Volume 10 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
SHI Hongyu, LI Guoqiang, LIU Kang, et al. Deflective vortex beams generation based on metasurfaces in the terahertz band[J]. Journal of Radars, 2021, 10(5): 785–793. doi: 10.12000/JR21070
Citation: SHI Hongyu, LI Guoqiang, LIU Kang, et al. Deflective vortex beams generation based on metasurfaces in the terahertz band[J]. Journal of Radars, 2021, 10(5): 785–793. doi: 10.12000/JR21070

Deflective Vortex Beam Generation Based on Metasurfaces in the Terahertz Band

DOI: 10.12000/JR21070
Funds:  The National Natural Science Foundation of China (61871315)
More Information
  • Corresponding author: SHI Hongyu, honyo.shi1987@gmail.com
  • Received Date: 2021-05-30
  • Rev Recd Date: 2021-07-27
  • Available Online: 2021-08-11
  • Publish Date: 2021-08-11
  • Terahertz vortex beams can be used to improve the communication capacity of radar communication systems and the resolution of imaging systems. This paper presents a deflective vortex beam generation method based on a reflective metasurface working in the terahertz band. Without the limitations of traditional methods, metasurfaces are a good candidate to generate beams carrying an orbital angular momentum in the terahertz band. First, we designed and simulated a unit cell of the metasurface. The unit cell of our design consists of two metallic (gold) layers and one dielectric layer. An almost 360° phase shift was acquired by adjusting the length of the eight stubs of the top layer. The unit cell of the metasurface was simulated by CST Microwave Studio, and the simulation results showed that the co-polarization reflection efficiencies of the unit cells were more than 90%. To avoid performance degradation due to blockage of the feed horn, we controlled accurately the directions of vortex beams based on the concept of reflectarray. To verify the performance of our design, we simulated and measured five reflective metasurfaces. The results of simulation and measurement showed that these metasurfaces could generate five deflective vortex beams in the terahertz band. The topological charges of these beams are ±1, ±2, and 3, which account for the highest energy proportion in different vortex beams.

     

  • loading
  • [1]
    LIU Kang, CHENG Yongqiang, GAO Yue, et al. Super-resolution radar imaging based on experimental OAM beams[J]. Applied Physics Letters, 2017, 110(16): 164102. doi: 10.1063/1.4981253
    [2]
    JIANG Zhihao, KANG Lei, HONG Wei, et al. Highly efficient broadband multiplexed millimeter-wave vortices from metasurface-enabled transmit-arrays of subwavelength thickness[J]. Physical Review Applied, 2018, 9(6): 064009. doi: 10.1103/PhysRevApplied.9.064009
    [3]
    LI Lianlin and LI Fang. Beating the Rayleigh limit: Orbital-angular-momentum-based super-resolution diffraction tomography[J]. Physical Review E, 2013, 88(3): 033205. doi: 10.1103/PhysRevE.88.033205
    [4]
    LIU Kang, LI Xiang, GAO Yue, et al. Microwave imaging of spinning object using orbital angular momentum[J]. Journal of Applied Physics, 2017, 122(12): 124903. doi: 10.1063/1.4991655
    [5]
    YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876
    [6]
    WANG Jian, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488–496. doi: 10.1038/nphoton.2012.138
    [7]
    ZHANG Zhuofan, ZHENG Shilie, CHEN Yiling, et al. The capacity gain of orbital angular momentum based multiple-input-multiple-output system[J]. Scientific Reports, 2016, 6: 25418. doi: 10.1038/srep25418
    [8]
    GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448–5456. doi: 10.1364/OPEX.12.005448
    [9]
    GOMPF B, GEBERT N, HEER H, et al. Polarization contrast terahertz-near-field imaging of anisotropic conductors[J]. Applied Physics Letters, 2007, 90(8): 082104. doi: 10.1063/1.2680016
    [10]
    CHEN Zefeng, CHEN Xuequan, TAO Li, et al. Graphene controlled Brewster angle device for ultra broadband terahertz modulation[J]. Nature Communications, 2018, 9(1): 4909. doi: 10.1038/s41467-018-07367-8
    [11]
    刘峻峰, 刘硕, 傅晓建, 等. 太赫兹信息超材料与超表面[J]. 雷达学报, 2018, 7(1): 46–55. doi: 10.12000/JR17100

    LIU Junfeng, LIU Shuo, FU Xiaojian, et al. Terahertz information metamaterials and metasurfaces[J]. Journal of Radars, 2018, 7(1): 46–55. doi: 10.12000/JR17100
    [12]
    李龙, 薛皓, 冯强. 涡旋电磁波的理论与应用研究进展[J]. 微波学报, 2018, 34(2): 1–12. doi: 10.14183/j.cnki.1005-6122.201802001

    LI Long, XUE Hao, and FENG Qiang. Research progresses in theory and applications of vortex electromagnetic waves[J]. Journal of Microwaves, 2018, 34(2): 1–12. doi: 10.14183/j.cnki.1005-6122.201802001
    [13]
    LIU Kang, LIU Hongyan, QIN Yuliang, et al. Generation of OAM beams using phased array in the microwave band[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3850–3857. doi: 10.1109/TAP.2016.2589960
    [14]
    MENG Zankui, SHI Yan, WEI Wenyue, et al. Multifunctional scattering antenna array design for orbital angular momentum vortex wave and RCS reduction[J]. IEEE Access, 2020, 8: 109289–109296. doi: 10.1109/ACCESS.2020.3001576
    [15]
    SHEN Yong, CAMPBELL G T, HAGE B, et al. Generation and interferometric analysis of high charge optical vortices[J]. Journal of Optics, 2013, 15(4): 044005. doi: 10.1088/2040-8978/15/4/044005
    [16]
    YU Shixing, LI Long, SHI Guangming, et al. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain[J]. Applied Physics Letters, 2016, 108(12): 121903. doi: 10.1063/1.4944789
    [17]
    杨欢欢, 曹祥玉, 高军, 等. 可重构电磁超表面及其应用研究进展[J]. 雷达学报, 2021, 10(2): 206–219. doi: 10.12000/JR20137

    YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars, 2021, 10(2): 206–219. doi: 10.12000/JR20137
    [18]
    LV Huanhuan, HUANG Qiulin, YI Xiangjie, et al. Low-profile transmitting metasurface using single dielectric substrate for OAM generation[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5): 881–885. doi: 10.1109/LAWP.2020.2983400
    [19]
    SHI Hongyu, WANG Luyi, PENG Gantao, et al. Generation of multiple modes microwave vortex beams using active metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 59–63. doi: 10.1109/LAWP.2018.2880732
    [20]
    GUO Kai, ZHENG Qun, YIN Zhiping, et al. Generation of mode-reconfigurable and frequency-adjustable OAM beams using dynamic reflective metasurface[J]. IEEE Access, 2020, 8: 75523–75529. doi: 10.1109/ACCESS.2020.2988914
    [21]
    YU Shixing, LI Long, SHI Guangming, et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain[J]. Applied Physics Letters, 2016, 108(24): 241901. doi: 10.1063/1.4953786
    [22]
    YU Shixing, LI Long, and SHI Guangming. Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface[J]. Applied Physics Express, 2016, 9(8): 082202. doi: 10.7567/APEX.9.082202
    [23]
    SHI Yan and ZHANG Ying. Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray[J]. IEEE Access, 2018, 6: 5341–5347. doi: 10.1109/ACCESS.2017.2740323
    [24]
    MENG Zankui, SHI Yan, WEI Wenyue, et al. Graphene-based metamaterial transmitarray antenna design for the generation of tunable orbital angular momentum vortex electromagnetic waves[J]. Optical Materials Express, 2019, 9(9): 3709–3716. doi: 10.1364/OME.9.003709
    [25]
    WANG Ling, YANG Yang, LI Shufang, et al. Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide[J]. IEEE Photonics Journal, 2020, 12(3): 4600712. doi: 10.1109/JPHOT.2020.3000779
    [26]
    LI Jiusheng and ZHANG Lina. Simple terahertz vortex beam generator based on reflective metasurfaces[J]. Optics Express, 2020, 28(24): 36403–36412. doi: 10.1364/OE.410681
    [27]
    FAN Junpeng, CHENG Yongzhi, and HE Bin. High-efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies[J]. Journal of Physics D: Applied Physics, 2021, 54(11): 115101. doi: 10.1088/1361-6463/abcdd0
    [28]
    LIU Haixia, XUE Hao, LIU Yongjie, et al. Generation of multiple pseudo bessel beams with accurately controllable propagation directions and high efficiency using a reflective metasurface[J]. Applied Sciences, 2020, 10(20): 7219. doi: 10.3390/app10207219
    [29]
    NAYERI P, YANG Fan, and ELSHERBENI A Z. Reflectarray Antennas: Theory, Designs, and Applications[M]. Hoboken: John Wiley & Sons, 2018: 9–13.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2141) PDF downloads(255) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint