Si Qi, Wang Yu, Deng Yunkai, Li Ning, Zhang Heng. A Novel Cluster-Analysis Algorithm Based on MAP Framework for Multi-baseline InSAR Height Reconstruction[J]. Journal of Radars, 2017, 6(6): 640-652. doi: 10.12000/JR17043
Citation: SHI Hongyu, LI Guoqiang, LIU Kang, et al. Deflective vortex beams generation based on metasurfaces in the terahertz band[J]. Journal of Radars, 2021, 10(5): 785–793. doi: 10.12000/JR21070

Deflective Vortex Beam Generation Based on Metasurfaces in the Terahertz Band

DOI: 10.12000/JR21070
Funds:  The National Natural Science Foundation of China (61871315)
More Information
  • Corresponding author: SHI Hongyu, honyo.shi1987@gmail.com
  • Received Date: 2021-05-30
  • Rev Recd Date: 2021-07-27
  • Available Online: 2021-08-11
  • Publish Date: 2021-08-11
  • Terahertz vortex beams can be used to improve the communication capacity of radar communication systems and the resolution of imaging systems. This paper presents a deflective vortex beam generation method based on a reflective metasurface working in the terahertz band. Without the limitations of traditional methods, metasurfaces are a good candidate to generate beams carrying an orbital angular momentum in the terahertz band. First, we designed and simulated a unit cell of the metasurface. The unit cell of our design consists of two metallic (gold) layers and one dielectric layer. An almost 360° phase shift was acquired by adjusting the length of the eight stubs of the top layer. The unit cell of the metasurface was simulated by CST Microwave Studio, and the simulation results showed that the co-polarization reflection efficiencies of the unit cells were more than 90%. To avoid performance degradation due to blockage of the feed horn, we controlled accurately the directions of vortex beams based on the concept of reflectarray. To verify the performance of our design, we simulated and measured five reflective metasurfaces. The results of simulation and measurement showed that these metasurfaces could generate five deflective vortex beams in the terahertz band. The topological charges of these beams are ±1, ±2, and 3, which account for the highest energy proportion in different vortex beams.

     

  • [1]
    LIU Kang, CHENG Yongqiang, GAO Yue, et al. Super-resolution radar imaging based on experimental OAM beams[J]. Applied Physics Letters, 2017, 110(16): 164102. doi: 10.1063/1.4981253
    [2]
    JIANG Zhihao, KANG Lei, HONG Wei, et al. Highly efficient broadband multiplexed millimeter-wave vortices from metasurface-enabled transmit-arrays of subwavelength thickness[J]. Physical Review Applied, 2018, 9(6): 064009. doi: 10.1103/PhysRevApplied.9.064009
    [3]
    LI Lianlin and LI Fang. Beating the Rayleigh limit: Orbital-angular-momentum-based super-resolution diffraction tomography[J]. Physical Review E, 2013, 88(3): 033205. doi: 10.1103/PhysRevE.88.033205
    [4]
    LIU Kang, LI Xiang, GAO Yue, et al. Microwave imaging of spinning object using orbital angular momentum[J]. Journal of Applied Physics, 2017, 122(12): 124903. doi: 10.1063/1.4991655
    [5]
    YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876
    [6]
    WANG Jian, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488–496. doi: 10.1038/nphoton.2012.138
    [7]
    ZHANG Zhuofan, ZHENG Shilie, CHEN Yiling, et al. The capacity gain of orbital angular momentum based multiple-input-multiple-output system[J]. Scientific Reports, 2016, 6: 25418. doi: 10.1038/srep25418
    [8]
    GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448–5456. doi: 10.1364/OPEX.12.005448
    [9]
    GOMPF B, GEBERT N, HEER H, et al. Polarization contrast terahertz-near-field imaging of anisotropic conductors[J]. Applied Physics Letters, 2007, 90(8): 082104. doi: 10.1063/1.2680016
    [10]
    CHEN Zefeng, CHEN Xuequan, TAO Li, et al. Graphene controlled Brewster angle device for ultra broadband terahertz modulation[J]. Nature Communications, 2018, 9(1): 4909. doi: 10.1038/s41467-018-07367-8
    [11]
    刘峻峰, 刘硕, 傅晓建, 等. 太赫兹信息超材料与超表面[J]. 雷达学报, 2018, 7(1): 46–55. doi: 10.12000/JR17100

    LIU Junfeng, LIU Shuo, FU Xiaojian, et al. Terahertz information metamaterials and metasurfaces[J]. Journal of Radars, 2018, 7(1): 46–55. doi: 10.12000/JR17100
    [12]
    李龙, 薛皓, 冯强. 涡旋电磁波的理论与应用研究进展[J]. 微波学报, 2018, 34(2): 1–12. doi: 10.14183/j.cnki.1005-6122.201802001

    LI Long, XUE Hao, and FENG Qiang. Research progresses in theory and applications of vortex electromagnetic waves[J]. Journal of Microwaves, 2018, 34(2): 1–12. doi: 10.14183/j.cnki.1005-6122.201802001
    [13]
    LIU Kang, LIU Hongyan, QIN Yuliang, et al. Generation of OAM beams using phased array in the microwave band[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3850–3857. doi: 10.1109/TAP.2016.2589960
    [14]
    MENG Zankui, SHI Yan, WEI Wenyue, et al. Multifunctional scattering antenna array design for orbital angular momentum vortex wave and RCS reduction[J]. IEEE Access, 2020, 8: 109289–109296. doi: 10.1109/ACCESS.2020.3001576
    [15]
    SHEN Yong, CAMPBELL G T, HAGE B, et al. Generation and interferometric analysis of high charge optical vortices[J]. Journal of Optics, 2013, 15(4): 044005. doi: 10.1088/2040-8978/15/4/044005
    [16]
    YU Shixing, LI Long, SHI Guangming, et al. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain[J]. Applied Physics Letters, 2016, 108(12): 121903. doi: 10.1063/1.4944789
    [17]
    杨欢欢, 曹祥玉, 高军, 等. 可重构电磁超表面及其应用研究进展[J]. 雷达学报, 2021, 10(2): 206–219. doi: 10.12000/JR20137

    YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars, 2021, 10(2): 206–219. doi: 10.12000/JR20137
    [18]
    LV Huanhuan, HUANG Qiulin, YI Xiangjie, et al. Low-profile transmitting metasurface using single dielectric substrate for OAM generation[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5): 881–885. doi: 10.1109/LAWP.2020.2983400
    [19]
    SHI Hongyu, WANG Luyi, PENG Gantao, et al. Generation of multiple modes microwave vortex beams using active metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 59–63. doi: 10.1109/LAWP.2018.2880732
    [20]
    GUO Kai, ZHENG Qun, YIN Zhiping, et al. Generation of mode-reconfigurable and frequency-adjustable OAM beams using dynamic reflective metasurface[J]. IEEE Access, 2020, 8: 75523–75529. doi: 10.1109/ACCESS.2020.2988914
    [21]
    YU Shixing, LI Long, SHI Guangming, et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain[J]. Applied Physics Letters, 2016, 108(24): 241901. doi: 10.1063/1.4953786
    [22]
    YU Shixing, LI Long, and SHI Guangming. Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface[J]. Applied Physics Express, 2016, 9(8): 082202. doi: 10.7567/APEX.9.082202
    [23]
    SHI Yan and ZHANG Ying. Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray[J]. IEEE Access, 2018, 6: 5341–5347. doi: 10.1109/ACCESS.2017.2740323
    [24]
    MENG Zankui, SHI Yan, WEI Wenyue, et al. Graphene-based metamaterial transmitarray antenna design for the generation of tunable orbital angular momentum vortex electromagnetic waves[J]. Optical Materials Express, 2019, 9(9): 3709–3716. doi: 10.1364/OME.9.003709
    [25]
    WANG Ling, YANG Yang, LI Shufang, et al. Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide[J]. IEEE Photonics Journal, 2020, 12(3): 4600712. doi: 10.1109/JPHOT.2020.3000779
    [26]
    LI Jiusheng and ZHANG Lina. Simple terahertz vortex beam generator based on reflective metasurfaces[J]. Optics Express, 2020, 28(24): 36403–36412. doi: 10.1364/OE.410681
    [27]
    FAN Junpeng, CHENG Yongzhi, and HE Bin. High-efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies[J]. Journal of Physics D: Applied Physics, 2021, 54(11): 115101. doi: 10.1088/1361-6463/abcdd0
    [28]
    LIU Haixia, XUE Hao, LIU Yongjie, et al. Generation of multiple pseudo bessel beams with accurately controllable propagation directions and high efficiency using a reflective metasurface[J]. Applied Sciences, 2020, 10(20): 7219. doi: 10.3390/app10207219
    [29]
    NAYERI P, YANG Fan, and ELSHERBENI A Z. Reflectarray Antennas: Theory, Designs, and Applications[M]. Hoboken: John Wiley & Sons, 2018: 9–13.
  • Relative Articles

    [1]WU Yun, ZHANG Dongheng, ZHANG Ganlin, XIE Xuecheng, ZHAN Fengquan, CHEN Yan. WiFi-based Respiration Detection Aided by Intelligent Reflecting Surfaces[J]. Journal of Radars, 2025, 14(1): 189-203. doi: 10.12000/JR24105
    [2]SHAO Hui, ZHANG Hulong, DAI Hui, CHEN Yuwei, SUN Long, XU Heng, LI Xingyun. Fast Reflectance Spectral Profile Reconstruction Method for Full-waveform Hyperspectral LiDAR[J]. Journal of Radars. doi: 10.12000/JR24214
    [3]XU Heng, XU Hong, QUAN Yinghui, PAN Qin, SHA Minghui, CHEN Hui, CHENG Qiang, ZHOU Xiaoyang. A Radar Jamming Method Based on Time Domain Coding Metasurface Intrapulse and Interpulse Coding Optimization[J]. Journal of Radars, 2024, 13(1): 215-226. doi: 10.12000/JR23186
    [4]LI Haoliang, CHEN Siwei. Electromagnetic Scattering Characteristics and Radar Identification of Sea Corner Reflectors: Advances and Prospects[J]. Journal of Radars, 2023, 12(4): 738-761. doi: 10.12000/JR23100
    [5]TIAN Tuanwei, DENG Hao, LU Jianhua, DU Xiaolin. Multicarrier Waveform Optimization Method for an Intelligent Reflecting Surface-assisted Dual-function Radar-communication System[J]. Journal of Radars, 2022, 11(2): 240-254. doi: 10.12000/JR21138
    [6]WANG Fulai, PANG Chen, YIN Jiapeng, LI Nanjun, LI Yongzhen, WANG Xuesong. Joint Design of Doppler-tolerant Complementary Sequences and Receiving Filters Against Interrupted Sampling Repeater Jamming[J]. Journal of Radars, 2022, 11(2): 278-288. doi: 10.12000/JR22020
    [7]WAN Huan, YU Xianxiang, QUAN Zhi, LIAO Bin. Constant Modulus Waveform Design for Low-resolution Quantization MIMO Radar Based on an Alternating Direction Penalty Method[J]. Journal of Radars, 2022, 11(4): 557-569. doi: 10.12000/JR22072
    [8]SHI Hongyu, LI Guoqiang, LIU Kang, LI Bolin, YI Jianjia, ZHANG Anxue, XU Zhuo. Deflective Vortex Beam Generation Based on Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2021, 10(5): 785-793. doi: 10.12000/JR21070
    [9]FANG Zuqi, CHENG Qiang, CUI Tiejun. Nonlinear Quasi-Bessel Beam Generation Based on the Time-domain Digital-Coding Metasurface[J]. Journal of Radars, 2021, 10(2): 267-273. doi: 10.12000/JR21043
    [10]WANG Zhihao, LI Gang, JIANG Xiao. Flooded Area Detection Method Based on Fusion of Optical and SAR Remote Sensing Images[J]. Journal of Radars, 2020, 9(3): 539-553. doi: 10.12000/JR19095
    [11]LI Daojing, ZHU Yu, HU Xuan, YU Haifeng, ZHOU Kai, ZHANG Running, LIU Lei. Laser Application and Sparse Imaging Analysis of Diffractive Optical System[J]. Journal of Radars, 2020, 9(1): 195-203. doi: 10.12000/JR19081
    [12]Li Daojing, Hu Xuan. Optical System and Detection Range Analysis of Synthetic Aperture Ladar[J]. Journal of Radars, 2018, 7(2): 263-274. doi: 10.12000/JR18017
    [13]Yin De, Ye Shengbo, Liu Jinwei, Ji Yicai, Liu Xiaojun, Fang Guangyou. Novel Time-domain Ultra-wide Band TEM Horn Antenna for Highway GPR Applications[J]. Journal of Radars, 2017, 6(6): 611-618. doi: 10.12000/JR17004
    [14]Du Lan, Li Lin-sen, Li Wei-lu, Wang Bao-shuai, Shi Hui-ruo. Aircraft Target Classification Based on Correlation Features from Time-domain Echoes[J]. Journal of Radars, 2015, 4(6): 621-629. doi: 10.12000/JR15117
    [15]Wu Bing-heng, Ji Yi-cai, Fang Guang-you. Design and Analysis of the Distributed Resistor-loading GPR Antenna with Reflected Cavity[J]. Journal of Radars, 2015, 4(5): 538-544. doi: 10.12000/JR15070
    [16]Wei Ming-gui, Liang Da-chuan, Gu Jian-qiang, Min Rui, Li Jin, Ouyang Chun-mei, Tian Zhen, He Ming-xia, Han Jia-guang, Zhang Wei-li. Terahertz Radar Imaging Based on Time-domain Spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229. doi: 10.12000/JR14125
    [17]Huang Zhi-rong, Zheng Shi-kun, Zhu Jia-long, Chen Guo-ding. Design Optimization of Expansion Driven Components for the HJ-1-C Satellite[J]. Journal of Radars, 2014, 3(3): 282-287. doi: 10.3724/SP.J.1300.2014.14016
    [18]Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157
    [19]You Hong-jian, Hu Yan-feng. Investigation on Fine Registration for SAR and Optical Image[J]. Journal of Radars, 2014, 3(1): 78-84. doi: 10.3724/SP.J.1300.2014.13154
    [20]Llin Shi-bin, Li Yue-li, Yan Shao-shi, Zhou Zhi-min. Study of Effects of Flat Surface Assumption to Synthetic Aperture Radar Time-domain Algorithms Imaging Quality[J]. Journal of Radars, 2012, 1(3): 309-313. doi: 10.3724/SP.J.1300.2012.20035
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.4 %FULLTEXT: 20.4 %META: 69.8 %META: 69.8 %PDF: 9.7 %PDF: 9.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.6 %其他: 15.6 %其他: 0.3 %其他: 0.3 %China: 1.2 %China: 1.2 %India: 0.0 %India: 0.0 %Keelung: 0.0 %Keelung: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United States: 0.1 %United States: 0.1 %[]: 1.0 %[]: 1.0 %三亚: 0.0 %三亚: 0.0 %三明: 0.0 %三明: 0.0 %上海: 0.4 %上海: 0.4 %东莞: 0.1 %东莞: 0.1 %中卫: 0.2 %中卫: 0.2 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.1 %保定: 0.1 %包头: 0.0 %包头: 0.0 %北京: 14.7 %北京: 14.7 %北京市: 0.0 %北京市: 0.0 %十堰: 0.0 %十堰: 0.0 %南京: 0.2 %南京: 0.2 %南宁: 0.0 %南宁: 0.0 %南昌: 0.0 %南昌: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.2 %合肥: 0.2 %吉安: 0.0 %吉安: 0.0 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.0 %咸阳: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %嘉义: 0.1 %嘉义: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %圣地亚哥库特拉尔潘: 0.1 %圣地亚哥库特拉尔潘: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.2 %天津: 0.2 %太原: 0.0 %太原: 0.0 %宁波: 0.2 %宁波: 0.2 %安康: 0.1 %安康: 0.1 %安阳: 0.1 %安阳: 0.1 %宜春: 0.0 %宜春: 0.0 %宣城: 0.0 %宣城: 0.0 %密蘇里城: 0.0 %密蘇里城: 0.0 %巴中: 0.2 %巴中: 0.2 %巴中市巴州区: 0.0 %巴中市巴州区: 0.0 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %广州: 0.3 %广州: 0.3 %张家口: 1.0 %张家口: 1.0 %张家口市: 0.0 %张家口市: 0.0 %德宏: 0.0 %德宏: 0.0 %成都: 0.5 %成都: 0.5 %成都市新都区: 0.0 %成都市新都区: 0.0 %扬州: 0.2 %扬州: 0.2 %新加坡: 0.0 %新加坡: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 1.5 %杭州: 1.5 %枣庄: 0.0 %枣庄: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.0 %桂林: 0.0 %梅州: 0.0 %梅州: 0.0 %武汉: 0.3 %武汉: 0.3 %永州: 0.0 %永州: 0.0 %汉中: 0.1 %汉中: 0.1 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.2 %沈阳: 0.2 %洛杉矶: 0.0 %洛杉矶: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.2 %济南: 0.2 %海口: 0.1 %海口: 0.1 %淄博: 0.1 %淄博: 0.1 %淮南: 0.0 %淮南: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.2 %漯河: 0.2 %漳州: 0.0 %漳州: 0.0 %烟台: 0.0 %烟台: 0.0 %焦作: 0.0 %焦作: 0.0 %牡丹江: 0.0 %牡丹江: 0.0 %玉林: 0.2 %玉林: 0.2 %白银: 0.2 %白银: 0.2 %盐城: 0.1 %盐城: 0.1 %盘锦: 0.0 %盘锦: 0.0 %石家庄: 0.9 %石家庄: 0.9 %石家庄市: 0.2 %石家庄市: 0.2 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.0 %绍兴: 0.0 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %芝加哥: 0.6 %芝加哥: 0.6 %芬兰赫尔辛基: 0.1 %芬兰赫尔辛基: 0.1 %苏州: 0.1 %苏州: 0.1 %荆州: 0.1 %荆州: 0.1 %莆田: 0.0 %莆田: 0.0 %萍乡: 0.0 %萍乡: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %襄阳: 0.0 %襄阳: 0.0 %西宁: 34.2 %西宁: 34.2 %西安: 0.3 %西安: 0.3 %诺沃克: 0.1 %诺沃克: 0.1 %贵港: 0.2 %贵港: 0.2 %赤峰: 0.0 %赤峰: 0.0 %达州: 0.0 %达州: 0.0 %运城: 0.4 %运城: 0.4 %遵义: 0.0 %遵义: 0.0 %郑州: 0.1 %郑州: 0.1 %重庆: 0.3 %重庆: 0.3 %重庆市: 0.0 %重庆市: 0.0 %银川: 0.0 %银川: 0.0 %长春: 0.2 %长春: 0.2 %长沙: 0.4 %长沙: 0.4 %长治: 0.0 %长治: 0.0 %青岛: 0.2 %青岛: 0.2 %韶关: 0.0 %韶关: 0.0 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %鹤岗: 0.0 %鹤岗: 0.0 %龙岩: 0.1 %龙岩: 0.1 %其他其他ChinaIndiaKeelungTaiwan, ChinaUnited States[]三亚三明上海东莞中卫中山临汾丹东佛山保定包头北京北京市十堰南京南宁南昌厦门台北台州台湾省合肥吉安呼和浩特咸阳哥伦布嘉义嘉兴圣地亚哥库特拉尔潘大连天津太原宁波安康安阳宜春宣城密蘇里城巴中巴中市巴州区巴彦淖尔巴音郭楞广州张家口张家口市德宏成都成都市新都区扬州新加坡无锡昆明晋城普洱杭州枣庄格兰特县桂林梅州武汉永州汉中汕头沈阳洛杉矶洛阳济南海口淄博淮南淮安深圳温州湖州湘潭滨州漯河漳州烟台焦作牡丹江玉林白银盐城盘锦石家庄石家庄市纽约绍兴美国伊利诺斯芝加哥芒廷维尤芝加哥芬兰赫尔辛基苏州荆州莆田萍乡蚌埠襄阳西宁西安诺沃克贵港赤峰达州运城遵义郑州重庆重庆市银川长春长沙长治青岛韶关香港香港特别行政区鹤岗龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2299) PDF downloads(263) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint