Volume 5 Issue 1
Feb.  2016
Turn off MathJax
Article Contents
Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107
Citation: Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107

Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing

DOI: 10.12000/JR14107
Funds:

The National Natural Science Foundation of China (61172169, 61201369), The Natural Science Foundation Research Project of Shaanxi Province (2013JQ8008)

  • Received Date: 2014-08-25
  • Rev Recd Date: 2014-10-31
  • Publish Date: 2016-02-28
  • A multiple targets cognitive radar tracking method based on Compressed Sensing (CS) is proposed. In this method, the theory of CS is introduced to the case of cognitive radar tracking process in multiple targets scenario. The echo signal is sparsely expressed. The designs of sparse matrix and measurement matrix are accomplished by expressing the echo signal sparsely, and subsequently, the restruction of measurement signal under the down-sampling condition is realized. On the receiving end, after considering that the problems that traditional particle filter suffers from degeneracy, and require a large number of particles, the particle swarm optimization particle filter is used to track the targets. On the transmitting end, the Posterior Cramr-Rao Bounds (PCRB) of the tracking accuracy is deduced, and the radar waveform parameters are further cognitively designed using PCRB. Simulation results show that the proposed method can not only reduce the data quantity, but also provide a better tracking performance compared with traditional method.

     

  • loading
  • [1]
    黎湘, 范梅梅. 认知雷达及其关键技术研究进展[J]. 电子学报, 2012, 40(9): 1863-1870. Li Xiang and Fan Mei-mei. Research advance on cognitive radar and its key technology[J]. Acta Electronica Sinica, 2012, 40(9): 1863-1870.
    [2]
    Haykin S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30-40.
    [3]
    Haykin S, Zia A, Arasaratnam I, et al.. Cognitive tracking radar[C]. Proceedings of 2010 IEEE Radar Conference, Washington DC, 2010: 1467-1470.
    [4]
    Chavali P and Nehorai A. Cognitive radar for target tracking in multipath scenarios[C]. Proceedings of 2010 IEEE Waveform Diversity and Design Conference, Niagara Falls, Canada, 2010: 110-114.
    [5]
    Chavali P and Nehorai A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 715-729.
    [6]
    Candes E and Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
    [7]
    Candes E, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
    [8]
    Candes E. Compressive sampling[C]. Proceedings of the International Conference of Mathematicians, Madrid, Spain, 2006: 1433-l452.
    [9]
    Sira S P. Time-varying waveform selection and configuration for agile sensors in tracking applications[C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, Pennsylvania, 2005: 880-884.
    [10]
    薛文虎, 张社国, 徐红华. 用于目标跟踪的自适应广义调频波 形设计算法[J]. 海军工程大学学报, 2012, 24(4): 67-71. Xue Wen-hu, Zhang She-guo, and Xu Hong-hua. An adaptive waveform design algorithm for target tracking based on generalized frequency modulation[J]. Journal of Naval University of Engineering, 2012, 24(4): 67-71.
    [11]
    石光明, 刘丹华, 高大化, 等. 压缩感知理论及其研究进展[J]. 电子学报, 2009, 37(5): 1070-1081. Shi Guang-ming, Liu Dan-hua, Gao Da-hua, et al.. Advances in theory and application of compressed sensing[J]. Acta Electronica Sinica, 2009, 37(5): 1070-1081.
    [12]
    时燕, 陈迪荣. 基于小波包算法的压缩传感SAR 成像方法[J]. 雷达学报, 2013, 2(2): 218-225. Shi Yan and Chen Di-rong. A compressive sensing SAR imaging approach based on wavelet package algorithm[J]. Journal of Radars, 2013, 2(2): 218-225.
    [13]
    方正, 佟国峰, 徐心和. 粒子群优化粒子滤波方法[J]. 控制与 决策, 2007, 22(3): 273-277. Fang Zheng, Tong Guo-feng, and Xu Xin-he. Particle swarm optimized particle filter[J]. Control and Decision, 2007, 22(3): 273-277.
    [14]
    朱志宇. 粒子滤波算法及其应用[M]. 北京: 科学出版社, 2010: 80-81. Zhu Zhi-yu. Particle Filter Algorithm and Its Application[M]. Beijing: Science Press, 2010: 80-81.
    [15]
    Kershaw D and Evans R. Optimal waveform selection for tracking systems[J]. IEEE Transactions on Information Theory, 1994, 40(9): 1536-1550.
    [16]
    Tichavsk P, Muravchik C H, and Nehorai A. Posterior Cramr-Rao bounds for discrete-time nonlinear filtering[J]. IEEE Transactions on Signal Processing, 1998, 46(5): 1386-1394.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4072) PDF downloads(1799) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint