Citation: | Zhang Zenghui, Yu Wenxian. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images[J]. Journal of Radars, 2016, 5(1): 42-56. doi: 10.12000/JR15097 |
[1] |
Oliver C and Quegan S. Understanding Synthetic Aperture Radar Images[M]. Raleigh, NC, SciTech Publishing, 2004: 1-512.
|
[2] |
Auer S J. 3D synthetic aperture radar simulation for interpreting complex urban reflection scenarios[D].
|
[3] |
[Ph.D. dissertation], Technische Universitt Mnchen, 2011: 13-15.
|
[4] |
Candes E J. Compressive sampling[C]. International Congress of Mathematics, Madrid, Spain, 2006: 1433-1452.
|
[5] |
Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
|
[6] |
Candes E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
|
[7] |
Baraniuk R G. More is less: Signal processing and the data deluge[J]. Science, 2001, 331(6018): 717-719.
|
[8] |
Baraniuk R G and Steeghs P. Compressive radar imaging[C]. IEEE Radar Conference, Waltham, Massachusetts, 2007: 128-133.
|
[9] |
Herman M A and Strohmer T. High resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
|
[10] |
Gurbuz A C, McClellan J H, and Scott W R Jr. GPR imaging using compressed measurements[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 2008, 2: II-13 -II-16.
|
[11] |
Suksmono A B, Bharata E, Lestari A A, et al.. Compressive stepped-frequency continuous-wave ground penetrating radar[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 665-669.
|
[12] |
YANG J, Thompson J, HUANG X, et al.. Random-frequency SAR imaging based on compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 983-994.
|
[13] |
Tello M, Lopez-Dekker P, and Mallorqui J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285-4295.
|
[14] |
Patel V M, Easley G R, Healy D M, et al.. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244-254.
|
[15] |
Nguyen L H, Tran T, and Thong D. Sparse models and sparse recovery for ultra-wideband SAR applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 940-958.
|
[16] |
Batu O and Certin M. Parameter selection in sparsity-driven SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 3040-3050.
|
[17] |
Onhon N O and Certin M. A sparsity-driven approach for joint SAR imaging and phase error correction[J]. IEEE Transactions on Imaging Processing, 2012, 21(4): 2075-2088.
|
[18] |
Stojanovic I, Certin M, and Karl W C. Compressed sensing of monostatic and multistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1444-1448.
|
[19] |
FANG J, XU Z, ZHANG B, et al.. Fast compressed sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2014, 7(1): 352-363.
|
[20] |
Potter L C, Ertin E, Parker J T, et al.. Sparsity and compressed sensing in radar imaging[J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020.
|
[21] |
Certin M, Stojanovic I, Onhon N O, et al.. Sparsity-driven synthetic aperture radar imaging: reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4): 27-40.
|
[22] |
JIANG Q, WANG S, Ziou D, et al.. Ship detection in RADARSAT SAR imagery[C]. IEEE International Conference on Systems, Man and Cybernetics, San Diego, California, USA, 1998, 5: 4562-4566.
|
[23] |
Tison C, Nicolas J-M, Tupin F, et al.. A new statistical model for Markovian classification of urban areas in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 42(10): 2046-2057.
|
[24] |
LI H, HONG W, WU Y, et al.. On the empirical-statistical modeling of SAR images with generalized Gamma distribution[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 386-397.
|
[25] |
Henschel M D, Rey M T, Campbell J W M, et al.. Comparison of probability statistics for automated ship detection in SAR imagery[C]. International Conference on Applications of Photonic Technology, Ottawa, Canada, 1998, 3491: 986-991.
|
[26] |
Wackerman C C, Friedman K S, Pichel W G, et al.. Automatic detection of ships in RADARSAT-I SAR imagery[J]. Canadian Journal of Remote Sensing, 2001, 27(5): 568-577.
|
[27] |
WANG C, LIAO M, and LI X. Ship detection in SAR image based on the Alpha-stable distribution[J]. Sensors, 2008, 8(8): 4948-4960.
|
[28] |
Frery A C, Correia A H, and Freitas C D. Classifying multifrequency fully polarimetric imagery with multiple sources of statistical evidence and contextual information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3098-3109.
|
[29] |
GAO G, LIU L, ZHAO L, et al.. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685-1697.
|
[30] |
Yeremy M L, Geling G, Rey M, et al.. Results from the Crusade ship detection trial: polarimetric SAR[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, Ontario, Canada, 2002, 2: 711-713.
|
[31] |
丘昌镇. 高分辨率SAR图像目标分类特征提取与分析[D].
|
[32] |
[硕士论文],国防科技大学, 2009: 2-4. QIU C. Feature extraction and analysis of high-resolution SAR images for target classification[D].
|
[33] |
[Master dissertation], National University of Defense Technology of China, 2009: 2-4.
|
[34] |
贺志国, 陆军, 匡纲要. SAR图像特征提取与选择研究[J]. 信号处理, 2008, 24(5): 813-823. HE Z, LU J, and KUANG G. A survey on feature extraction and selection of SAR images[J]. Signal Processing, 2008, 24(5): 813-823.
|
[35] |
计科峰. SAR图像目标特征提取与分类方法研究[D].
|
[36] |
[博士论文],国防科技大学, 2003: 35-56. JI K Targets feature extraction and classification methods for SAR images[D].
|
[37] |
[Ph.D. dissertation], National University of Defense Technology of China, 2003: 35-56.
|
[38] |
ertin M. Feature-enhanced synthetic aperture radar imaging[D].
|
[39] |
[Ph.D. dissertation], Boston University, 2001: 38-206.
|
[40] |
Certin M, Karl W C, and Castanon D A. Feature enhancement and ATR performance using nonquadratic optimization-based SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1375-1395.
|
[41] |
Samadi S, Certin M, and Masnadi-Shirazi M A. Multiple feature-enhanced SAR imaging using sparsity in combined dictionaries[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 821-825.
|
[42] |
ZHANG B, HONG W, and WU Y. Sparse microwave imaging: principles and applications[J]. SCIENCE CHINA Information Sciences, 2012, 55(8): 1722-1754.
|
[43] |
Tropp J A and Wright S J. Computational methods for sparse solution of linear inverse problems[J]. Proceedings of the IEEE, 2010, 98(6): 948-958.
|
[44] |
Donoho D L, Johnstone I M, Koch J C, et al.. Maximum entropy and the nearly black object[J]. Journal of the Royal Statistical Society, Series B, 1992, 54(1): 41-81.
|
[45] |
Bouman C and Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation[J]. IEEE Transactions on Image Processing, 1993, 2(3): 296-310.
|
[46] |
CHANG L and WU J. An improved RIP-based performance guarantee for sparse signal recovery via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5702-5715.
|
[47] |
DING J, CHEN L, and GU Y. Perturbation analysis of orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 398-410.
|
[48] |
张爱冰. 高分辨率SAR图像复杂目标属性散射中心特征提取[D].
|
[49] |
[硕士论文],国防科技大学, 2009: 9-48. ZHANG A. Attributed scattering center feature extraction of complex target from high resolution SAR imagery[D].
|
[50] |
[Master dissertation], National University of Defense Technology, 2009: 9-48.
|
[51] |
Cho S, Haralick R, and Yi S. Improvement of Kittler and Illingworths's minimum error thresholding[J]. Pattern Recognition, 1989, 22(5): 609-617.opy and the nearly black object[J]. Journal of the Royal Statistical Society, Series B, 1992, 54(1): 41-81.
|
[52] |
Bouman C and Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation[J]. IEEE Transactions on Image Processing, 1993, 2(3): 296-310.
|
[53] |
CHANG L and WU J. An improved RIP-based performance guarantee for sparse signal recovery via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5702-5715.
|
[54] |
DING J, CHEN L, and GU Y. Perturbation analysis of orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 398-410.
|
[55] |
张爱冰. 高分辨率SAR图像复杂目标属性散射中心特征提取[D]. [硕士论文],国防科技大学, 2009: 9-48. ZHANG A. Attributed scattering center feature extraction of complex target from high resolution SAR imagery[D]. [Master dissertation], National University of Defense Technology of China, 2009: 9-48.
|
[56] |
Cho S, Haralick R, and Yi S. Improvement of Kittler and Illingworths's minimum error thresholding[J]. Pattern Recognition, 1989, 22(5): 609-617.
|
[1] | ZHOU Zibo, ZHANG Chaowei, XIA Saiqiang, XU Daoming, GAO Yan, ZENG Xiaoshuang. Feature Extraction of Rotor Blade Targets Based on Phase Compensation in a Passive Bistatic Radar[J]. Journal of Radars, 2021, 10(6): 929-943. doi: 10.12000/JR21132 |
[2] | LI Bo, CEN Zongjun, TANG Jun. A New Method of Target Detection for Passive Radar Based on Information Accumulation[J]. Journal of Radars, 2020, 9(6): 959-966. doi: 10.12000/JR20023 |
[3] | WAN Xianrong, LIU Tongtong, YI Jianxin, DAN Yangpeng, HU Xiaokai. System Design and Target Detection Experiments for LTE-based Passive Radar[J]. Journal of Radars, 2020, 9(6): 967-973. doi: 10.12000/JR18111 |
[4] | Liu Yuqi, Yi Jianxin, Wan Xianrong, Cheng Feng, Rao Yunhua, Gong Ziping. Experimental Research on Micro-Doppler Effect of Multi-rotor Drone with Digital Television Based Passive Radar[J]. Journal of Radars, 2018, 7(5): 585-592. doi: 10.12000/JR18062 |
[5] | Li Yuqian, Yi Jianxin, Wan Xianrong, Liu Yuqi, Zhan Weijie. Helicopter Rotor Parameter Estimation Method for Passive Radar[J]. Journal of Radars, 2018, 7(3): 313-319. doi: 10.12000/JR17125 |
[6] | Wang Benjing, Yi Jianxin, Wan Xianrong, Dan Yangpeng. Inter-frame Ambiguity Analysis and Suppression of LTE Signal for Passive Radar[J]. Journal of Radars, 2018, 7(4): 514-522. doi: 10.12000/JR18025 |
[7] | Zeng Lina, Zhou Deyun, Li Xiaoyang, Zhang Kun. Novel SAR Target Detection Algorithm Using Free Training[J]. Journal of Radars, 2017, 6(2): 177-185. doi: 10.12000/JR16114 |
[8] | Wan Xianrong, Sun Xuwang, Yi Jianxin, Lü Min, Rao Yunhua. Synchronous Design and Test of Distributed Passive Radar Systems Based on Digital Broadcasting and Television[J]. Journal of Radars, 2017, 6(1): 65-72. doi: 10.12000/JR16134 |
[9] | Rao Yunhua, Ming Yanzhen, Lin Jing, Zhu Fengyuan, Wan Xianrong, Gong Ziping. Reference Signal Reconstruction and Its Impact on Detection Performance of WiFi-based Passive Radar[J]. Journal of Radars, 2016, 5(3): 284-292. doi: 10.12000/JR15108 |
[10] | Zhang Qiang, Wan Xian-rong, Fu Yan, Rao Yun-hua, Gong Zi-ping. Ambiguity Function Analysis and Processing for Passive Radar Based on CDR Digital Audio Broadcasting[J]. Journal of Radars, 2014, 3(6): 702-710. doi: 10.12000/JR14050 |
[11] | Wan Wei, Li Huang, Hong Yang. Issues on Multi-polarization of GNSS-R for Passive Radar Detection[J]. Journal of Radars, 2014, 3(6): 641-651. doi: 10.12000/JR14095 |
[12] | Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157 |
[13] | Wan Xian-rong, Yi Jian-xin, Cheng Feng, Rao Yun-hua, Gong Zi-ping, Ke Heng-yu. Single Frequency Network Based Distributed Passive Radar Technology[J]. Journal of Radars, 2014, 3(6): 623-631. doi: 10.12000/JR14156 |
[14] | Wu Yong, Wang Jun. Application of Mixed Kalman Filter to Passive Radar Target Tracking[J]. Journal of Radars, 2014, 3(6): 652-659. doi: 10.12000/JR14113 |
[15] | Jiang Tie-zhen, Xiao Wen-shu, Li Da-sheng, Liao Tong-qing. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. doi: 10.12000/JR14080 |
[16] | Yi Jian-xin, Wan Xian-rong, Zhao Zhi-xin, Cheng Feng, Ke Heng-yu. Subcarrier-based Processing for Clutter Rejection in CP-OFDM Signal-based Passive Radar Using SFN Configuration (in English)[J]. Journal of Radars, 2013, 2(1): 1-13. doi: 10.3724/SP.J.1300.2013.13030 |
[17] | Jin Wei, lü Xiao-de, Xiang Mao-sheng. Ambiguity Function and Resolution Characteristic Analysis of DVB-S Signal for Passive Radar[J]. Journal of Radars, 2012, 1(4): 380-386. doi: 10.3724/SP.J.1300.2012.20077 |
[18] | Wan Xian-rong. An Overview on Development of Passive Radar Based on the LowFrequency Band Digital Broadcasting and TV Signals[J]. Journal of Radars, 2012, 1(2): 109-123. doi: 10.3724/SP.J.1300.2012.20027 |
[19] | Wan Xian-rong, Zhao Zhi-xin, Ke Heng-yu, Cheng Feng, Rao Yun-hua, Gong Zi-ping. Experimental Research of HF Passive Radar Based on DRM Digital AM Broadcasting[J]. Journal of Radars, 2012, 1(1): 11-18. doi: 10.3724/SP.J.1300.2013.20001 |
[20] | RAO Yun-Hua, ZHU Feng-Yuan, ZHANG Xiu-Zhi, WAN Xian-Rong, GONG Zi-Ping. Ambiguity Function Analysis and Side Peaks Suppression of WiFi Signal for Passive Radar[J]. Journal of Radars, 2012, 1(3): 225-231. doi: 10.3724/SP.J.1300.2012.20061 |