492. doi: 10.1109/JSTARS.2022.3153824
|
[32] |
CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and ImpleMentation[M]. Boston, MA, USA: Artech House, 2005: 225–362.
CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and ImpleMentation[M]. Boston, MA, USA: Artech House, 2005: 225–362.
|
[33] |
李燕平, 张振华, 邢孟道, 等. 基于级数反演和数值计算的广义双基SAR距离徙动成像算法[J]. 电子与信息学报, 2008, 30(12): 2800–2804. doi: 10.3724/SP.J.1146.2007.00810
LI Yanping, ZHANG Zhenhua, XING Mengdao, et al. A novel range migration algorithm for general bistatic SAR imaging based on series reversion and numerical computation[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2800–2804. doi: 10.3724/SP.J.1146.2007.00810
|
[34] |
王谋, 韦顺军, 沈蓉, 等. 基于自学习稀疏先验的三维SAR成像方法[J]. 雷达学报, 2023, 12(1): 36–52. doi: 10.12000/JR22101
WANG Mou, WEI Shunjun, SHEN Rong, et al. 3D SAR imaging method based on learned sparse prior[J]. Journal of Radars, 2023, 12(1): 36–52. doi: 10.12000/JR22101
|
[35] |
CARDILLO G P. On the use of the gradient to determine bistatic SAR resolution[C]. International Symposium on Antennas and Propagation Society, Merging Technologies for the 90’s, Dallas, USA, 1990: 1032–1035.
|
1. | 陈小龙,何肖阳,邓振华,关键,杜晓林,薛伟,苏宁远,王金豪. 雷达微弱目标智能化处理技术与应用. 雷达学报. 2024(03): 501-524 . ![]() | |
2. | 李文哲,李开明,岳屹峰,王金昊,许慧革,罗迎. 基于时空注意力-Seq2Seq网络的ISAR包络对齐方法. 信号处理. 2024(09): 1659-1673 . ![]() | |
3. | 李晓帆,邓彬,罗成高,王宏强,范磊,付强. 基于深度学习的雷达成像研究进展. 太赫兹科学与电子信息学报. 2023(09): 1086-1099 . ![]() | |
4. | 张群,张宏伟,倪嘉成,罗迎. 合成孔径雷达深度学习成像研究综述. 信号处理. 2023(09): 1521-1551 . ![]() | |
5. | 黄钟泠,姚西文,韩军伟. 面向SAR图像解译的物理可解释深度学习技术进展与探讨. 雷达学报. 2022(01): 107-125 . ![]() | |
6. | 刘通,赵志钦,曹兰英. 基于截获因子评价的双基前视SAR成像LPI设计. 雷达科学与技术. 2022(04): 449-456+463 . ![]() | |
7. | 陈鹭伟,罗迎,倪嘉成,熊世超. 基于深度展开的SAR大斜视RD成像算法. 空军工程大学学报. 2022(04): 43-51 . ![]() | |
8. | 张云,穆慧琳,姜义成,丁畅. 基于深度学习的雷达成像技术研究进展. 雷达科学与技术. 2021(05): 467-478 . ![]() | |
9. | 卞粱,晋良念,刘庆华. 衍射层析模型下穿墙雷达三维学习成像方法. 雷达科学与技术. 2021(06): 669-676+688 . ![]() | |
10. | 陈小龙,陈唯实,饶云华,黄勇,关键,董云龙. 飞鸟与无人机目标雷达探测与识别技术进展与展望. 雷达学报. 2020(05): 803-827 . ![]() |