YU Wenxian. Automatic target recognition from an engineering perspective[J]. Journal of Radars, 2022, 11(5): 737–752. doi: 10.12000/JR22178
Citation: Zhang Zenghui, Yu Wenxian. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images[J]. Journal of Radars, 2016, 5(1): 42-56. doi: 10.12000/JR15097

Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images

DOI: 10.12000/JR15097
Funds:

The National Natural Science Foundation of China (61331015), The National Basic Research Program of China (2010CB731904)

  • Received Date: 2015-08-15
  • Rev Recd Date: 2015-10-19
  • Publish Date: 2016-02-28
  • Sparse microwave imaging using sparse priors of observed scenes in space, time, frequency, or polarization domain and echo data with sampling rate smaller than the traditional Nyquist rate as well as optimization algorithms for reconstructing the microwave images of observed scenes has many advantages over traditional microwave imaging systems. In sparse microwave imaging, image acquisition and representation vary; therefore, new feature analysis and cognitive interpretation theories and methods should be developed based on current research results. In this study, we analyze the statistical properties of sparse Synthetic Aperture Radar (SAR) images and changes in point, line and regional features induced by sparse reconstruction. For SAR images recovered by the spatial sparse model, the statistical distribution degrades, whereas points and lines can be accurately extracted by low sampling rates. Furthermore, the target detection method based on sparse SAR images is studied. Owing to a weak background noise, target detection is easier using sparse SAR images than traditional ones.

     

  • [1]
    Oliver C and Quegan S. Understanding Synthetic Aperture Radar Images[M]. Raleigh, NC, SciTech Publishing, 2004: 1-512.
    [2]
    Auer S J. 3D synthetic aperture radar simulation for interpreting complex urban reflection scenarios[D].
    [3]
    [Ph.D. dissertation], Technische Universitt Mnchen, 2011: 13-15.
    [4]
    Candes E J. Compressive sampling[C]. International Congress of Mathematics, Madrid, Spain, 2006: 1433-1452.
    [5]
    Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
    [6]
    Candes E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
    [7]
    Baraniuk R G. More is less: Signal processing and the data deluge[J]. Science, 2001, 331(6018): 717-719.
    [8]
    Baraniuk R G and Steeghs P. Compressive radar imaging[C]. IEEE Radar Conference, Waltham, Massachusetts, 2007: 128-133.
    [9]
    Herman M A and Strohmer T. High resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
    [10]
    Gurbuz A C, McClellan J H, and Scott W R Jr. GPR imaging using compressed measurements[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 2008, 2: II-13 -II-16.
    [11]
    Suksmono A B, Bharata E, Lestari A A, et al.. Compressive stepped-frequency continuous-wave ground penetrating radar[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 665-669.
    [12]
    YANG J, Thompson J, HUANG X, et al.. Random-frequency SAR imaging based on compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 983-994.
    [13]
    Tello M, Lopez-Dekker P, and Mallorqui J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285-4295.
    [14]
    Patel V M, Easley G R, Healy D M, et al.. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244-254.
    [15]
    Nguyen L H, Tran T, and Thong D. Sparse models and sparse recovery for ultra-wideband SAR applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 940-958.
    [16]
    Batu O and Certin M. Parameter selection in sparsity-driven SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 3040-3050.
    [17]
    Onhon N O and Certin M. A sparsity-driven approach for joint SAR imaging and phase error correction[J]. IEEE Transactions on Imaging Processing, 2012, 21(4): 2075-2088.
    [18]
    Stojanovic I, Certin M, and Karl W C. Compressed sensing of monostatic and multistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1444-1448.
    [19]
    FANG J, XU Z, ZHANG B, et al.. Fast compressed sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2014, 7(1): 352-363.
    [20]
    Potter L C, Ertin E, Parker J T, et al.. Sparsity and compressed sensing in radar imaging[J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020.
    [21]
    Certin M, Stojanovic I, Onhon N O, et al.. Sparsity-driven synthetic aperture radar imaging: reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4): 27-40.
    [22]
    JIANG Q, WANG S, Ziou D, et al.. Ship detection in RADARSAT SAR imagery[C]. IEEE International Conference on Systems, Man and Cybernetics, San Diego, California, USA, 1998, 5: 4562-4566.
    [23]
    Tison C, Nicolas J-M, Tupin F, et al.. A new statistical model for Markovian classification of urban areas in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 42(10): 2046-2057.
    [24]
    LI H, HONG W, WU Y, et al.. On the empirical-statistical modeling of SAR images with generalized Gamma distribution[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 386-397.
    [25]
    Henschel M D, Rey M T, Campbell J W M, et al.. Comparison of probability statistics for automated ship detection in SAR imagery[C]. International Conference on Applications of Photonic Technology, Ottawa, Canada, 1998, 3491: 986-991.
    [26]
    Wackerman C C, Friedman K S, Pichel W G, et al.. Automatic detection of ships in RADARSAT-I SAR imagery[J]. Canadian Journal of Remote Sensing, 2001, 27(5): 568-577.
    [27]
    WANG C, LIAO M, and LI X. Ship detection in SAR image based on the Alpha-stable distribution[J]. Sensors, 2008, 8(8): 4948-4960.
    [28]
    Frery A C, Correia A H, and Freitas C D. Classifying multifrequency fully polarimetric imagery with multiple sources of statistical evidence and contextual information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3098-3109.
    [29]
    GAO G, LIU L, ZHAO L, et al.. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685-1697.
    [30]
    Yeremy M L, Geling G, Rey M, et al.. Results from the Crusade ship detection trial: polarimetric SAR[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, Ontario, Canada, 2002, 2: 711-713.
    [31]
    丘昌镇. 高分辨率SAR图像目标分类特征提取与分析[D].
    [32]
    [硕士论文],国防科技大学, 2009: 2-4. QIU C. Feature extraction and analysis of high-resolution SAR images for target classification[D].
    [33]
    [Master dissertation], National University of Defense Technology of China, 2009: 2-4.
    [34]
    贺志国, 陆军, 匡纲要. SAR图像特征提取与选择研究[J]. 信号处理, 2008, 24(5): 813-823. HE Z, LU J, and KUANG G. A survey on feature extraction and selection of SAR images[J]. Signal Processing, 2008, 24(5): 813-823.
    [35]
    计科峰. SAR图像目标特征提取与分类方法研究[D].
    [36]
    [博士论文],国防科技大学, 2003: 35-56. JI K Targets feature extraction and classification methods for SAR images[D].
    [37]
    [Ph.D. dissertation], National University of Defense Technology of China, 2003: 35-56.
    [38]
    ertin M. Feature-enhanced synthetic aperture radar imaging[D].
    [39]
    [Ph.D. dissertation], Boston University, 2001: 38-206.
    [40]
    Certin M, Karl W C, and Castanon D A. Feature enhancement and ATR performance using nonquadratic optimization-based SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1375-1395.
    [41]
    Samadi S, Certin M, and Masnadi-Shirazi M A. Multiple feature-enhanced SAR imaging using sparsity in combined dictionaries[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 821-825.
    [42]
    ZHANG B, HONG W, and WU Y. Sparse microwave imaging: principles and applications[J]. SCIENCE CHINA Information Sciences, 2012, 55(8): 1722-1754.
    [43]
    Tropp J A and Wright S J. Computational methods for sparse solution of linear inverse problems[J]. Proceedings of the IEEE, 2010, 98(6): 948-958.
    [44]
    Donoho D L, Johnstone I M, Koch J C, et al.. Maximum entropy and the nearly black object[J]. Journal of the Royal Statistical Society, Series B, 1992, 54(1): 41-81.
    [45]
    Bouman C and Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation[J]. IEEE Transactions on Image Processing, 1993, 2(3): 296-310.
    [46]
    CHANG L and WU J. An improved RIP-based performance guarantee for sparse signal recovery via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5702-5715.
    [47]
    DING J, CHEN L, and GU Y. Perturbation analysis of orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 398-410.
    [48]
    张爱冰. 高分辨率SAR图像复杂目标属性散射中心特征提取[D].
    [49]
    [硕士论文],国防科技大学, 2009: 9-48. ZHANG A. Attributed scattering center feature extraction of complex target from high resolution SAR imagery[D].
    [50]
    [Master dissertation], National University of Defense Technology, 2009: 9-48.
    [51]
    Cho S, Haralick R, and Yi S. Improvement of Kittler and Illingworths's minimum error thresholding[J]. Pattern Recognition, 1989, 22(5): 609-617.opy and the nearly black object[J]. Journal of the Royal Statistical Society, Series B, 1992, 54(1): 41-81.
    [52]
    Bouman C and Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation[J]. IEEE Transactions on Image Processing, 1993, 2(3): 296-310.
    [53]
    CHANG L and WU J. An improved RIP-based performance guarantee for sparse signal recovery via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5702-5715.
    [54]
    DING J, CHEN L, and GU Y. Perturbation analysis of orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 398-410.
    [55]
    张爱冰. 高分辨率SAR图像复杂目标属性散射中心特征提取[D]. [硕士论文],国防科技大学, 2009: 9-48. ZHANG A. Attributed scattering center feature extraction of complex target from high resolution SAR imagery[D]. [Master dissertation], National University of Defense Technology of China, 2009: 9-48.
    [56]
    Cho S, Haralick R, and Yi S. Improvement of Kittler and Illingworths's minimum error thresholding[J]. Pattern Recognition, 1989, 22(5): 609-617.
  • Relative Articles

    [1]ZHOU Zibo, ZHANG Chaowei, XIA Saiqiang, XU Daoming, GAO Yan, ZENG Xiaoshuang. Feature Extraction of Rotor Blade Targets Based on Phase Compensation in a Passive Bistatic Radar[J]. Journal of Radars, 2021, 10(6): 929-943. doi: 10.12000/JR21132
    [2]LI Bo, CEN Zongjun, TANG Jun. A New Method of Target Detection for Passive Radar Based on Information Accumulation[J]. Journal of Radars, 2020, 9(6): 959-966. doi: 10.12000/JR20023
    [3]WAN Xianrong, LIU Tongtong, YI Jianxin, DAN Yangpeng, HU Xiaokai. System Design and Target Detection Experiments for LTE-based Passive Radar[J]. Journal of Radars, 2020, 9(6): 967-973. doi: 10.12000/JR18111
    [4]Liu Yuqi, Yi Jianxin, Wan Xianrong, Cheng Feng, Rao Yunhua, Gong Ziping. Experimental Research on Micro-Doppler Effect of Multi-rotor Drone with Digital Television Based Passive Radar[J]. Journal of Radars, 2018, 7(5): 585-592. doi: 10.12000/JR18062
    [5]Li Yuqian, Yi Jianxin, Wan Xianrong, Liu Yuqi, Zhan Weijie. Helicopter Rotor Parameter Estimation Method for Passive Radar[J]. Journal of Radars, 2018, 7(3): 313-319. doi: 10.12000/JR17125
    [6]Wang Benjing, Yi Jianxin, Wan Xianrong, Dan Yangpeng. Inter-frame Ambiguity Analysis and Suppression of LTE Signal for Passive Radar[J]. Journal of Radars, 2018, 7(4): 514-522. doi: 10.12000/JR18025
    [7]Zeng Lina, Zhou Deyun, Li Xiaoyang, Zhang Kun. Novel SAR Target Detection Algorithm Using Free Training[J]. Journal of Radars, 2017, 6(2): 177-185. doi: 10.12000/JR16114
    [8]Wan Xianrong, Sun Xuwang, Yi Jianxin, Lü Min, Rao Yunhua. Synchronous Design and Test of Distributed Passive Radar Systems Based on Digital Broadcasting and Television[J]. Journal of Radars, 2017, 6(1): 65-72. doi: 10.12000/JR16134
    [9]Rao Yunhua, Ming Yanzhen, Lin Jing, Zhu Fengyuan, Wan Xianrong, Gong Ziping. Reference Signal Reconstruction and Its Impact on Detection Performance of WiFi-based Passive Radar[J]. Journal of Radars, 2016, 5(3): 284-292. doi: 10.12000/JR15108
    [10]Zhang Qiang, Wan Xian-rong, Fu Yan, Rao Yun-hua, Gong Zi-ping. Ambiguity Function Analysis and Processing for Passive Radar Based on CDR Digital Audio Broadcasting[J]. Journal of Radars, 2014, 3(6): 702-710. doi: 10.12000/JR14050
    [11]Wan Wei, Li Huang, Hong Yang. Issues on Multi-polarization of GNSS-R for Passive Radar Detection[J]. Journal of Radars, 2014, 3(6): 641-651. doi: 10.12000/JR14095
    [12]Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157
    [13]Wan Xian-rong, Yi Jian-xin, Cheng Feng, Rao Yun-hua, Gong Zi-ping, Ke Heng-yu. Single Frequency Network Based Distributed Passive Radar Technology[J]. Journal of Radars, 2014, 3(6): 623-631. doi: 10.12000/JR14156
    [14]Wu Yong, Wang Jun. Application of Mixed Kalman Filter to Passive Radar Target Tracking[J]. Journal of Radars, 2014, 3(6): 652-659. doi: 10.12000/JR14113
    [15]Jiang Tie-zhen, Xiao Wen-shu, Li Da-sheng, Liao Tong-qing. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. doi: 10.12000/JR14080
    [16]Yi Jian-xin, Wan Xian-rong, Zhao Zhi-xin, Cheng Feng, Ke Heng-yu. Subcarrier-based Processing for Clutter Rejection in CP-OFDM Signal-based Passive Radar Using SFN Configuration (in English)[J]. Journal of Radars, 2013, 2(1): 1-13. doi: 10.3724/SP.J.1300.2013.13030
    [17]Jin Wei, lü Xiao-de, Xiang Mao-sheng. Ambiguity Function and Resolution Characteristic Analysis of DVB-S Signal for Passive Radar[J]. Journal of Radars, 2012, 1(4): 380-386. doi: 10.3724/SP.J.1300.2012.20077
    [18]Wan Xian-rong. An Overview on Development of Passive Radar Based on the LowFrequency Band Digital Broadcasting and TV Signals[J]. Journal of Radars, 2012, 1(2): 109-123. doi: 10.3724/SP.J.1300.2012.20027
    [19]Wan Xian-rong, Zhao Zhi-xin, Ke Heng-yu, Cheng Feng, Rao Yun-hua, Gong Zi-ping. Experimental Research of HF Passive Radar Based on DRM Digital AM Broadcasting[J]. Journal of Radars, 2012, 1(1): 11-18. doi: 10.3724/SP.J.1300.2013.20001
    [20]RAO Yun-Hua, ZHU Feng-Yuan, ZHANG Xiu-Zhi, WAN Xian-Rong, GONG Zi-Ping. Ambiguity Function Analysis and Side Peaks Suppression of WiFi Signal for Passive Radar[J]. Journal of Radars, 2012, 1(3): 225-231. doi: 10.3724/SP.J.1300.2012.20061
  • Cited by

