Volume 13 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
CHEN Hui, DU Shuangyan, LIAN Feng, et al. Track-MT3: A novel multitarget tracking algorithm based on transformer network[J]. Journal of Radars, 2024, 13(6): 1202–1219. doi: 10.12000/JR24164
Citation: CHEN Hui, DU Shuangyan, LIAN Feng, et al. Track-MT3: A novel multitarget tracking algorithm based on transformer network[J]. Journal of Radars, 2024, 13(6): 1202–1219. doi: 10.12000/JR24164

Track-MT3: A Novel Multitarget Tracking Algorithm Based on Transformer Network

DOI: 10.12000/JR24164
Funds:  The National Natural Science Foundation of China (62163023, 61873116, 62363023, 62366031), The Key Talent Project of Gansu Province in 2024
More Information
  • Corresponding author: CHEN Hui, chenh@lut.edu.cn
  • Received Date: 2024-08-15
  • Rev Recd Date: 2024-10-11
  • Available Online: 2024-10-16
  • Publish Date: 2024-11-01
  • To address the challenges associated with the data association and stable long-term tracking of multiple targets in complex environments, this study proposes an innovative end-to-end multitarget tracking model called Track-MT3 based on a transformer network. First, a dual-query mechanism comprising detection and tracking queries is introduced to implicitly perform measurement-to-target data association and enable accurate target state estimation. Subsequently, a cross-frame target alignment strategy is employed to enhance the temporal continuity of tracking trajectories, ensuring consistent target identities across frames. In addition, a query transformation and temporal feature encoding module is designed to improve target motion pattern modeling by adaptively combining target dynamics information at different time scales. During model training, a collective average loss function is adopted to achieve the global optimization of tracking performance, considering the entire tracking process in an end-to-end manner. Finally, the performance of Track-MT3 is extensively evaluated under various complex multitarget tracking scenarios using multiple metrics. Experimental results demonstrate that Track-MT3 exhibits superior long-term tracking performance than baseline methods such as MT3. Specifically, Track-MT3 achieves overall performance improvements of 6% and 20% against JPDA and MHT, respectively. By effectively exploiting temporal information, Track-MT3 ensures stable and robust multitarget tracking in complex dynamic environments.

     

  • loading
  • [1]
    BAI Xianglong, LAN Hua, WANG Zengfu, et al. Robust multitarget tracking in interference environments: A message-passing approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(1): 360–386. doi: 10.1109/TAES.2023.3323629.
    [2]
    YANG Jialin, JIANG Defu, TAO Jin, et al. A sector-matching probability hypothesis density filter for radar multiple target tracking[J]. Applied Sciences, 2023, 13(5): 2834. doi: 10.3390/app13052834.
    [3]
    HEM A G, BAERVELDT M, and BREKKE E F. PMBM filtering with fusion of target-provided and exteroceptive measurements: Applications to maritime point and extended object tracking[J]. IEEE Access, 2024, 12: 55404–55423. doi: 10.1109/ACCESS.2024.3389824.
    [4]
    CHEN Jiahui, GUO Shisheng, LUO Haolan, et al. Non-line-of-sight multi-target localization algorithm for driver-assistance radar system[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5332–5337. doi: 10.1109/TVT.2022.3227971.
    [5]
    HERZOG F, CHEN Junpeng, TEEPE T, et al. Synthehicle: Multi-vehicle multi-camera tracking in virtual cities[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops. Waikoloa, USA, 2023: 1–11. doi: 10.1109/WACVW58289.2023.00005.
    [6]
    RAKAI L, SONG Huansheng, SUN Shijie, et al. Data association in multiple object tracking: A survey of recent techniques[J]. Expert Systems with Applications, 2022, 192: 116300. doi: 10.1016/j.eswa.2021.116300.
    [7]
    LI Tiancheng, LIANG Haozhe, XIAO Bing, et al. Finite mixture modeling in time series: A survey of Bayesian filters and fusion approaches[J]. Information Fusion, 2023, 98: 101827. doi: 10.1016/j.inffus.2023.101827.
    [8]
    LIU Zongxiang, LUO Junwen, and ZHOU Chunmei. Multi-hypothesis marginal multi-target bayes filter for a heavy-tailed observation noise[J]. Remote Sensing, 2023, 15(21): 5258. doi: 10.3390/rs15215258.
    [9]
    QIU Changzhen, ZHANG Zhiyong, LU Huanzhang, et al. A survey of motion-based multitarget tracking methods[J]. Progress In Electromagnetics Research B, 2015, 62: 195–223. doi: 10.2528/PIERB15010503.
    [10]
    Vo B N and MA W K. The gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/TSP.2006.881190.
    [11]
    Vo B T, Vo B N, and CANTONI A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553–3567. doi: 10.1109/TSP.2007.894241.
    [12]
    Vo B T, Vo B N, and CANTONI A. The cardinality balanced multi-target multi-bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924.
    [13]
    Vo B N, Vo B T, and PHUNG D. Labeled random finite sets and the bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6554–6567. doi: 10.1109/TSP.2014.2364014.
    [14]
    GARCÍA-FERNÁNDEZ Á F, WILLIAMS J L, GRANSTRÖM K, et al. Poisson multi-Bernoulli mixture filter: Direct derivation and implementation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1883–1901. doi: 10.1109/TAES.2018.2805153.
    [15]
    CHONG C Y. An overview of machine learning methods for multiple target tracking[C]. 2021 IEEE 24th International Conference on Information Fusion, Sun City, South Africa, 2021: 1–9. doi: 10.23919/FUSION49465.2021.9627045.
    [16]
    JONDHALE S R and DESHPANDE R S. Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks[J]. IEEE Sensors Journal, 2019, 19(1): 224–233. doi: 10.1109/JSEN.2018.2873357.
    [17]
    LIU Huajun, ZHANG Hui, and MERTZ C. DeepDA: LSTM-based deep data association network for multi-targets tracking in clutter[C]. 22th International Conference on Information Fusion, Ottawa, Canada, 2019: 1–8. doi: 10.23919/FUSION43075.2019.9011217.
    [18]
    BECKER P, PANDYA H, GEBHARDT G H W, et al. Recurrent Kalman networks: Factorized inference in high-dimensional deep feature spaces[C]. International Conference on Machine Learning, Long Beach, USA, 2019: 544–552. doi: 10.48550/arXiv.1905.07357.
    [19]
    SHI Zhuangwei. Incorporating Transformer and LSTM to Kalman filter with EM algorithm for state estimation[OL]. https://doi.org/10.48550/arXiv.2105.00250.
    [20]
    GAO Chang, YAN Junkun, ZHOU Shenghua, et al. Long short-term memory-based deep recurrent neural networks for target tracking[J]. Information Sciences, 2019, 502: 279–296. doi: 10.1016/j.ins.2019.06.039.
    [21]
    ZHANG Yongquan, SHI Zhenyun, JI Hongbing, et al. Online multi-target intelligent tracking using a deep long-short term memory network[J]. Chinese Journal of Aeronautics, 2023, 36(9): 313–329. doi: 10.1016/j.cja.2023.02.006.
    [22]
    LI Jing, LIANG Xinru, YUAN Shengzhi, et al. A strong maneuvering target-tracking filtering based on intelligent algorithm[J]. International Journal of Aerospace Engineering, 2024, 2024(1): 9981332. doi: 10.1155/2024/9981332.
    [23]
    EMAMBAKHSH M, BAY A, and VAZQUEZ E. Deep recurrent neural network for multi-target filtering[C]. MultiMedia Modeling: 25th International Conference, Thessaloniki, Greece, 2019: 519–531. doi: 10.1007/978-3-030-05716-9_42.
    [24]
    LIU Jingxian, WANG Zulin, and XU Mai. DeepMTT: A deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network[J]. Information Fusion, 2020, 53: 289–304. doi: 10.1016/j.inffus.2019.06.012.
    [25]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All you Need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
    [26]
    ZENG Ailing, CHEN Muxi, ZHANG Lei, et al. Are transformers effective for time series forecasting?[C]. 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 11121–11128. doi: 10.1609/aaai.v37i9.26317.
    [27]
    PINTO J, HESS G, LJUNGBERGH W, et al. Next generation multitarget trackers: Random finite set methods vs transformer-based deep learning[C]. 2021 IEEE 24th International Conference on Information Fusion, Sun City, South Africa, 2021: 1–8. doi: 10.23919/FUSION49465.2021.9626990.
    [28]
    PINTO J, HESS G, LJUNGBERGH W, et al. Can deep learning be applied to model-based multi-object tracking?[OL]. https://doi.org/10.48550/arXiv.2202.07909.
    [29]
    MEINHARDT T, KIRILLOV A, LEAL-TAIXÉ L, et al. TrackFormer: Multi-object tracking with transformers[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 8844–8854. doi: 10.1109/CVPR52688.2022.00864.
    [30]
    ZENG Fangao, DONG Bin, ZHANG Yuang, et al. MOTR: end-to-end multiple-object tracking with transformer[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 659–675. doi: 10.1007/978-3-031-19812-0_38.
    [31]
    WANG Qiang, LI Bei, XIAO Tong, et al. Learning deep transformer models for machine translation[C]. 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 1810–1822. doi: 10.18653/v1/P19-1176.
    [32]
    CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. 16th European conference on computer vision, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
    [33]
    BEARD M, VO B T, and VO B N. Bayesian multi-target tracking with merged measurements using labelled random finite sets[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1433–1447. doi: 10.1109/TSP.2015.2393843.
    [34]
    RAHMATHULLAH A S, GARCÍA-FERNÁNDEZ Á F, and SVENSSON L. Generalized optimal sub-pattern assignment metric[C]. 2017 20th International Conference on Information Fusion, Xi’an, China, 2017: 1–8. doi: 10.23919/ICIF.2017.8009645.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(424) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint