Citation: | Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107 |
[1] |
黎湘, 范梅梅. 认知雷达及其关键技术研究进展[J]. 电子学报, 2012, 40(9): 1863-1870. Li Xiang and Fan Mei-mei. Research advance on cognitive radar and its key technology[J]. Acta Electronica Sinica, 2012, 40(9): 1863-1870.
|
[2] |
Haykin S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30-40.
|
[3] |
Haykin S, Zia A, Arasaratnam I, et al.. Cognitive tracking radar[C]. Proceedings of 2010 IEEE Radar Conference, Washington DC, 2010: 1467-1470.
|
[4] |
Chavali P and Nehorai A. Cognitive radar for target tracking in multipath scenarios[C]. Proceedings of 2010 IEEE Waveform Diversity and Design Conference, Niagara Falls, Canada, 2010: 110-114.
|
[5] |
Chavali P and Nehorai A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 715-729.
|
[6] |
Candes E and Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
|
[7] |
Candes E, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
|
[8] |
Candes E. Compressive sampling[C]. Proceedings of the International Conference of Mathematicians, Madrid, Spain, 2006: 1433-l452.
|
[9] |
Sira S P. Time-varying waveform selection and configuration for agile sensors in tracking applications[C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, Pennsylvania, 2005: 880-884.
|
[10] |
薛文虎, 张社国, 徐红华. 用于目标跟踪的自适应广义调频波 形设计算法[J]. 海军工程大学学报, 2012, 24(4): 67-71. Xue Wen-hu, Zhang She-guo, and Xu Hong-hua. An adaptive waveform design algorithm for target tracking based on generalized frequency modulation[J]. Journal of Naval University of Engineering, 2012, 24(4): 67-71.
|
[11] |
石光明, 刘丹华, 高大化, 等. 压缩感知理论及其研究进展[J]. 电子学报, 2009, 37(5): 1070-1081. Shi Guang-ming, Liu Dan-hua, Gao Da-hua, et al.. Advances in theory and application of compressed sensing[J]. Acta Electronica Sinica, 2009, 37(5): 1070-1081.
|
[12] |
时燕, 陈迪荣. 基于小波包算法的压缩传感SAR 成像方法[J]. 雷达学报, 2013, 2(2): 218-225. Shi Yan and Chen Di-rong. A compressive sensing SAR imaging approach based on wavelet package algorithm[J]. Journal of Radars, 2013, 2(2): 218-225.
|
[13] |
方正, 佟国峰, 徐心和. 粒子群优化粒子滤波方法[J]. 控制与 决策, 2007, 22(3): 273-277. Fang Zheng, Tong Guo-feng, and Xu Xin-he. Particle swarm optimized particle filter[J]. Control and Decision, 2007, 22(3): 273-277.
|
[14] |
朱志宇. 粒子滤波算法及其应用[M]. 北京: 科学出版社, 2010: 80-81. Zhu Zhi-yu. Particle Filter Algorithm and Its Application[M]. Beijing: Science Press, 2010: 80-81.
|
[15] |
Kershaw D and Evans R. Optimal waveform selection for tracking systems[J]. IEEE Transactions on Information Theory, 1994, 40(9): 1536-1550.
|
[16] |
Tichavsk P, Muravchik C H, and Nehorai A. Posterior Cramr-Rao bounds for discrete-time nonlinear filtering[J]. IEEE Transactions on Signal Processing, 1998, 46(5): 1386-1394.
|
1. | 张翼鹏,卢东东,仇晓兰,李飞. 基于散射点拓扑和双分支卷积神经网络的SAR图像小样本舰船分类. 雷达学报. 2024(02): 411-427 . ![]() | |
2. | 罗汝,赵凌君,何奇山,计科峰,匡纲要. SAR图像飞机目标智能检测识别技术研究进展与展望. 雷达学报. 2024(02): 307-330 . ![]() | |
3. | 马晓萌,冯舒文,原昊,张鹏宇,沈永健. 基于深度学习的雷达目标识别算法评估系统设计. 遥测遥控. 2024(03): 24-34 . ![]() | |
4. | 万烜申,刘伟,牛朝阳,卢万杰. 基于动量迭代快速梯度符号的SAR-ATR深度神经网络黑盒攻击算法. 雷达学报. 2024(03): 714-729 . ![]() | |
5. | 何奇山,赵凌君,计科峰,匡纲要. 面向SAR目标识别成像参数敏感性的深度学习技术研究进展. 电子与信息学报. 2024(10): 3827-3848 . ![]() | |
6. | 王智睿,康玉卓,曾璇,汪越雷,张汀,孙显. SAR-AIRcraft-1.0:高分辨率SAR飞机检测识别数据集. 雷达学报. 2023(04): 906-922 . ![]() | |
7. | 许延龙,潘昊,丁柏圆. 基于深度信念网络的属性散射中心匹配及在SAR图像目标识别中的应用. 液晶与显示. 2023(11): 1511-1520 . ![]() | |
8. | 叶子琦,肖夏阳,李刚田,王海鹏. 面向小样本的SAR图像飞机目标分类方法. 遥感信息. 2023(06): 60-67 . ![]() | |
9. | 顾丹丹,廖意,王晓冰. 雷达目标特性知识引导的智能识别技术进展与思考. 制导与引信. 2022(04): 57-64 . ![]() |