    Periodical cited type(7)

    1. 邵帅,邢雷,王峰. 基于遗传算法的机相扫机载预警雷达重点扇区波位排布方法. 中国电子科学研究院学报. 2023(06): 521-524+530 .
    2. 李纪三,刘溶,张宁. 高速旋转相控阵雷达基于资源预规划的任务调度算法. 电子科技大学学报. 2022(03): 377-383+480 .
    3. 李纪三,纪彦星,曹鼎,刘溶,任渊. 基于广义时间窗的旋转相控阵雷达资源调度算法. 电子学报. 2022(05): 1050-1057 .
    4. 鲁金,畅言,陈春. 基于多级时间窗的综合优先级雷达任务调度算法. 火控雷达技术. 2021(03): 39-41+52 .
    5. 柴炎,郑海宾,朱宏梁,张宇. 云平台下自适应调度算法的优化分析. 数码世界. 2019(03): 172 .
    6. 徐玲,祝军. 制药智能工厂生产物流调度系统柔性管控优化算法. 电子技术与软件工程. 2019(22): 102-103 .
    7. 方旖,陈秋菊,潘继飞,毕大平. 基于贝叶斯的多功能雷达脉冲列变化点检测. 指挥与控制学报. 2019(04): 308-315 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3404) PDF downloads(1136) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint