Si Qi, Wang Yu, Deng Yunkai, Li Ning, Zhang Heng. A Novel Cluster-Analysis Algorithm Based on MAP Framework for Multi-baseline InSAR Height Reconstruction[J]. Journal of Radars, 2017, 6(6): 640-652. doi: 10.12000/JR17043
Citation: Wang Aichun, Xiang Maosheng. SAR Tomography Based on Block Compressive Sensing[J]. Journal of Radars, 2016, 5(1): 57-64. doi: 10.12000/JR16006

SAR Tomography Based on Block Compressive Sensing

DOI: 10.12000/JR16006
Funds:

National Development and Reform Commission Satellite and Application Development Projects【2012】2083

  • Received Date: 2016-01-11
  • Rev Recd Date: 2016-01-27
  • Publish Date: 2016-02-28
  • While the use of SAR Tomography (TomoSAR) based on Compressive Sensing (CS) makes it possible to reconstruct the height profile of an observed scene, the performance of the reconstruction decreases for a structural observed scene. To deal with this issue, we propose using TomoSAR based on Block Compressive Sensing (BCS), which changes the reconstruction of the structural observed scene into a BCS problem under the principles of CS. Further, the block size is established by utilizing the relationship between the characteristics of the structural observed scene and the SAR parameters, such that the BCS problem is efficiently solved with a block sparse l1/l2 norm optimization signal model. Compared with existing CSTomoSAR methods, the proposed BCS-TomoSAR method makes better use of the sparsity and structure information of a structural observed scene, and has higher precision and better reconstruction performance. We used simulations and Radarsat-2 data to verify the effectiveness of this proposed method.

     

  • [1]
    Knaell K and Cardillo G P. Radar tomography for the generation of three-dimensional images[J]. IEEE Proceedings-Radar, Sonar and Navigation, 1995, 142(2): 54-60.
    [2]
    Reigber A and Moreira A. First demonstration of airborne SAR Tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(9): 2142-2152.
    [3]
    She Z, Gray D A, Bogner R E, et al.. Three-dimensional space-borne Synthetic Aperture Radar (SAR) imaging with multiple pass processing[J]. International Journal of Remote Sensing, 2002, 23(20): 4357-4382.
    [4]
    Gini F and Lombardini F. Multilook APES for multibaseline SAR interferometry[J]. IEEE Transactions on Signal Processing, 2002, 50(7): 1800-1803.
    [5]
    Lombardini F and Reigber A. Adaptive spectral estimation for multibaseline SAR Tomography with airborne L-band data[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium IGARSS'03, Toulouse, France, 2003, 3: 2014-2016.
    [6]
    Fornaro G, Serafino F, and Soldovieri F. Three dimensional focusing with multipass SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 507-517.
    [7]
    Fornaro G, Lombardini F, and Serafino F. Three-dimensional focusing multipass SAR focusing: Experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4) : 702-714.
    [8]
    Frey O and Meier E. 3-D time-domain SAR imaging of a forest using airborne multibaseline data at L-and P-bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3660-3664.
    [9]
    任笑真, 杨汝良. 利用FB-MAPES算法估计Tomography SAR高度维信号源数[J]. 电子与信息学报, 2009, 31(7): 1669-1673. Ren Xiao-zhen and Yang Ru-liang. On detection of number of Tomogaphy SAR signals in the elevation direction using the FB-MAPES method[J]. Journal of Electronics Information Technology, 2009, 31(7): 1669-1673.
    [10]
    吴一戎, 洪文, 张冰尘, 等. 稀疏微波成像研究进展[J]. 雷达学报, 2014, 3(4): 384-395. Wu Yi-rong, Hong Wen, Zhang Bing-chen, et al.. Current development of sparse microwave imaging[J]. Journal of Radars, 2014, 3(4): 384-395.
    [11]
    Zhu X X and Bamler R. Tomographic SAR inversion by L1-Norm regularizationThe compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839-3846.
    [12]
    Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    [13]
    Zhu X X and Bamler R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne Tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247-258.
    [14]
    Zhu X X and Bamler R. Superresolving SAR Tomography for multidimensional imaging of urban areas: compressive sensing-based TomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4): 51-58.
    [15]
    李烈辰, 李道京. 基于压缩感知的连续场景稀疏阵列SAR三维成像[J]. 电子与信息学报, 2014, 36(9): 2166-2172. Li Lie-chen and Li Dao-jing. Sparse array 3D imaging for continuous scene based on compressed sensing[J]. Journal of Electronics Information Technology, 2014, 36(9): 2166-2172. DOI: 10.3724/SP.J.1146.2013.01645.
    [16]
    张冰尘, 王万影, 毕辉, 等. 基于压缩多信号分类算法的森林区域极化SAR层析成像[J]. 电子与信息学报, 2015, 37(3): 625-630. Zhang Bing-chen, Wang Wan-ying, Bi Hui, et al.. Polarimetric SAR tomography for forested areas based on compressive multiple signal classification[J]. Journal of Electronics Information Technology, 2015, 37(3): 625-630.
    [17]
    廖明生, 魏恋欢, 汪紫芸, 等. 压缩感知在城区高分辨率SAR层析成像中的应用[J]. 雷达学报, 2015, 4(2): 124-129. Liao Ming-sheng, Wei Lian-huan, Wang Zi-yun, et al.. Compressive sensing in high-resolution 3D SAR Tomography of urban scenarios[J]. Journal of Radars, 2015, 4(2): 124-129.
    [18]
    Baraniuk R G, Gevher V, Duarte M F, et al.. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001.
    [19]
    孙洪, 张智林, 余磊. 从稀疏到结构化稀疏: 贝叶斯方法[J]. 信号处理, 2012, 28(6): 759-773. Sun Hong, Zhang Zhi-lin, and Yu Lei. From sparsity to structured sparsity: bayesian perspective[J]. Signal Processing, 2012, 28(6): 759-773.
    [20]
    李廉林, 周小阳, 崔铁军. 结构化信号处理理论和方法的研究进展[J]. 雷达学报, 2015, 4(5): 491-502. Li Lian-lin, Zhou Xiao-yang, and Cui Tie-jun. Perspectives on theories and methods of structural signal processing[J]. Journal of Radars, 2015, 4(5): 491-502.
    [21]
    Shervashidze N and Bach F. Learning the structure for structured sparsity[J]. IEEE Transactions on Signal Processing, 2015, 63(18): 4894-4902.
    [22]
    Cands E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    [23]
    Cands E, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communication on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
    [24]
    Eldar Y C and Mishali M. Robust recovery of signals from a structured union of subspaces[J]. IEEE Transactions on Information Theory, 2009, 55(11): 5302-5316.
    [25]
    Eldar Y C, Kuppinger P, and Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054.
    [26]
    Fu Y, Li H, Zhang Q, et al.. Block-sparse recovery via redundant block OMP[J]. Signal Processing, 2014, 97(7): 162-171.
  • Relative Articles

    [1]WU Yun, ZHANG Dongheng, ZHANG Ganlin, XIE Xuecheng, ZHAN Fengquan, CHEN Yan. WiFi-based Respiration Detection Aided by Intelligent Reflecting Surfaces[J]. Journal of Radars, 2025, 14(1): 189-203. doi: 10.12000/JR24105
    [2]SHAO Hui, ZHANG Hulong, DAI Hui, CHEN Yuwei, SUN Long, XU Heng, LI Xingyun. Fast Reflectance Spectral Profile Reconstruction Method for Full-waveform Hyperspectral LiDAR[J]. Journal of Radars. doi: 10.12000/JR24214
    [3]XU Heng, XU Hong, QUAN Yinghui, PAN Qin, SHA Minghui, CHEN Hui, CHENG Qiang, ZHOU Xiaoyang. A Radar Jamming Method Based on Time Domain Coding Metasurface Intrapulse and Interpulse Coding Optimization[J]. Journal of Radars, 2024, 13(1): 215-226. doi: 10.12000/JR23186
    [4]LI Haoliang, CHEN Siwei. Electromagnetic Scattering Characteristics and Radar Identification of Sea Corner Reflectors: Advances and Prospects[J]. Journal of Radars, 2023, 12(4): 738-761. doi: 10.12000/JR23100
    [5]TIAN Tuanwei, DENG Hao, LU Jianhua, DU Xiaolin. Multicarrier Waveform Optimization Method for an Intelligent Reflecting Surface-assisted Dual-function Radar-communication System[J]. Journal of Radars, 2022, 11(2): 240-254. doi: 10.12000/JR21138
    [6]WANG Fulai, PANG Chen, YIN Jiapeng, LI Nanjun, LI Yongzhen, WANG Xuesong. Joint Design of Doppler-tolerant Complementary Sequences and Receiving Filters Against Interrupted Sampling Repeater Jamming[J]. Journal of Radars, 2022, 11(2): 278-288. doi: 10.12000/JR22020
    [7]WAN Huan, YU Xianxiang, QUAN Zhi, LIAO Bin. Constant Modulus Waveform Design for Low-resolution Quantization MIMO Radar Based on an Alternating Direction Penalty Method[J]. Journal of Radars, 2022, 11(4): 557-569. doi: 10.12000/JR22072
    [8]SHI Hongyu, LI Guoqiang, LIU Kang, LI Bolin, YI Jianjia, ZHANG Anxue, XU Zhuo. Deflective Vortex Beam Generation Based on Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2021, 10(5): 785-793. doi: 10.12000/JR21070
    [9]FANG Zuqi, CHENG Qiang, CUI Tiejun. Nonlinear Quasi-Bessel Beam Generation Based on the Time-domain Digital-Coding Metasurface[J]. Journal of Radars, 2021, 10(2): 267-273. doi: 10.12000/JR21043
    [10]WANG Zhihao, LI Gang, JIANG Xiao. Flooded Area Detection Method Based on Fusion of Optical and SAR Remote Sensing Images[J]. Journal of Radars, 2020, 9(3): 539-553. doi: 10.12000/JR19095
    [11]LI Daojing, ZHU Yu, HU Xuan, YU Haifeng, ZHOU Kai, ZHANG Running, LIU Lei. Laser Application and Sparse Imaging Analysis of Diffractive Optical System[J]. Journal of Radars, 2020, 9(1): 195-203. doi: 10.12000/JR19081
    [12]Li Daojing, Hu Xuan. Optical System and Detection Range Analysis of Synthetic Aperture Ladar[J]. Journal of Radars, 2018, 7(2): 263-274. doi: 10.12000/JR18017
    [13]Yin De, Ye Shengbo, Liu Jinwei, Ji Yicai, Liu Xiaojun, Fang Guangyou. Novel Time-domain Ultra-wide Band TEM Horn Antenna for Highway GPR Applications[J]. Journal of Radars, 2017, 6(6): 611-618. doi: 10.12000/JR17004
    [14]Du Lan, Li Lin-sen, Li Wei-lu, Wang Bao-shuai, Shi Hui-ruo. Aircraft Target Classification Based on Correlation Features from Time-domain Echoes[J]. Journal of Radars, 2015, 4(6): 621-629. doi: 10.12000/JR15117
    [15]Wu Bing-heng, Ji Yi-cai, Fang Guang-you. Design and Analysis of the Distributed Resistor-loading GPR Antenna with Reflected Cavity[J]. Journal of Radars, 2015, 4(5): 538-544. doi: 10.12000/JR15070
    [16]Wei Ming-gui, Liang Da-chuan, Gu Jian-qiang, Min Rui, Li Jin, Ouyang Chun-mei, Tian Zhen, He Ming-xia, Han Jia-guang, Zhang Wei-li. Terahertz Radar Imaging Based on Time-domain Spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229. doi: 10.12000/JR14125
    [17]Huang Zhi-rong, Zheng Shi-kun, Zhu Jia-long, Chen Guo-ding. Design Optimization of Expansion Driven Components for the HJ-1-C Satellite[J]. Journal of Radars, 2014, 3(3): 282-287. doi: 10.3724/SP.J.1300.2014.14016
    [18]Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157
    [19]You Hong-jian, Hu Yan-feng. Investigation on Fine Registration for SAR and Optical Image[J]. Journal of Radars, 2014, 3(1): 78-84. doi: 10.3724/SP.J.1300.2014.13154
    [20]Llin Shi-bin, Li Yue-li, Yan Shao-shi, Zhou Zhi-min. Study of Effects of Flat Surface Assumption to Synthetic Aperture Radar Time-domain Algorithms Imaging Quality[J]. Journal of Radars, 2012, 1(3): 309-313. doi: 10.3724/SP.J.1300.2012.20035
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.4 %FULLTEXT: 20.4 %META: 69.8 %META: 69.8 %PDF: 9.7 %PDF: 9.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.6 %其他: 15.6 %其他: 0.3 %其他: 0.3 %China: 1.2 %China: 1.2 %India: 0.0 %India: 0.0 %Keelung: 0.0 %Keelung: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United States: 0.1 %United States: 0.1 %[]: 1.0 %[]: 1.0 %三亚: 0.0 %三亚: 0.0 %三明: 0.0 %三明: 0.0 %上海: 0.4 %上海: 0.4 %东莞: 0.1 %东莞: 0.1 %中卫: 0.2 %中卫: 0.2 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.1 %保定: 0.1 %包头: 0.0 %包头: 0.0 %北京: 14.7 %北京: 14.7 %北京市: 0.0 %北京市: 0.0 %十堰: 0.0 %十堰: 0.0 %南京: 0.2 %南京: 0.2 %南宁: 0.0 %南宁: 0.0 %南昌: 0.0 %南昌: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.2 %合肥: 0.2 %吉安: 0.0 %吉安: 0.0 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.0 %咸阳: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %嘉义: 0.1 %嘉义: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %圣地亚哥库特拉尔潘: 0.1 %圣地亚哥库特拉尔潘: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.2 %天津: 0.2 %太原: 0.0 %太原: 0.0 %宁波: 0.2 %宁波: 0.2 %安康: 0.1 %安康: 0.1 %安阳: 0.1 %安阳: 0.1 %宜春: 0.0 %宜春: 0.0 %宣城: 0.0 %宣城: 0.0 %密蘇里城: 0.0 %密蘇里城: 0.0 %巴中: 0.2 %巴中: 0.2 %巴中市巴州区: 0.0 %巴中市巴州区: 0.0 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %广州: 0.3 %广州: 0.3 %张家口: 1.0 %张家口: 1.0 %张家口市: 0.0 %张家口市: 0.0 %德宏: 0.0 %德宏: 0.0 %成都: 0.5 %成都: 0.5 %成都市新都区: 0.0 %成都市新都区: 0.0 %扬州: 0.2 %扬州: 0.2 %新加坡: 0.0 %新加坡: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 1.5 %杭州: 1.5 %枣庄: 0.0 %枣庄: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.0 %桂林: 0.0 %梅州: 0.0 %梅州: 0.0 %武汉: 0.3 %武汉: 0.3 %永州: 0.0 %永州: 0.0 %汉中: 0.1 %汉中: 0.1 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.2 %沈阳: 0.2 %洛杉矶: 0.0 %洛杉矶: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.2 %济南: 0.2 %海口: 0.1 %海口: 0.1 %淄博: 0.1 %淄博: 0.1 %淮南: 0.0 %淮南: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.2 %漯河: 0.2 %漳州: 0.0 %漳州: 0.0 %烟台: 0.0 %烟台: 0.0 %焦作: 0.0 %焦作: 0.0 %牡丹江: 0.0 %牡丹江: 0.0 %玉林: 0.2 %玉林: 0.2 %白银: 0.2 %白银: 0.2 %盐城: 0.1 %盐城: 0.1 %盘锦: 0.0 %盘锦: 0.0 %石家庄: 0.9 %石家庄: 0.9 %石家庄市: 0.2 %石家庄市: 0.2 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.0 %绍兴: 0.0 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %芝加哥: 0.6 %芝加哥: 0.6 %芬兰赫尔辛基: 0.1 %芬兰赫尔辛基: 0.1 %苏州: 0.1 %苏州: 0.1 %荆州: 0.1 %荆州: 0.1 %莆田: 0.0 %莆田: 0.0 %萍乡: 0.0 %萍乡: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %襄阳: 0.0 %襄阳: 0.0 %西宁: 34.2 %西宁: 34.2 %西安: 0.3 %西安: 0.3 %诺沃克: 0.1 %诺沃克: 0.1 %贵港: 0.2 %贵港: 0.2 %赤峰: 0.0 %赤峰: 0.0 %达州: 0.0 %达州: 0.0 %运城: 0.4 %运城: 0.4 %遵义: 0.0 %遵义: 0.0 %郑州: 0.1 %郑州: 0.1 %重庆: 0.3 %重庆: 0.3 %重庆市: 0.0 %重庆市: 0.0 %银川: 0.0 %银川: 0.0 %长春: 0.2 %长春: 0.2 %长沙: 0.4 %长沙: 0.4 %长治: 0.0 %长治: 0.0 %青岛: 0.2 %青岛: 0.2 %韶关: 0.0 %韶关: 0.0 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %鹤岗: 0.0 %鹤岗: 0.0 %龙岩: 0.1 %龙岩: 0.1 %其他其他ChinaIndiaKeelungTaiwan, ChinaUnited States[]三亚三明上海东莞中卫中山临汾丹东佛山保定包头北京北京市十堰南京南宁南昌厦门台北台州台湾省合肥吉安呼和浩特咸阳哥伦布嘉义嘉兴圣地亚哥库特拉尔潘大连天津太原宁波安康安阳宜春宣城密蘇里城巴中巴中市巴州区巴彦淖尔巴音郭楞广州张家口张家口市德宏成都成都市新都区扬州新加坡无锡昆明晋城普洱杭州枣庄格兰特县桂林梅州武汉永州汉中汕头沈阳洛杉矶洛阳济南海口淄博淮南淮安深圳温州湖州湘潭滨州漯河漳州烟台焦作牡丹江玉林白银盐城盘锦石家庄石家庄市纽约绍兴美国伊利诺斯芝加哥芒廷维尤芝加哥芬兰赫尔辛基苏州荆州莆田萍乡蚌埠襄阳西宁西安诺沃克贵港赤峰达州运城遵义郑州重庆重庆市银川长春长沙长治青岛韶关香港香港特别行政区鹤岗龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3094) PDF downloads(1623) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint