Volume 10 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
LI Jianbing and WANG Xuesong. Review of radar characteristics and sensing technologies of distributed soft target[J]. Journal of Radars, 2021, 10(1): 86–99. doi: 10.12000/JR20052
Citation: LI Jianbing and WANG Xuesong. Review of radar characteristics and sensing technologies of distributed soft target[J]. Journal of Radars, 2021, 10(1): 86–99. doi: 10.12000/JR20052

Review of Radar Characteristics and Sensing Technologies of Distributed Soft Target

DOI: 10.12000/JR20052
Funds:  The National Natural Science Foundation of China (61771479, 61490649), Hunan Outstanding Youth Fund (2018JJ1030)
More Information
  • Corresponding author: LI Jianbing, jianbingli@nudt.edu.cn
  • Received Date: 2020-05-01
  • Rev Recd Date: 2020-06-21
  • Available Online: 2020-07-10
  • Publish Date: 2021-02-25
  • Distributed soft target refers to nonrigid target or a target group with wide distribution range, time-varying spatial distribution, or internal relative motion. This type of target is currently attracting considerable interest in the radar field, and the research on its radar characteristics and sensing technology is a typical interdisciplinary problem. To help the radar technicians better understand the related technologies, this study introduces the dynamics, scattering/transmission, radar characteristics, detection, and parameter retrieval of this type of target in continuous and discrete forms, as regards the positive and inverse problems. Considering the aircraft wake vortex as an example, the radar characteristics and sensing technology of this type of target are illustrated, which can serve as a good reference for the development of related radar detection technologies.

     

  • loading
  • [1]
    SKOLNIK M I. Introduction to Radar Systems[M]. Boston: McGraw Hill, 2001.
    [2]
    GERZ T, HOLZÄPFEL F, and DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181–208. doi: 10.1016/S0376-0421(02)00004-0
    [3]
    陈静. 雷达箔条干扰原理[M]. 北京: 国防工业出版社, 2007.

    CHEN Jing. Principles of Radar Chaff Jamming[M]. Beijing: National Defense Industry Press, 2007.
    [4]
    Food and Agriculture Organization of the United Nations. Appeal for rapid response and anticipatory action in the Greater Horn of Africa[R]. 2020.
    [5]
    DOVIAK R J and ZRNIĆ D S. Doppler Radar and Weather Observations[M]. 2nd ed. New York: Dover Publications, 2006.
    [6]
    SHARMAN R and LANE T. Aviation Turbulence: Processes, Detection, Prediction[M]. Switzerland: Springer, 2016.
    [7]
    STREETER V L and WYLIE E B. Fluid Mechanics[M]. New York: McGraw-Hill, 1979.
    [8]
    CHEW W C. Waves and Fields in Inhomogeneous Media[M]. New York: Van Nostrand Reinhold, 1990.
    [9]
    BORN M and WOLF E. Principles of Optics[M]. Cambridge: Cambridge University Press, 1999.
    [10]
    WANG Wei, LI Jianbing, and NIU Fengliang. A revisit to the validity of born approximation in high frequency scattering problems[J]. Microwave and Optical Technology Letters, 2012, 54(12): 2792–2797. doi: 10.1002/mop.27161
    [11]
    LI Jianbing, WANG Xuesong, and WANG Tao. On the validity of born approximation[J]. Progress In Electromagnetics Research, 2010, 107(4): 219–237.
    [12]
    LI Jianbing, WANG Xuesong, and WANG Tao. A rigorous criterion to identify the validity of the Born approximation[J]. Chinese Physics B, 2009, 18(8): 3174–3182. doi: 10.1088/1674-1056/18/8/014
    [13]
    NIE Zaiping, YAN Su, HE Shiquan, et al. On the basis functions with traveling wave phase factor for efficient analysis of scattering from electrically large targets[J]. Progress in Electromagnetics Research, 2008, 85: 83–114. doi: 10.2528/PIER08081905
    [14]
    李健兵. 飞机尾流雷达特征信号研究[M]. 长沙: 国防科技大学出版社, 2015.

    LI Jianbing. Study on the Radar Signatures of Aircraft Wake Vortices[M]. Changsha: National University of Defense Technology Press, 2015.
    [15]
    CUI Tiejun, CHEW W C, AYDINER A A, et al. Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted born iterative method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 339–346. doi: 10.1109/36.905242
    [16]
    LI Jianbing, GAO Hang, LI Yongzhen, et al. Circulation retrieval of simulated wake vortices under rainy condition with a side-looking scanning radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 569–584. doi: 10.1109/TAES.2017.2760799
    [17]
    谢鸿杰. 稀薄大气中箔条的雷达干扰特性研究[D]. [硕士论文], 国防科技大学, 2014.

    XIE Hongjie. Study on radar jamming characteristics of chaff in rarefied atmosphere[D]. [Master dissertation], National University of Defense Technology, 2014.
    [18]
    BRINGI V N and CHANDRASEKAR V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. Cambridge: Cambridge University Press, 2001.
    [19]
    ISHIMARU A. Wave Propagation and Scattering in Random Media[M]. New York: Academic Press, 1978.
    [20]
    GOUESBET G. Latest achievements in Generalized Lorenz-Mie theories: A commented reference database[J]. Annalen der Physik, 2014, 526(11/12): 461–489.
    [21]
    LEINONEN J. High-level interface to T-matrix scattering calculations: Architecture, capabilities and limitations[J]. Optics Express, 2014, 22(2): 1655–1660. doi: 10.1364/OE.22.001655
    [22]
    MAUGHAN J B, CHAKRABARTI A, and SORENSEN C M. Rayleigh scattering and the internal coupling parameter for arbitrary particle shapes[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189: 339–343. doi: 10.1016/j.jqsrt.2016.12.004
    [23]
    BOWMAN J J, SENIOR T B A, and USLENGHI P L E. Electromagnetic and Acoustic Scattering by Simple Shapes[M]. New York: Hemisphere Publishing Corp, 1987.
    [24]
    李金梁. 箔条干扰的特性与雷达抗箔条技术研究[D]. [博士论文], 国防科技大学, 2010.

    LI Jinliang. Study on characteristics of chaff jamming and anti-chaff technology for radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2010.
    [25]
    盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2003.

    SHENG Peixuan, MAO Jietai, LI Jianguo, et al. Atmosphere Physics[M]. Beijing: Beijing University Press, 2003.
    [26]
    ZHANG Guifu. Weather Radar Polarimetry[M]. New York: CRC Press, 2016.
    [27]
    SKOLNIK M I. Radar Handbook[M]. New York: McGraw-Hill, 2008.
    [28]
    SULLIVAN R J. Radar Foundations for Imaging and Advanced Concepts[M]. Raleigh: SciTech Pub, 2004.
    [29]
    MCMANAMON P. Field Guide to Lidar[M]. Washington: SPIE Press, 2015.
    [30]
    BANAKH V and SMALIKHO I. Coherent Doppler Wind Lidars in a Turbulent Atmosphere[M]. Boston: Artech House, 2013.
    [31]
    MCAULAY A D. Lidar Protects from Chemical/Biological Weapons[M]. CAULAY A D. Military Laser Technology for Defense: Technology for Revolutionizing 21st Century Warfare. Hoboken, USA: John Wiley & Sons, Inc., 2011: 251–264.
    [32]
    BRENNEN C E. Fundamentals of Multiphase Flow[M]. Cambridge: Cambridge University Press, 2009.
    [33]
    LIU Zhengliang, BARLOW J F, CHAN P W, et al. A review of progress and applications of pulsed doppler Wind LiDARs[J]. Remote Sensing, 2019, 11(21): 2522. doi: 10.3390/rs11212522
    [34]
    GAO Jidong, XUE M, LEE S Y, et al. A three-dimensional variational single-Doppler velocity retrieval method with simple conservation equation constraint[J]. Meteorology and Atmospheric Physics, 2006, 94(1/4): 11–26.
    [35]
    GAO Jidong, XUE Ming, SHAPIRO A, et al. A variational method for the analysis of three-dimensional wind fields from two doppler radars[J]. Monthly Weather Review, 1999, 127(9): 2128–2142. doi: 10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2
    [36]
    POTVIN C K. A variational method for detecting and characterizing convective vortices in cartesian wind fields[J]. Monthly Weather Review, 2013, 141(9): 3102–3115. doi: 10.1175/MWR-D-13-00015.1
    [37]
    QIU Chongjian, SHAO Aimei, LIU S, et al. A two-step variational method for three-dimensional wind retrieval from single Doppler radar[J]. Meteorology and Atmospheric Physics, 2006, 91(1/4): 1–8.
    [38]
    LI Jianbing, CHANDRASEKAR V, and WANG Xuesong. Determination of dominant-scattering raindrops’ size using dual-polarization radar observations[C]. 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), Chengdu, China, 2018: 1–3.
    [39]
    HUERTA M P. NextGen implementation plan[R]. Federal Aviation Administration. 2016.
    [40]
    ASTHEIMER T, HILTON D, BALDONI C, et al. SESAR master plan[R]. DLM-0710-001-02-00, 2008.
    [41]
    中国民用航空局空管行业管理办公室. 中国民航航空系统组块升级(ASBU)发展与实施策略[R]. IB-TM-2015-002, 2015.

    Guild Administration Office of CAAC. Development of Implimentation Stratigies of CAAC Aviation System Block Update (ASBU)[R]. IB-TM-2015-002, 2015.
    [42]
    李健兵, 高航, 王涛, 等. 飞机尾流的散射特性与探测技术综述[J]. 雷达学报, 2017, 6(6): 660–672. doi: 10.12000/JR17068

    LI Jianbing, GAO Hang, WANG Tao, et al. A survey of the scattering characteristics and detection of aircraft wake vortices[J]. Journal of Radars, 2017, 6(6): 660–672. doi: 10.12000/JR17068
    [43]
    WANG Xuesong, LI Jianbing, WANG Tao, et al. Validity criterion for the Born approximation convergence in microscopy imaging: Comment[J]. Journal of the Optical Society of America A, 2011, 28(4): 662–664. doi: 10.1364/JOSAA.28.000662
    [44]
    WANG Xuesong, LI Jianbing, QU Longhai, et al. Temporal evolution of the RCS of aircraft wake vortices[J]. Aerospace Science and Technology, 2013, 24(1): 204–208. doi: 10.1016/j.ast.2011.11.008
    [45]
    LI Jianbing, SHEN Chun, GAO Hang, et al. Path Integration (PI) method for the parameter-retrieval of aircraft wake vortex by Lidar[J]. Optics Express, 2020, 28(3): 4286–4306. doi: 10.1364/OE.382968
    [46]
    GAO Hang, LI Jianbing, CHAN P W, et al. Parameter-retrieval of dry-air wake vortices with a scanning Doppler Lidar[J]. Optics Express, 2018, 26(13): 16377–16392. doi: 10.1364/OE.26.016377
    [47]
    GAO Hang, LI Jianbing, CHAN P W, et al. Parameter retrieval of aircraft wake vortex based on its max-min distribution of Doppler velocities measured by a Lidar[J]. The Journal of Engineering, 2019, 2019(20): 6852–6855. doi: 10.1049/joe.2019.0539
    [48]
    LI Jianbing, WANG Xuesong, WANG Tao, et al. On an improved-Levin oscillatory quadrature method[J]. Journal of Mathematical Analysis and Applications, 2011, 380(2): 467–474. doi: 10.1016/j.jmaa.2011.03.055
    [49]
    LI Jianbing, WANG Xuesong, and WANG Tao. Modeling the dielectric constant distribution of wake vortices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 820–831. doi: 10.1109/TAES.2011.5751228
    [50]
    LI Jianbing, WANG Xuesong, WANG Tao, et al. High range resolution profile of simulated aircraft wake vortices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 116–129. doi: 10.1109/TAES.2012.6129624
    [51]
    LI Jianbing, WANG Tao, and WANG Xuesong. Fast evaluation of scattering oscillatory integrals over fan-shaped regions[J]. Applied Mathematics & Information Sciences, 2014, 8(5): 2321–2326.
    [52]
    LI Jianbing, WANG Xuesong, and WANG Tao. Evaluation of Cauchy principal value integrals of oscillatory kind[J]. Applied Mathematics and Computation, 2010, 217(6): 2390–2396. doi: 10.1016/j.amc.2010.07.039
    [53]
    LI Jianbing, WANG Xuesong, WANG Tao, et al. Delaminating quadrature method for multi-dimensional highly oscillatory integrals[J]. Applied Mathematics and Computation, 2009, 209(2): 327–338. doi: 10.1016/j.amc.2008.12.061
    [54]
    LI Jianbing, WANG Xuesong, WANG Tao, et al. Circulation retrieval of wake vortex under rainy condition with a vertically pointing radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1893–1906. doi: 10.1109/TAES.2017.2675198
    [55]
    LI Jianbing, WANG Tao, QU Longhai, et al. Circulation retrieval of wake vortex in fog with an upward-looking monostatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 169–180. doi: 10.1109/TAES.2015.140901
    [56]
    LI Jianbing, WANG Tao, LIU Zhongxun, et al. Circulation retrieval of wake vortex in fog with a side-looking scanning radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2242–2254. doi: 10.1109/TAES.2016.150635
    [57]
    LI Jianbing, WANG Xuesong, and QU Longhai. Calculation of physical optics integrals over NURBS surface using a delaminating quadrature method[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2388–2397. doi: 10.1109/TAP.2012.2189728
    [58]
    LI Jianbing, WANG Xuesong, WANG Tao, et al. An improved Levin quadrature method for highly oscillatory integrals[J]. Applied Numerical Mathematics, 2010, 60(8): 833–842. doi: 10.1016/j.apnum.2010.04.009
    [59]
    LI Jianbing, WANG Xuesong, and WANG Tao. A universal solution to one-dimensional oscillatory integrals[J]. Science in China Series F: Information Sciences, 2008, 51(10): 1614–1622. doi: 10.1007/s11432-008-0121-2
    [60]
    LI Jianbing, WANG Xuesong, XIAO Shunping, et al. A rapid solution of a kind of 1D Fredholm oscillatory integral equation[J]. Journal of Computational and Applied Mathematics, 2012, 236(10): 2696–2705. doi: 10.1016/j.cam.2012.01.007
    [61]
    SHARIFF K and WRAY A. Analysis of the radar reflectivity of aircraft vortex wakes[J]. Journal of Fluid Mechanics, 2002, 463: 121–161. doi: 10.1017/S0022112002008674
    [62]
    MYERS T J, SCALES W A, and MARSHALL R E. Determination of aircraft wake vortex radar cross section due to coherent Bragg scatter from mixed atmospheric water vapor[J]. Radio Science, 1999, 34(1): 103–111. doi: 10.1029/98RS02776
    [63]
    FILON L N G. On a quadrature formula for trigonometric integrals[J]. Proceedings of the Royal Society of Edinburgh, 1929, 49: 38–47.
    [64]
    LEVIN D. Procedures for computing one-and two-dimensional integrals of functions with rapid irregular oscillations[J]. Mathematics of Computation, 1982, 38(158): 531–538. doi: 10.1090/S0025-5718-1982-0645668-7
    [65]
    ISERLES A and LEVIN D. Asymptotic expansion and quadrature of composite highly oscillatory integrals[J]. Mathematics of Computation, 2011, 80(273): 279–296.
    [66]
    LIU Zhongxun, JEANNIN N, VINCENT F, et al. Modeling the radar signature of raindrops in aircraft wake vortices[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(3): 470–484. doi: 10.1175/JTECH-D-11-00220.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3104) PDF downloads(382) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint