WANG Yuqi, SUN Guangcai, YANG Jun, et al. Passive localization algorithm for radiation source based on long synthetic aperture[J]. Journal of Radars, 2020, 9(1): 185–194. doi: 10.12000/JR19080
Citation: Zhang Zenghui, Yu Wenxian. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images[J]. Journal of Radars, 2016, 5(1): 42-56. doi: 10.12000/JR15097

Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images

DOI: 10.12000/JR15097
Funds:

The National Natural Science Foundation of China (61331015), The National Basic Research Program of China (2010CB731904)

  • Received Date: 2015-08-15
  • Rev Recd Date: 2015-10-19
  • Publish Date: 2016-02-28
  • Sparse microwave imaging using sparse priors of observed scenes in space, time, frequency, or polarization domain and echo data with sampling rate smaller than the traditional Nyquist rate as well as optimization algorithms for reconstructing the microwave images of observed scenes has many advantages over traditional microwave imaging systems. In sparse microwave imaging, image acquisition and representation vary; therefore, new feature analysis and cognitive interpretation theories and methods should be developed based on current research results. In this study, we analyze the statistical properties of sparse Synthetic Aperture Radar (SAR) images and changes in point, line and regional features induced by sparse reconstruction. For SAR images recovered by the spatial sparse model, the statistical distribution degrades, whereas points and lines can be accurately extracted by low sampling rates. Furthermore, the target detection method based on sparse SAR images is studied. Owing to a weak background noise, target detection is easier using sparse SAR images than traditional ones.

     

  • [1]
    Oliver C and Quegan S. Understanding Synthetic Aperture Radar Images[M]. Raleigh, NC, SciTech Publishing, 2004: 1-512.
    [2]
    Auer S J. 3D synthetic aperture radar simulation for interpreting complex urban reflection scenarios[D].
    [3]
    [Ph.D. dissertation], Technische Universitt Mnchen, 2011: 13-15.
    [4]
    Candes E J. Compressive sampling[C]. International Congress of Mathematics, Madrid, Spain, 2006: 1433-1452.
    [5]
    Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
    [6]
    Candes E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
    [7]
    Baraniuk R G. More is less: Signal processing and the data deluge[J]. Science, 2001, 331(6018): 717-719.
    [8]
    Baraniuk R G and Steeghs P. Compressive radar imaging[C]. IEEE Radar Conference, Waltham, Massachusetts, 2007: 128-133.
    [9]
    Herman M A and Strohmer T. High resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
    [10]
    Gurbuz A C, McClellan J H, and Scott W R Jr. GPR imaging using compressed measurements[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 2008, 2: II-13 -II-16.
    [11]
    Suksmono A B, Bharata E, Lestari A A, et al.. Compressive stepped-frequency continuous-wave ground penetrating radar[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 665-669.
    [12]
    YANG J, Thompson J, HUANG X, et al.. Random-frequency SAR imaging based on compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 983-994.
    [13]
    Tello M, Lopez-Dekker P, and Mallorqui J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285-4295.
    [14]
    Patel V M, Easley G R, Healy D M, et al.. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244-254.
    [15]
    Nguyen L H, Tran T, and Thong D. Sparse models and sparse recovery for ultra-wideband SAR applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 940-958.
    [16]
    Batu O and Certin M. Parameter selection in sparsity-driven SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 3040-3050.
    [17]
    Onhon N O and Certin M. A sparsity-driven approach for joint SAR imaging and phase error correction[J]. IEEE Transactions on Imaging Processing, 2012, 21(4): 2075-2088.
    [18]
    Stojanovic I, Certin M, and Karl W C. Compressed sensing of monostatic and multistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1444-1448.
    [19]
    FANG J, XU Z, ZHANG B, et al.. Fast compressed sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2014, 7(1): 352-363.
    [20]
    Potter L C, Ertin E, Parker J T, et al.. Sparsity and compressed sensing in radar imaging[J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020.
    [21]
    Certin M, Stojanovic I, Onhon N O, et al.. Sparsity-driven synthetic aperture radar imaging: reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4): 27-40.
    [22]
    JIANG Q, WANG S, Ziou D, et al.. Ship detection in RADARSAT SAR imagery[C]. IEEE International Conference on Systems, Man and Cybernetics, San Diego, California, USA, 1998, 5: 4562-4566.
    [23]
    Tison C, Nicolas J-M, Tupin F, et al.. A new statistical model for Markovian classification of urban areas in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 42(10): 2046-2057.
    [24]
    LI H, HONG W, WU Y, et al.. On the empirical-statistical modeling of SAR images with generalized Gamma distribution[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 386-397.
    [25]
    Henschel M D, Rey M T, Campbell J W M, et al.. Comparison of probability statistics for automated ship detection in SAR imagery[C]. International Conference on Applications of Photonic Technology, Ottawa, Canada, 1998, 3491: 986-991.
    [26]
    Wackerman C C, Friedman K S, Pichel W G, et al.. Automatic detection of ships in RADARSAT-I SAR imagery[J]. Canadian Journal of Remote Sensing, 2001, 27(5): 568-577.
    [27]
    WANG C, LIAO M, and LI X. Ship detection in SAR image based on the Alpha-stable distribution[J]. Sensors, 2008, 8(8): 4948-4960.
    [28]
    Frery A C, Correia A H, and Freitas C D. Classifying multifrequency fully polarimetric imagery with multiple sources of statistical evidence and contextual information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3098-3109.
    [29]
    GAO G, LIU L, ZHAO L, et al.. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685-1697.
    [30]
    Yeremy M L, Geling G, Rey M, et al.. Results from the Crusade ship detection trial: polarimetric SAR[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, Ontario, Canada, 2002, 2: 711-713.
    [31]
    丘昌镇. 高分辨率SAR图像目标分类特征提取与分析[D].
    [32]
    [硕士论文],国防科技大学, 2009: 2-4. QIU C. Feature extraction and analysis of high-resolution SAR images for target classification[D].
    [33]
    [Master dissertation], National University of Defense Technology of China, 2009: 2-4.
    [34]
    贺志国, 陆军, 匡纲要. SAR图像特征提取与选择研究[J]. 信号处理, 2008, 24(5): 813-823. HE Z, LU J, and KUANG G. A survey on feature extraction and selection of SAR images[J]. Signal Processing, 2008, 24(5): 813-823.
    [35]
    计科峰. SAR图像目标特征提取与分类方法研究[D].
    [36]
    [博士论文],国防科技大学, 2003: 35-56. JI K Targets feature extraction and classification methods for SAR images[D].
    [37]
    [Ph.D. dissertation], National University of Defense Technology of China, 2003: 35-56.
    [38]
    ertin M. Feature-enhanced synthetic aperture radar imaging[D].
    [39]
    [Ph.D. dissertation], Boston University, 2001: 38-206.
    [40]
    Certin M, Karl W C, and Castanon D A. Feature enhancement and ATR performance using nonquadratic optimization-based SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1375-1395.
    [41]
    Samadi S, Certin M, and Masnadi-Shirazi M A. Multiple feature-enhanced SAR imaging using sparsity in combined dictionaries[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 821-825.
    [42]
    ZHANG B, HONG W, and WU Y. Sparse microwave imaging: principles and applications[J]. SCIENCE CHINA Information Sciences, 2012, 55(8): 1722-1754.
    [43]
    Tropp J A and Wright S J. Computational methods for sparse solution of linear inverse problems[J]. Proceedings of the IEEE, 2010, 98(6): 948-958.
    [44]
    Donoho D L, Johnstone I M, Koch J C, et al.. Maximum entropy and the nearly black object[J]. Journal of the Royal Statistical Society, Series B, 1992, 54(1): 41-81.
    [45]
    Bouman C and Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation[J]. IEEE Transactions on Image Processing, 1993, 2(3): 296-310.
    [46]
    CHANG L and WU J. An improved RIP-based performance guarantee for sparse signal recovery via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5702-5715.
    [47]
    DING J, CHEN L, and GU Y. Perturbation analysis of orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 398-410.
    [48]
    张爱冰. 高分辨率SAR图像复杂目标属性散射中心特征提取[D].
    [49]
    [硕士论文],国防科技大学, 2009: 9-48. ZHANG A. Attributed scattering center feature extraction of complex target from high resolution SAR imagery[D].
    [50]
    [Master dissertation], National University of Defense Technology, 2009: 9-48.
    [51]
    Cho S, Haralick R, and Yi S. Improvement of Kittler and Illingworths's minimum error thresholding[J]. Pattern Recognition, 1989, 22(5): 609-617.opy and the nearly black object[J]. Journal of the Royal Statistical Society, Series B, 1992, 54(1): 41-81.
    [52]
    Bouman C and Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation[J]. IEEE Transactions on Image Processing, 1993, 2(3): 296-310.
    [53]
    CHANG L and WU J. An improved RIP-based performance guarantee for sparse signal recovery via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5702-5715.
    [54]
    DING J, CHEN L, and GU Y. Perturbation analysis of orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 398-410.
    [55]
    张爱冰. 高分辨率SAR图像复杂目标属性散射中心特征提取[D]. [硕士论文],国防科技大学, 2009: 9-48. ZHANG A. Attributed scattering center feature extraction of complex target from high resolution SAR imagery[D]. [Master dissertation], National University of Defense Technology of China, 2009: 9-48.
    [56]
    Cho S, Haralick R, and Yi S. Improvement of Kittler and Illingworths's minimum error thresholding[J]. Pattern Recognition, 1989, 22(5): 609-617.
  • Relative Articles

    [1]GAO Zhiqi, SUN Shuchen, HUANG Pingping, QI Yaolong, XU Wei. Improved L1/2 Threshold Iterative High Resolution SAR Imaging Algorithm[J]. Journal of Radars, 2023, 12(5): 1044-1055. doi: 10.12000/JR22243
    [2]DONG Shuxian, WU Yaojun, FANG Wen, QUAN Yinghui. Anti-interrupted Sampling Repeater Jamming Method Based on Frequency-agile Radar Joint Fuzzy C-means[J]. Journal of Radars, 2022, 11(2): 289-300. doi: 10.12000/JR21205
    [3]YU Longlong, FENG Dong, WANG Jian, HUANG Xiaotao. Estimation of the Minimum Number of Acquisitions for Coprime Tomographic Synthetic Aperture Radar[J]. Journal of Radars, 2022, 11(4): 618-636. doi: 10.12000/JR22047
    [4]DENG Likang, ZHANG Shuanghui, ZHANG Chi, LIU Yongxiang. A Multiple-Input Multiple-Output Inverse Synthetic Aperture Radar Imaging Method Based on Multidimensional Alternating Direction Method of Multipliers[J]. Journal of Radars, 2021, 10(3): 416-431. doi: 10.12000/JR20132
    [5]PAN Jie, WANG Shuai, LI Daojing, LU Xiaochun. High-resolution Wide-swath SAR Moving Target Imaging Technology Based on Distributed Compressed Sensing[J]. Journal of Radars, 2020, 9(1): 166-173. doi: 10.12000/JR19060
    [6]XIE Jinwei, LI Zhenfang, WANG Fan, WANG Zhibin. SAR Tomography Imaging for Buildings Using an Inconsistency Criterion for Amplitude and Phase[J]. Journal of Radars, 2020, 9(1): 154-165. doi: 10.12000/JR19062
    [7]DING Chibiao, QIU Xiaolan, XU Feng, LIANG Xingdong, JIAO Zekun, ZHANG Fubo. Synthetic Aperture Radar Three-dimensional Imaging——From TomoSAR and Array InSAR to Microwave Vision(in English)[J]. Journal of Radars, 2019, 8(6): 693-709. doi: 10.12000/JR19090
    [8]Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. Compressed Sensing Linear Array SAR Autofocusing Imaging via Semi-definite Programming[J]. Journal of Radars, 2018, 7(6): 664-675. doi: 10.12000/JR17103
    [9]Hu Jingqiu, Liu Falin, Zhou Chongbin, Li Bo, Wang Dongjin. CS-SAR Imaging Method Based on Inverse Omega-K Algorithm[J]. Journal of Radars, 2017, 6(1): 25-33. doi: 10.12000/JR16027
    [10]Chen Ying, Zhong Fei, Guo Shuxu. Blind Compressed Sensing Parameter Estimation of Non-cooperative Frequency Hopping Signal[J]. Journal of Radars, 2016, 5(5): 531-537. doi: 10.12000/JR15106
    [11]Li Liechen, Li Daojing, Huang Pingping. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain[J]. Journal of Radars, 2016, 5(1): 109-117. doi: 10.12000/JR14159
    [12]Zhong Jinrong, Wen Gongjian. Compressive Sensing for Radar Target Signal Recovery Based on Block Sparse Bayesian Learning(in English)[J]. Journal of Radars, 2016, 5(1): 99-108. doi: 10.12000/JR15056
    [13]Ren Xiaozhen, Yang Ruliang. Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase[J]. Journal of Radars, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [14]Xiao Peng, Wu Youming, Yu Ze, Li Chunsheng. Azimuth Ambiguity Suppression in SAR Images Based on Compressive Sensing Recovery Algorithm[J]. Journal of Radars, 2016, 5(1): 35-41. doi: 10.12000/JR16004
    [15]Gu Fufei, Zhang Qun, Yang Qiu, Huo Wenjun, Wang Min. Compressed Sensing Imaging Algorithm for High-squint SAR Based on NCS Operator[J]. Journal of Radars, 2016, 5(1): 16-24. doi: 10.12000/JR15035
    [16]Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107
    [17]Wang Aichun, Xiang Maosheng. SAR Tomography Based on Block Compressive Sensing[J]. Journal of Radars, 2016, 5(1): 57-64. doi: 10.12000/JR16006
    [18]Liao Ming-sheng, Wei Lian-huan, Wang Zi-yun, Timo Balz, Zhang Lu. Compressive Sensing in High-resolution 3D SAR Tomography of Urban Scenarios[J]. Journal of Radars, 2015, 4(2): 123-129. doi: 10.12000/JR15031
    [19]Zhong Li-hua, Hu Dong-hui, Ding Chi-biao, Zhang Wen-yi. ISAR Sparse Aperture Imaging Algorithm for Large Size Target[J]. Journal of Radars, 2012, 1(3): 292-300. doi: 10.3724/SP.J.1300.2012.20033
    [20]Liu Zhen, Wei Xi-zhang, Li Xiang. Novel Method of Unambiguous Moving Target Detection in Pulse-Doppler Radar with Random Pulse Repetition Interval[J]. Journal of Radars, 2012, 1(1): 28-35. doi: 10.3724/SP.J.1300.2013.10063
  • Cited by

    Periodical cited type(3)

    1. 黄晓云. 基于光场重构的室内空间布局三维成像方法研究. 激光杂志. 2024(04): 228-232 .
    2. Xiaolan Qiu,Zekun Jiao,Zhe Zhang,Qiancheng Yan,Chibiao Ding. Advances and prospects in SAR microwave vision three-dimensional imaging. National Science Open. 2024(05): 53-83 .
    3. Xinyuan Liu,Shunjun Wei,Wei Pu,Xiang Cai,Yanbo Wen,Shisheng Guo,Lingjiang Kong,Xiaoling Zhang. RM-CSTV: An effective high-resolution method of non-line-of-sight millimeter-wave radar 3-D imaging. National Science Open. 2024(05): 36-52 .

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3401) PDF downloads(1136) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint