Li Wan-chun, Huang Cheng-feng. Optimal Trajectory Analysis for the Receiver of Passive Location Systems Using Direction Of Arrival and Doppler Measurements[J]. Journal of Radars, 2014, 3(6): 660-665. doi: 10.12000/JR14118
Citation: MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars, 2022, 11(2): 198–212. doi: 10.12000/JR21146

Joint Radar and Communications: Shared Waveform Designs and Performance Bounds

DOI: 10.12000/JR21146
Funds:  The National Natural Science Foundation of China (61801258, 62171259)
More Information
  • Corresponding author: LIU Yimin, yiminliu@tsinghua.edu.cn
  • Received Date: 2021-10-07
  • Accepted Date: 2022-01-11
  • Rev Recd Date: 2022-01-07
  • Available Online: 2022-01-19
  • Publish Date: 2022-03-03
  • Radar and communication systems are hosted on the same platform in many civilian and military applications. Traditionally, radar and communication systems are separately designed, which increases the system size, cost, and power consumption, and decreases the electromagnetic compatibility. Joint radar and communication designs, which have drawn much attention from both the academic and industrial circles, overcome these problems by implementing radar and communication systems using the same hardware. Joint radar and communications systems can be realized by resource allocation and waveform sharing. Waveform sharing schemes have become popular in recent years because they have higher spectral and power efficiency and can fundamentally avoid interference between the different systems. This paper studies the existing strategies of shared waveforms for joint radar and communications systems. The existing strategies are divided into three categories, namely: the communication waveform-based approaches, the radar waveform-based methods, and the joint design schemes. The performance bounds of the joint radar and communication systems are also reviewed to reveal the trade-off between the performance metrics of radar and communications in these systems. The potential for future research into joint radar and communication designs is also discussed.

     

  • [1]
    IMT-2030(6G)推进组. 通信感知一体化技术研究报告[R]. IMT-2030(6G)推进组, 2021.

    IMT-2030(6G) Promotion Group. Research report of joint radar and communications technology[R]. IMT-2030(6G) Promotion Group, 2021.
    [2]
    LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond[J]. arXiv: 2108.07165. http://arxiv.org/abs/2108.07165, 2021.
    [3]
    刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113
    [4]
    PAUL B, CHIRIYATH A R, and BLISS D W. Survey of RF communications and sensing convergence research[J]. IEEE Access, 2017, 5: 252–270. doi: 10.1109/ACCESS.2016.2639038
    [5]
    GAMEIRO A, CASTANHEIRA D, SANSON J, et al. Research challenges, trends and applications for future joint radar communications systems[J]. Wireless Personal Communications, 2018, 100(1): 81–96. doi: 10.1007/s11277-018-5614-8
    [6]
    ZHENG Le, LOPS M, ELDAR Y C, et al. Radar and communication coexistence: An overview: A review of recent methods[J]. IEEE Signal Processing Magazine, 2019, 36(5): 85–99. doi: 10.1109/MSP.2019.2907329
    [7]
    MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85–97. doi: 10.1109/MSP.2020.2983832
    [8]
    MISHRA K V, SHANKAR M R, KOIVUNEN V, et al. Toward millimeter-wave joint radar communications: A signal processing perspective[J]. IEEE Signal Processing Magazine, 2019, 36(5): 100–114. doi: 10.1109/MSP.2019.2913173
    [9]
    HASSANIEN A, AMIN M G, ZHANG Y D, et al. Signaling strategies for dual-function radar communications: An overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 36–45. doi: 10.1109/MAES.2016.150225
    [10]
    TAVIK G C, HILTERBRICK C L, EVINS J B, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1009–1020. doi: 10.1109/TMTT.2005.843485
    [11]
    Converged Collaborative Elements for RF Task Operations (CONCERTO)[R]. Defense Advanced Research Projects Agency, 2016.
    [12]
    MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Bit constrained communication receivers in joint radar communications systems[C]. ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 8243–8247.
    [13]
    ZHOU Zimu, WU Chenshu, YANG Zheng, et al. Sensorless sensing with WiFi[J]. Tsinghua Science and Technology, 2015, 20(1): 1–6. doi: 10.1109/TST.2015.7040509
    [14]
    HAN Liang and WU Ke. Radar and radio data fusion platform for future intelligent transportation system[C]. The 7th European Radar Conference, Paris, France, 2010: 65–68.
    [15]
    AYDOGDU C, KESKIN M F, GARCIA N, et al. RadChat: Spectrum sharing for automotive radar interference mitigation[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1): 416–429. doi: 10.1109/TITS.2019.2959881
    [16]
    BICĂ M and KOIVUNEN V. Multicarrier radar-communications waveform design for RF convergence and coexistence[C]. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019: 7780–7784.
    [17]
    MA Dingyou, HUANG Tianyao, LIU Yimin, et al. A novel joint radar and communication system based on randomized partition of antenna array[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 3335–3339.
    [18]
    MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Spatial modulation for joint radar-communications systems: Design, analysis, and hardware prototype[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2283–2298. doi: 10.1109/TVT.2021.3056408
    [19]
    REICHARDT L, STURM C, GRÜNHAUPT F, et al. Demonstrating the use of the IEEE 802.11P Car-to-Car communication standard for automotive radar[C]. 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012: 1576–1580.
    [20]
    KUMARI P, GONZALEZ-PRELCIC N, and HEATH R W. Investigating the IEEE 802.11ad standard for millimeter wave automotive radar[C]. 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, USA, 2015: 1–5.
    [21]
    KUMARI P, CHOI J, GONZÁLEZ-PRELCIC N, et al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3012–3027. doi: 10.1109/TVT.2017.2774762
    [22]
    MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. FRaC: FMCW-based joint radar-communications system via index modulation[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1348–1364. doi: 10.1109/JSTSP.2021.3118219
    [23]
    HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. Multi-carrier agile phased array radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 5706–5721. doi: 10.1109/TSP.2020.3026186
    [24]
    MA Dingyou, HUANG Tianyao, SHLEZINGER N, et al. A DFRC system based on multi-carrier agile FMCW MIMO radar for vehicular applications[C]. 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 2020: 1–7.
    [25]
    HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. MAJoRCom: A dual-function radar communication system using index modulation[J]. IEEE Transactions on Signal Processing, 2020, 68: 3423–3438. doi: 10.1109/TSP.2020.2994394
    [26]
    MIZUI K, UCHIDA M, and NAKAGAWA M. Vehicle-to-vehicle communication and ranging system using spread spectrum technique (Proposal of Boomerang Transmission System)[C]. IEEE 43rd Vehicular Technology Conference, Secaucus, USA, 1993: 335–338.
    [27]
    TAKEDA M, TERADA T, and KOHNO R. Spread spectrum joint communication and ranging system using interference cancellation between a roadside and a vehicle[C]. VTC ’98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No. 98CH36151), Ottawa, Canada, 1998: 1935–1939.
    [28]
    STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110
    [29]
    MIZUTANI K and KOHNO R. Inter-vehicle spread spectrum communication and ranging system with concatenated EOE sequence[J]. IEEE Transactions on Intelligent Transportation Systems, 2001, 2(4): 180–191. doi: 10.1109/6979.969363
    [30]
    HAN Liang and WU Ke. Joint wireless communication and radar sensing systems – state of the art and future prospects[J]. IET Microwaves, Antennas & Propagation, 2013, 7(11): 876–885. doi: 10.1049/iet-map.2012.0450
    [31]
    HWANG T, YANG Chenyang, WU Gang, et al. OFDM and its wireless applications: A survey[J]. IEEE Transactions on Vehicular Technology, 2009, 58(4): 1673–1694. doi: 10.1109/TVT.2008.2004555
    [32]
    LEVANON N. Multifrequency complementary phase-coded radar signal[J]. IEE Proceedings - Radar, Sonar and Navigation, 2000, 147(6): 276–284. doi: 10.1049/ip-rsn:20000734
    [33]
    STURM C, ZWICK T, and WIESBECK W. An OFDM system concept for joint radar and communications operations[C]. VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, Barcelona, Spain, 2009: 1–5.
    [34]
    LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Design of integrated radar and communication system based on MIMO-OFDM waveform[J]. Journal of Systems Engineering and Electronics, 2017, 28(4): 669–680. doi: 10.21629/JSEE.2017.04.06
    [35]
    BRAUN M, STURM C, NIETHAMMER A, et al. Parametrization of joint OFDM-based radar and communication systems for vehicular applications[C]. 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 2009: 3020–3024.
    [36]
    LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 2017, 21(10): 2174–2177. doi: 10.1109/LCOMM.2017.2723890
    [37]
    LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Robust OFDM integrated radar and communications waveform design based on information theory[J]. Signal Processing, 2019, 162: 317–329. doi: 10.1016/j.sigpro.2019.05.001
    [38]
    LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Transmit power adaptation for orthogonal frequency division multiplexing integrated radar and communication systems[J]. Journal of Applied Remote Sensing, 2017, 11(3): 035017. doi: 10.1117/1.JRS.11.035017
    [39]
    LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Multiobjective optimal waveform design for OFDM integrated radar and communication systems[J]. Signal Processing, 2017, 141: 331–342. doi: 10.1016/j.sigpro.2017.06.026
    [40]
    LIU Yongjun, LIAO Guisheng and YANG Zhiwei. Range and angle estimation for MIMO-OFDM integrated radar and communication systems[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016, pp. 1–4.
    [41]
    LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Joint range and angle estimation for an integrated system combining MIMO radar with OFDM communication[J]. Multidimensional Systems and Signal Processing, 2019, 30(2): 661–687. doi: 10.1007/s11045-018-0576-2
    [42]
    HAKOBYAN G and YANG Bin. A novel OFDM-MIMO radar with non-equidistant dynamic subcarrier interleaving[C]. 2016 European Radar Conference (EuRAD), London, UK, 2016: 45–48.
    [43]
    KNILL C, ROOS F, SCHWEIZER B, et al. Random multiplexing for an MIMO-OFDM radar with compressed sensing-based reconstruction[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(4): 300–302. doi: 10.1109/LMWC.2019.2901405
    [44]
    LIU Yongjun, LIAO Guisheng, CHEN Yufeng, et al. Super-resolution range and velocity estimations with OFDM integrated radar and communications waveform[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11659–11672. doi: 10.1109/TVT.2020.3016470
    [45]
    LELLOUCH G, MISHRA A K, and INGGS M. Stepped OFDM radar technique to resolve range and doppler simultaneously[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 937–950. doi: 10.1109/TAES.2014.130753
    [46]
    HUANG Tianyao and ZHAO Tong. Low PMEPR OFDM radar waveform design using the iterative least squares algorithm[J]. IEEE Signal Processing Letters, 2015, 22(11): 1975–1979. doi: 10.1109/LSP.2015.2449305
    [47]
    TURLAPATY A, JIN Yuanwei, and XU Yang. Range and velocity estimation of radar targets by weighted OFDM modulation[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 1358–1362.
    [48]
    MUNS G R, MISHRA K V, GUERRA C B, et al. Beam alignment and tracking for autonomous vehicular communication using IEEE 802.11ad-based radar[C]. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 2019: 535–540.
    [49]
    GROSSI E, LOPS M, VENTURINO L, et al. Opportunistic automotive radar using the IEEE 802.11ad standard[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1196–1200.
    [50]
    KUMARI P, HEATH R W, and VOROBYOV S A. Virtual pulse design for IEEE 802. 11AD-based joint communication-radar[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 3315–3319.
    [51]
    LIU Zhipeng, CHEN Xingbo, WANG Xiaomo, et al. Communication analysis of integrated waveform based on LFM and MSK[C]. IET International Radar Conference 2015, Hangzhou, China, 2015.
    [52]
    ZHANG Yu, LI Qingyu, HUANG Ling, et al. A modified waveform design for radar-communication integration based on LFM-CPM[C]. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 2017: 1–5.
    [53]
    SAHIN C, JAKABOSKY J, MCCORMICK P M, et al. A novel approach for embedding communication symbols into physical radar waveforms[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1498–1503.
    [54]
    ROBERTON M and BROWN E R. Integrated radar and communications based on chirped spread-spectrum techniques[C]. IEEE MTT-S International Microwave Symposium Digest, 2003, Philadelphia, USA, 2003: 611–614.
    [55]
    SADDIK G N, SINGH R S, and BROWN E R. Ultra-wideband multifunctional communications/radar system[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(7): 1431–1437. doi: 10.1109/TMTT.2007.900343
    [56]
    LIU Xiang, COHEN D, HUANG Tianyao, et al. Unambiguous delay-Doppler recovery from random phase coded pulses[J]. IEEE Transactions on Signal Processing, 2021, 69: 4991–5004. doi: 10.1109/TSP.2021.3105921
    [57]
    HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667
    [58]
    HASSANIEN A, AMIN M G, ZHANG Y D, et al. Non-coherent PSK-based dual-function radar-communication systems[C]. 2016 IEEE Radar Conference (RadarConf), Philadelphia, USA, 2016: 1–6.
    [59]
    BASAR E, WEN Miaowen, MESLEH R, et al. Index modulation techniques for next-generation wireless networks[J]. IEEE Access, 2017, 5: 16693–16746. doi: 10.1109/ACCESS.2017.2737528
    [60]
    WANG Jintao, JIA Shuyun, and SONG Jian. Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme[J]. IEEE Transactions on Wireless Communications, 2012, 11(4): 1605–1615. doi: 10.1109/TWC.2012.030512.111635
    [61]
    BAŞAR E, AYGÖLÜ Ü, PANAYIRCI E, et al. Orthogonal frequency division multiplexing with index modulation[J]. IEEE Transactions on Signal Processing, 2013, 61(22): 5536–5549. doi: 10.1109/TSP.2013.2279771
    [62]
    BOUDAHER E, HASSANIEN A, ABOUTANIOS E, et al. Towards a dual-function MIMO radar-communication system[C]. 2016 IEEE Radar Conference (RadarConf), Philadelphia, USA, 2016.
    [63]
    WANG Xiangrong, HASSANIEN A, and AMIN M G. Dual-function MIMO radar communications system design via sparse array optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1213–1226. doi: 10.1109/TAES.2018.2866038
    [64]
    WANG Xiangrong and XU Jing. Co-design of joint radar and communications systems utilizing frequency hopping code diversity[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019.
    [65]
    HU Chenxi, LIU Yimin, MENG Huadong, et al. Randomized switched antenna array FMCW radar for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8): 3624–3641. doi: 10.1109/TVT.2014.2308895
    [66]
    LIU Yimin, RUAN Hang, WANG Lei, et al. The random frequency diverse array: A new antenna structure for uncoupled direction-range indication in active sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 295–308. doi: 10.1109/JSTSP.2016.2627183
    [67]
    HUANG Tianyao, LIU Yimin, XU Xingyu, et al. Analysis of frequency agile radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2018, 66(23): 6228–6240. doi: 10.1109/TSP.2018.2876301
    [68]
    LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739
    [69]
    MCCORMICK P M, BLUNT S D, and METCALF J G. Simultaneous radar and communications emissions from a common aperture, Part I: Theory[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1685–1690.
    [70]
    LIU Fan, MASOUROS C, LI Ang, et al. MU-MIMO communications with MIMO radar: From co-existence to joint transmission[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2755–2770. doi: 10.1109/TWC.2018.2803045
    [71]
    LIU Fan, LIU Yafeng, LI Ang, et al. Cramér-Rao bound optimization for joint radar-communication design[J]. arXiv: 2101.12530. http://arxiv.org/abs/2101.12530, 2021.
    [72]
    LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648
    [73]
    LIU Xiang, HUANG Tianyao, and LIU Yimin. Transmit design for joint MIMO radar and multiuser communications with transmit covariance constraint[J]. arXiv: 2109.00779. http://arxiv.org/abs/2109.00779, 2021.
    [74]
    WEINER I. High-SNR channel capacity for communication over radar waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1261–1268. doi: 10.1109/TAES.2018.2884858
    [75]
    LIU Xiang, HUANG Tianyao, LIU Yimin, et al. Achievable sum-rate capacity optimization for joint MIMO multiuser communications and radar[C]. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 2021: 466–470.
    [76]
    LI Jian, XU Luzhou, STOICA P, et al. Range compression and waveform optimization for MIMO radar: A Cramér-Rao bound based study[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 218–232. doi: 10.1109/TSP.2007.901653
    [77]
    STOICA P, LI Jian, and XIE Yao. On probing signal design for MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4151–4161. doi: 10.1109/TSP.2007.894398
    [78]
    FUHRMANN D R and SAN ANTONIO G. Transmit beamforming for MIMO radar systems using signal cross-correlation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 171–186. doi: 10.1109/TAES.2008.4516997
    [79]
    KOBAYASHI M, CAIRE G, and KRAMER G. Joint state sensing and communication: Optimal tradeoff for a memoryless case[C]. 2018 IEEE International Symposium on Information Theory (ISIT), Vail, USA, 2018: 111–115.
    [80]
    KOBAYASHI M, HAMAD H, KRAMER G, et al. Joint state sensing and communication over memoryless multiple access channels[C]. 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 2019: 270–274.
  • Relative Articles

    [1]HE Zhuoyuan, CHEN Shengyao, ZHU Han, XI Feng, LI Hongtao, LIU Zhong. Transmit Waveform Design for Symbol-Level Precoding-based One-Bit Dual-Functional Radar-Communication[J]. Journal of Radars. doi: 10.12000/JR24217
    [2]LIU Yan, WAN Xianrong, YI Jianxin. OFDM Waveform Design for Joint Radar-communication Based on Data Distortion[J]. Journal of Radars, 2024, 13(1): 160-173. doi: 10.12000/JR23205
    [3]ZHANG Yingkui, SUN Guohao, ZHONG Suchuan, YU Xianxiang. Radar Waveform Design Method Based on Cascade Optimization Processing under Missing Clutter Prior Data[J]. Journal of Radars, 2023, 12(1): 235-246. doi: 10.12000/JR22166
    [4]LIU Liu, LIANG Xingdong, LI Yanlei, ZENG Zhiyuan, TANG Haibo. A Novel Joint Radar-communication Waveform Design Method Based on Distributed Aperture[J]. Journal of Radars, 2023, 12(2): 297-311. doi: 10.12000/JR23019
    [5]LI Wanlu, XIANG Zheng, REN Peng. Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System[J]. Journal of Radars, 2023, 12(2): 287-296. doi: 10.12000/JR22064
    [6]WANG Xinhai, WANG Chaoyu, ZHANG Ning, CHEN Wei. Phase-only Method for Designing a Unimodular Radar Waveform with Low ISL[J]. Journal of Radars, 2022, 11(2): 255-263. doi: 10.12000/JR21137
    [7]WU Wenjun, TANG Bo, TANG Jun, HU Yuankui. Waveform Design for Dual-function Radar-communication Systems in Clutter[J]. Journal of Radars, 2022, 11(4): 570-580. doi: 10.12000/JR22105
    [8]ZHU Shengqi, YU Kun, XU Jingwei, LAN Lan, LI Ximin. Research Progress and Prospect for the Noval Waveform Diverse Array Radar[J]. Journal of Radars, 2021, 10(6): 795-810. doi: 10.12000/JR21188
    [9]DENG Likang, ZHANG Shuanghui, ZHANG Chi, LIU Yongxiang. A Multiple-Input Multiple-Output Inverse Synthetic Aperture Radar Imaging Method Based on Multidimensional Alternating Direction Method of Multipliers[J]. Journal of Radars, 2021, 10(3): 416-431. doi: 10.12000/JR20132
    [10]ZHAO Yuzhen, CHEN Longyong, ZHANG Fubo, LI Yanlei, WU Yirong. A New Method of Joint Radar and Communication Waveform Design and Signal Processing Based on OFDM-chirp[J]. Journal of Radars, 2021, 10(3): 453-466. doi: 10.12000/JR21028
    [11]LIU Fan, YUAN Weijie, YUAN Jinhong, ZHANG J. Andrew, FEI Zesong, ZHOU Jianming. Radar-communication Spectrum Sharing and Integration: Overview and Prospect[J]. Journal of Radars, 2021, 10(3): 467-484. doi: 10.12000/JR20113
    [12]YU Lei, HE Feng, DONG Zhen, SU Yi, ZHANG Yongsheng, WU Manqing. A Waveform Design Method Based on Nonlinear Frequency Modulation and Space-coding for Coherent Frequency Diverse Array Radar[J]. Journal of Radars, 2021, 10(6): 822-832. doi: 10.12000/JR21008
    [13]ZHENG Guimei, SONG Yuwei, HU Guoping, LI Binbin, ZHANG Dong. Height Measurement for Meter-wave MIMO Radar Based on Block Orthogonal Matching Pursuit Preprocessing[J]. Journal of Radars, 2020, 9(5): 908-915. doi: 10.12000/JR20042
    [14]YANG Huiting, ZHOU Yu, GU Yabin, ZHANG Linrang. Design of Integrated Radar and Communication Signal Based on Multicarrier Parameter Modulation Signal[J]. Journal of Radars, 2019, 8(1): 54-63. doi: 10.12000/JR18001
    [15]ZENG Zheng, ZHANG Fubo, CHEN Longyong, BU Xiangxi, ZHOU Siyan. A Two-dimensional Mixed Baseline Method Based on MIMO-SAR for Countering Deceptive Jamming[J]. Journal of Radars, 2019, 8(1): 90-99. doi: 10.12000/JR18118
    [16]CUI Guolong, YU Xianxiang, YANG Jing, FU Yue, KONG Lingjiang. An Overview of Waveform Optimization Methods for Cognitive Radar[J]. Journal of Radars, 2019, 8(5): 537-557. doi: 10.12000/JR19072
    [17]Xu Jingwei, Zhu Shengqi, Liao Guisheng, Zhang Yuhong. An Overview of Frequency Diverse Array Radar Technology[J]. Journal of Radars, 2018, 7(2): 167-182. doi: 10.12000/JR18023
    [18]Hao Tianduo, Cui Chen, Gong Yang, Sun Congyi. Waveform Design for Cognitive Radar Under Low PAR Constraints by Convex Optimization[J]. Journal of Radars, 2018, 7(4): 498-506. doi: 10.12000/JR18002
    [19]Li Zi-qi, Mei Jin-jie, Hu Deng-oeng, Shen Xu-chi, Li Xiao-bai. Peak-to-Average Power Ratio Reduction for Integration of Radar and Communication Systems Based on OFDM Signals with Block Golay Coding[J]. Journal of Radars, 2014, 3(5): 548-555. doi: 10.3724/SP.J.1300.2014.14059
    [20]Shao Qi-hong, Wan Xian-rong, Zhang De-lei, Zhao Zhi-xin, Ke Heng-yu. Experimental Study on Shortwave Communication and OTHR Integrated System Based on OFDM Waveform[J]. Journal of Radars, 2012, 1(4): 370-379. doi: 10.3724/SP.J.1300.2012.20089
  • Cited by

    Periodical cited type(31)

    1. 任治民,唐高明,刘宇宏,叶曦,张守耀. 多频带Chirp-BOK雷达通信一体化波形研究. 遥测遥控. 2025(01): 97-106 .
    2. 刘燕,万显荣,易建新. 基于数据失真的雷达通信一体化OFDM波形设计方法. 雷达学报. 2024(01): 160-173 . 本站查看
    3. 杨铭,高猛. MSK-LFM一体化信号波形相关性分析与参数选择. 大连民族大学学报. 2024(01): 51-56 .
    4. 刘子威,杨彪,赵珊珊,杜鸿飞. 基于改进子载波预留算法的正交频分复用信号峰均比抑制方法研究. 电子与信息学报. 2024(04): 1196-1202 .
    5. 王瑜新,马一华,王钟斌,韩志强,李松谦,白辰,夏树强. 多站协同感知技术. 信息通信技术. 2024(01): 16-24 .
    6. 吕旭宁,徐友根. 基于极化-相位调制的雷达通信一体化波束方向图设计. 系统工程与电子技术. 2024(08): 2615-2622 .
    7. 任治民,唐高明,刘宇宏,张守耀,赵珺初. Chirp-DS-BPSK雷达通信一体化波形设计. 通信技术. 2024(08): 783-792 .
    8. 曹成虎,赵永波,黄海生. 基于压缩感知的5G雷达目标距离和速度联合估计方法. 信号处理. 2024(09): 1720-1727 .
    9. 季承,黄尔平,胡庆伟. 基于CIC滤波的宽窄波束同时形成方法. 数字技术与应用. 2024(07): 102-104 .
    10. 陈军,王昊,贺晓波,王杰,周建江. 基于滤波器组多载波的组网低截获探通一体化信号设计. 电子与信息学报. 2024(11): 4268-4277 .
    11. 柴恒,管振辉,申宇彤,高墨昀. 时频交叠电磁环境对雷达侦察系统影响研究. 现代雷达. 2023(02): 16-20 .
    12. 陈显舟,杨旭,周琪,吴翼虎,陈文兵,方海,杨锋. 多功能可重构电磁信号发射接收及处理技术. 电子科技大学学报. 2023(02): 214-223 .
    13. 胡泽林,叶启彬,黄驿轩,胡苏. 基于频分多址的多用户OFDM通信雷达一体化方案. 电子科技大学学报. 2023(02): 196-202 .
    14. 周炳朋,马珊珊. 面向6G毫米波通信感知一体化的机动目标联合定位与测速. 通信学报. 2023(03): 81-92 .
    15. 李琬璐,相征,任鹏. 基于FBMC信号的低截获雷达通信一体化波形设计. 雷达学报. 2023(02): 287-296 . 本站查看
    16. 杨婧,余显祥,沙明辉,崔国龙,孔令讲. MIMO系统探通一体化信号矩阵设计方法. 雷达学报. 2023(02): 262-274 . 本站查看
    17. 刘柳,梁兴东,李焱磊,曾致远,唐海波. 一种基于分布式孔径的雷达通信一体化波形设计方法. 雷达学报. 2023(02): 297-311 . 本站查看
    18. 郭瑞,张月,田彪,肖钰,胡俊,徐世友,陈曾平. 全息凝视雷达系统技术与发展应用综述. 雷达学报. 2023(02): 389-411 . 本站查看
    19. 王佳欢,范平志,时巧,周正春. 一种具有多普勒容忍性的通感一体化波形设计. 雷达学报. 2023(02): 275-286 . 本站查看
    20. 余显祥,姚雪,杨婧,陆军,崔国龙,孔令讲. 面向感知应用的通感一体化信号设计技术与综述. 雷达学报. 2023(02): 247-261 . 本站查看
    21. 史英春,陈明建,黄超. 基于幅相控制的雷达-通信一体化系统稳健波形设计方法. 信号处理. 2023(05): 786-792 .
    22. 李婕,毕佳梦,刘伯晗,王威,晋本周. 基于空间-频率调制的雷达通信一体化波形性能分析. 信号处理. 2023(07): 1174-1182 .
    23. 范文,李淳泽,赵勇,张航. 复杂环境下雷达抗干扰及多功能一体化波形设计方法研究. 无线电通信技术. 2023(05): 960-970 .
    24. 黄超,黄中瑞,周青松,张剑云. 基于优化星座图的MIMO雷达-通信一体化发射波形设计. 系统工程与电子技术. 2023(10): 3016-3023 .
    25. 刘毓,杨志航,姚雪,陈姣. 联合波形选择和PRI捷变探通一体化波形设计. 现代雷达. 2023(10): 80-87 .
    26. 王伟,劳智伟,蒲治伟,董福王,郭猛. 双功能雷达通信系统的多用户功率分配算法. 哈尔滨工业大学学报. 2023(12): 28-34 .
    27. 陈梓浩,梁军利,范文,宋珂满,邓晓波. 集中式MIMO雷达多模式一体化波形设计. 信息对抗技术. 2023(06): 47-60 .
    28. 李轩,周逸潇,赵尚弘,王国栋. 雷达通信一体化资源复用、波形共享和微波光子研究进展. 信号处理. 2023(12): 2115-2130 .
    29. 李国琳,郭文彬. 雷达通信一体化波形设计综述. 移动通信. 2022(05): 38-44 .
    30. 张若愚,袁伟杰,崔原豪,刘凡,吴文. 面向6G的大规模MIMO通信感知一体化:现状与展望. 移动通信. 2022(06): 17-23 .
    31. 吴文俊,唐波,汤俊,胡元奎. 杂波环境中雷达通信一体化系统波形设计算法研究. 雷达学报. 2022(04): 570-580 . 本站查看

    Other cited types(29)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04050100150200
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.6 %FULLTEXT: 29.6 %META: 59.6 %META: 59.6 %PDF: 10.8 %PDF: 10.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.4 %其他: 6.4 %其他: 1.7 %其他: 1.7 %Arlington: 0.0 %Arlington: 0.0 %Australia: 0.0 %Australia: 0.0 %Baden: 0.0 %Baden: 0.0 %Bangladesh: 0.0 %Bangladesh: 0.0 %Belgium: 0.0 %Belgium: 0.0 %Canada: 0.0 %Canada: 0.0 %Canton: 0.0 %Canton: 0.0 %Central District: 0.1 %Central District: 0.1 %China: 2.3 %China: 2.3 %Czech Republic: 0.0 %Czech Republic: 0.0 %European Union: 0.0 %European Union: 0.0 %Falls Church: 0.0 %Falls Church: 0.0 %Germany: 0.1 %Germany: 0.1 %Greece: 0.1 %Greece: 0.1 %Hanoi: 0.2 %Hanoi: 0.2 %Herndon: 0.1 %Herndon: 0.1 %India: 0.1 %India: 0.1 %Indonesia: 0.0 %Indonesia: 0.0 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Macau: 0.0 %Macau: 0.0 %Matawan: 0.1 %Matawan: 0.1 %Morocco: 0.0 %Morocco: 0.0 %North Point: 0.0 %North Point: 0.0 %Saudi Arabia: 0.1 %Saudi Arabia: 0.1 %Seattle: 0.1 %Seattle: 0.1 %Secaucus: 0.0 %Secaucus: 0.0 %State College: 0.0 %State College: 0.0 %Sweden: 0.1 %Sweden: 0.1 %Taichung: 0.0 %Taichung: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %Thane: 0.0 %Thane: 0.0 %United Kingdom: 0.0 %United Kingdom: 0.0 %United States: 0.2 %United States: 0.2 %Viet Nam: 0.0 %Viet Nam: 0.0 %Wyoming: 0.0 %Wyoming: 0.0 %[]: 1.8 %[]: 1.8 %三亚: 0.1 %三亚: 0.1 %三明: 0.0 %三明: 0.0 %上海: 2.3 %上海: 2.3 %上饶: 0.1 %上饶: 0.1 %东京: 0.1 %东京: 0.1 %东京都: 0.0 %东京都: 0.0 %东莞: 0.4 %东莞: 0.4 %中卫: 0.0 %中卫: 0.0 %中山: 0.0 %中山: 0.0 %丹东: 0.0 %丹东: 0.0 %乌海: 0.0 %乌海: 0.0 %乐山: 0.0 %乐山: 0.0 %九江: 0.1 %九江: 0.1 %亳州: 0.0 %亳州: 0.0 %伊斯兰堡: 0.0 %伊斯兰堡: 0.0 %休斯敦: 0.1 %休斯敦: 0.1 %伦敦: 0.0 %伦敦: 0.0 %佛山: 0.1 %佛山: 0.1 %佳木斯: 0.0 %佳木斯: 0.0 %保定: 0.1 %保定: 0.1 %信阳: 0.0 %信阳: 0.0 %六安: 0.1 %六安: 0.1 %兰州: 0.2 %兰州: 0.2 %内江: 0.0 %内江: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %包头: 0.0 %包头: 0.0 %北京: 11.2 %北京: 11.2 %北海: 0.0 %北海: 0.0 %十堰: 0.1 %十堰: 0.1 %南京: 4.8 %南京: 4.8 %南充: 0.0 %南充: 0.0 %南宁: 0.2 %南宁: 0.2 %南平: 0.0 %南平: 0.0 %南昌: 0.3 %南昌: 0.3 %南荷兰省: 0.0 %南荷兰省: 0.0 %南通: 0.1 %南通: 0.1 %卡纳塔克邦: 0.0 %卡纳塔克邦: 0.0 %印度尼西亚北苏门答腊: 0.0 %印度尼西亚北苏门答腊: 0.0 %厦门: 0.2 %厦门: 0.2 %台中: 0.2 %台中: 0.2 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %台湾省: 0.0 %台湾省: 0.0 %合肥: 0.7 %合肥: 0.7 %吉林: 0.0 %吉林: 0.0 %吉隆坡: 0.0 %吉隆坡: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.0 %咸阳: 0.0 %哈尔滨: 0.8 %哈尔滨: 0.8 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.0 %唐山: 0.0 %商丘: 0.0 %商丘: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %圣地亚哥: 0.0 %圣地亚哥: 0.0 %圣安东尼奥: 0.0 %圣安东尼奥: 0.0 %圣彼得堡: 0.0 %圣彼得堡: 0.0 %圣约翰斯: 0.1 %圣约翰斯: 0.1 %埃德蒙顿: 0.0 %埃德蒙顿: 0.0 %墨尔本: 0.0 %墨尔本: 0.0 %大庆: 0.0 %大庆: 0.0 %大连: 0.2 %大连: 0.2 %天水围: 0.0 %天水围: 0.0 %天津: 1.1 %天津: 1.1 %太原: 0.1 %太原: 0.1 %奥卢: 0.0 %奥卢: 0.0 %奥尔巴尼: 0.0 %奥尔巴尼: 0.0 %威海: 0.2 %威海: 0.2 %娄底: 0.0 %娄底: 0.0 %孟买: 0.3 %孟买: 0.3 %宁波: 0.3 %宁波: 0.3 %安卡拉: 0.1 %安卡拉: 0.1 %安康: 0.3 %安康: 0.3 %安顺: 0.0 %安顺: 0.0 %宜兰: 0.0 %宜兰: 0.0 %宜宾: 0.0 %宜宾: 0.0 %宜春: 0.0 %宜春: 0.0 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.3 %宣城: 0.3 %密蘇里城: 0.2 %密蘇里城: 0.2 %巴中: 0.1 %巴中: 0.1 %巴伐利亚州: 0.1 %巴伐利亚州: 0.1 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %巴音郭楞蒙古自治州: 0.0 %巴音郭楞蒙古自治州: 0.0 %布兰普顿: 0.0 %布兰普顿: 0.0 %常州: 0.3 %常州: 0.3 %常德: 0.1 %常德: 0.1 %平顶山: 0.0 %平顶山: 0.0 %广州: 1.7 %广州: 1.7 %庆阳: 0.0 %庆阳: 0.0 %库比蒂诺: 0.0 %库比蒂诺: 0.0 %廊坊: 0.0 %廊坊: 0.0 %延安: 0.0 %延安: 0.0 %开封: 0.0 %开封: 0.0 %张家口: 0.8 %张家口: 0.8 %徐州: 0.1 %徐州: 0.1 %德罕: 0.0 %德罕: 0.0 %德里: 0.0 %德里: 0.0 %德阳: 0.0 %德阳: 0.0 %德黑兰: 0.0 %德黑兰: 0.0 %怀化: 0.0 %怀化: 0.0 %悉尼: 0.1 %悉尼: 0.1 %惠州: 0.0 %惠州: 0.0 %意法半: 0.0 %意法半: 0.0 %成都: 3.7 %成都: 3.7 %扬州: 0.3 %扬州: 0.3 %抚州: 0.0 %抚州: 0.0 %拉斯维加斯: 0.0 %拉斯维加斯: 0.0 %拉萨: 0.0 %拉萨: 0.0 %拉贾斯坦邦: 0.0 %拉贾斯坦邦: 0.0 %拉雷多: 0.0 %拉雷多: 0.0 %揭阳: 0.0 %揭阳: 0.0 %新伦敦: 0.0 %新伦敦: 0.0 %新加坡: 0.1 %新加坡: 0.1 %新北: 0.0 %新北: 0.0 %新竹: 0.0 %新竹: 0.0 %无锡: 0.3 %无锡: 0.3 %日照: 0.0 %日照: 0.0 %昆明: 0.8 %昆明: 0.8 %晋中: 0.0 %晋中: 0.0 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.7 %杭州: 1.7 %枣庄: 0.0 %枣庄: 0.0 %柳州: 0.0 %柳州: 0.0 %株洲: 0.0 %株洲: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %格拉沃利讷: 0.1 %格拉沃利讷: 0.1 %桂林: 0.1 %桂林: 0.1 %梅州: 0.0 %梅州: 0.0 %榆林: 0.1 %榆林: 0.1 %: 0.0 %: 0.0 %武汉: 1.0 %武汉: 1.0 %毕节: 0.0 %毕节: 0.0 %永州: 0.0 %永州: 0.0 %汉中: 0.0 %汉中: 0.0 %汕头: 0.1 %汕头: 0.1 %江门: 0.0 %江门: 0.0 %池州: 0.0 %池州: 0.0 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.0 %沧州: 0.0 %泰州: 0.2 %泰州: 0.2 %泰米尔纳德: 0.0 %泰米尔纳德: 0.0 %泸州: 0.0 %泸州: 0.0 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %济宁: 0.0 %济宁: 0.0 %济源: 0.1 %济源: 0.1 %海口: 0.0 %海口: 0.0 %海西: 0.0 %海西: 0.0 %淮北: 0.0 %淮北: 0.0 %淮南: 0.1 %淮南: 0.1 %深圳: 1.5 %深圳: 1.5 %清州: 0.0 %清州: 0.0 %清远: 0.0 %清远: 0.0 %渥太华: 0.1 %渥太华: 0.1 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.0 %湘潭: 0.0 %湘西: 0.0 %湘西: 0.0 %湛江: 0.0 %湛江: 0.0 %滁州: 0.0 %滁州: 0.0 %漯河: 0.6 %漯河: 0.6 %潍坊: 0.0 %潍坊: 0.0 %潮州: 0.0 %潮州: 0.0 %澳门特别行政区: 0.0 %澳门特别行政区: 0.0 %濮阳: 0.0 %濮阳: 0.0 %烟台: 0.1 %烟台: 0.1 %焦作: 0.1 %焦作: 0.1 %牡丹江: 0.0 %牡丹江: 0.0 %特伦甘地: 0.1 %特伦甘地: 0.1 %珠海: 0.1 %珠海: 0.1 %白山: 0.0 %白山: 0.0 %白银: 0.0 %白银: 0.0 %眉山: 0.0 %眉山: 0.0 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.3 %秦皇岛: 0.3 %纽敦: 0.0 %纽敦: 0.0 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绥化: 0.0 %绥化: 0.0 %绵阳: 0.2 %绵阳: 0.2 %罗马: 0.0 %罗马: 0.0 %美国加利福尼亚圣地亚哥: 0.0 %美国加利福尼亚圣地亚哥: 0.0 %肇庆: 0.0 %肇庆: 0.0 %胡志明: 0.1 %胡志明: 0.1 %自贡: 0.0 %自贡: 0.0 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 17.8 %芒廷维尤: 17.8 %芜湖: 0.0 %芜湖: 0.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.6 %苏州: 0.6 %莫斯科: 0.0 %莫斯科: 0.0 %莱芜: 0.0 %莱芜: 0.0 %菏泽: 0.0 %菏泽: 0.0 %萨尔州: 0.0 %萨尔州: 0.0 %葫芦岛: 0.0 %葫芦岛: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 11.4 %西宁: 11.4 %西安: 2.8 %西安: 2.8 %西班牙: 0.0 %西班牙: 0.0 %西雅图: 0.0 %西雅图: 0.0 %诺伊达: 0.0 %诺伊达: 0.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.3 %贵阳: 0.3 %赣州: 0.0 %赣州: 0.0 %赤峰: 0.0 %赤峰: 0.0 %车士活: 0.0 %车士活: 0.0 %达州: 0.1 %达州: 0.1 %运城: 0.3 %运城: 0.3 %遂宁: 0.0 %遂宁: 0.0 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.7 %郑州: 0.7 %郴州: 0.0 %郴州: 0.0 %鄂州: 0.0 %鄂州: 0.0 %重庆: 0.8 %重庆: 0.8 %金华: 0.1 %金华: 0.1 %金奈: 0.1 %金奈: 0.1 %铁岭: 0.0 %铁岭: 0.0 %银川: 0.0 %银川: 0.0 %锦州: 0.0 %锦州: 0.0 %镇江: 0.2 %镇江: 0.2 %长春: 0.3 %长春: 0.3 %长沙: 1.9 %长沙: 1.9 %长治: 0.0 %长治: 0.0 %阜阳: 0.0 %阜阳: 0.0 %阳泉: 0.0 %阳泉: 0.0 %阿坝: 0.0 %阿坝: 0.0 %阿姆斯特丹: 0.0 %阿姆斯特丹: 0.0 %阿尔泽特河畔埃施: 0.0 %阿尔泽特河畔埃施: 0.0 %阿布扎比: 0.1 %阿布扎比: 0.1 %阿德莱德: 0.1 %阿德莱德: 0.1 %霍德夏沙隆: 0.0 %霍德夏沙隆: 0.0 %青岛: 0.6 %青岛: 0.6 %鞍山: 0.0 %鞍山: 0.0 %韶关: 0.0 %韶关: 0.0 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %马鞍山: 0.0 %马鞍山: 0.0 %黄冈: 0.0 %黄冈: 0.0 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %龟尾: 0.0 %龟尾: 0.0 %其他其他ArlingtonAustraliaBadenBangladeshBelgiumCanadaCantonCentral DistrictChinaCzech RepublicEuropean UnionFalls ChurchGermanyGreeceHanoiHerndonIndiaIndonesiaKorea Republic ofMacauMatawanMoroccoNorth PointSaudi ArabiaSeattleSecaucusState CollegeSwedenTaichungTaiwan, ChinaThaneUnited KingdomUnited StatesViet NamWyoming[]三亚三明上海上饶东京东京都东莞中卫中山丹东乌海乐山九江亳州伊斯兰堡休斯敦伦敦佛山佳木斯保定信阳六安兰州内江凤凰城加利福尼亚州包头北京北海十堰南京南充南宁南平南昌南荷兰省南通卡纳塔克邦印度尼西亚北苏门答腊厦门台中台北台州台湾省合肥吉林吉隆坡呼和浩特咸阳哈尔滨哥伦布唐山商丘嘉兴圣地亚哥圣安东尼奥圣彼得堡圣约翰斯埃德蒙顿墨尔本大庆大连天水围天津太原奥卢奥尔巴尼威海娄底孟买宁波安卡拉安康安顺宜兰宜宾宜春宝鸡宣城密蘇里城巴中巴伐利亚州巴音郭楞巴音郭楞蒙古自治州布兰普顿常州常德平顶山广州庆阳库比蒂诺廊坊延安开封张家口徐州德罕德里德阳德黑兰怀化悉尼惠州意法半成都扬州抚州拉斯维加斯拉萨拉贾斯坦邦拉雷多揭阳新伦敦新加坡新北新竹无锡日照昆明晋中晋城朝阳杭州枣庄柳州株洲格兰特县格拉沃利讷桂林梅州榆林武汉毕节永州汉中汕头江门池州沈阳沧州泰州泰米尔纳德泸州洛阳济南济宁济源海口海西淮北淮南深圳清州清远渥太华温州渭南湖州湘潭湘西湛江滁州漯河潍坊潮州澳门特别行政区濮阳烟台焦作牡丹江特伦甘地珠海白山白银眉山石家庄福州秦皇岛纽敦纽约绍兴绥化绵阳罗马美国加利福尼亚圣地亚哥肇庆胡志明自贡舟山芒廷维尤芜湖芝加哥苏州莫斯科莱芜菏泽萨尔州葫芦岛蚌埠衡水衡阳衢州西宁西安西班牙西雅图诺伊达诺沃克贵阳赣州赤峰车士活达州运城遂宁邢台邯郸郑州郴州鄂州重庆金华金奈铁岭银川锦州镇江长春长沙长治阜阳阳泉阿坝阿姆斯特丹阿尔泽特河畔埃施阿布扎比阿德莱德霍德夏沙隆青岛鞍山韶关香港香港特别行政区马鞍山黄冈齐齐哈尔龟尾1/2

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4913) PDF downloads(885) Cited by(60)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint