Citation: | MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars, 2022, 11(2): 198–212. doi: 10.12000/JR21146 |
[1] |
IMT-2030(6G)推进组. 通信感知一体化技术研究报告[R]. IMT-2030(6G)推进组, 2021.
IMT-2030(6G) Promotion Group. Research report of joint radar and communications technology[R]. IMT-2030(6G) Promotion Group, 2021.
|
[2] |
LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond[J]. arXiv: 2108.07165. http://arxiv.org/abs/2108.07165, 2021.
|
[3] |
刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113
LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113
|
[4] |
PAUL B, CHIRIYATH A R, and BLISS D W. Survey of RF communications and sensing convergence research[J]. IEEE Access, 2017, 5: 252–270. doi: 10.1109/ACCESS.2016.2639038
|
[5] |
GAMEIRO A, CASTANHEIRA D, SANSON J, et al. Research challenges, trends and applications for future joint radar communications systems[J]. Wireless Personal Communications, 2018, 100(1): 81–96. doi: 10.1007/s11277-018-5614-8
|
[6] |
ZHENG Le, LOPS M, ELDAR Y C, et al. Radar and communication coexistence: An overview: A review of recent methods[J]. IEEE Signal Processing Magazine, 2019, 36(5): 85–99. doi: 10.1109/MSP.2019.2907329
|
[7] |
MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85–97. doi: 10.1109/MSP.2020.2983832
|
[8] |
MISHRA K V, SHANKAR M R, KOIVUNEN V, et al. Toward millimeter-wave joint radar communications: A signal processing perspective[J]. IEEE Signal Processing Magazine, 2019, 36(5): 100–114. doi: 10.1109/MSP.2019.2913173
|
[9] |
HASSANIEN A, AMIN M G, ZHANG Y D, et al. Signaling strategies for dual-function radar communications: An overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 36–45. doi: 10.1109/MAES.2016.150225
|
[10] |
TAVIK G C, HILTERBRICK C L, EVINS J B, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1009–1020. doi: 10.1109/TMTT.2005.843485
|
[11] |
Converged Collaborative Elements for RF Task Operations (CONCERTO)[R]. Defense Advanced Research Projects Agency, 2016.
|
[12] |
MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Bit constrained communication receivers in joint radar communications systems[C]. ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 8243–8247.
|
[13] |
ZHOU Zimu, WU Chenshu, YANG Zheng, et al. Sensorless sensing with WiFi[J]. Tsinghua Science and Technology, 2015, 20(1): 1–6. doi: 10.1109/TST.2015.7040509
|
[14] |
HAN Liang and WU Ke. Radar and radio data fusion platform for future intelligent transportation system[C]. The 7th European Radar Conference, Paris, France, 2010: 65–68.
|
[15] |
AYDOGDU C, KESKIN M F, GARCIA N, et al. RadChat: Spectrum sharing for automotive radar interference mitigation[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1): 416–429. doi: 10.1109/TITS.2019.2959881
|
[16] |
BICĂ M and KOIVUNEN V. Multicarrier radar-communications waveform design for RF convergence and coexistence[C]. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019: 7780–7784.
|
[17] |
MA Dingyou, HUANG Tianyao, LIU Yimin, et al. A novel joint radar and communication system based on randomized partition of antenna array[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 3335–3339.
|
[18] |
MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Spatial modulation for joint radar-communications systems: Design, analysis, and hardware prototype[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2283–2298. doi: 10.1109/TVT.2021.3056408
|
[19] |
REICHARDT L, STURM C, GRÜNHAUPT F, et al. Demonstrating the use of the IEEE 802.11P Car-to-Car communication standard for automotive radar[C]. 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012: 1576–1580.
|
[20] |
KUMARI P, GONZALEZ-PRELCIC N, and HEATH R W. Investigating the IEEE 802.11ad standard for millimeter wave automotive radar[C]. 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, USA, 2015: 1–5.
|
[21] |
KUMARI P, CHOI J, GONZÁLEZ-PRELCIC N, et al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3012–3027. doi: 10.1109/TVT.2017.2774762
|
[22] |
MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. FRaC: FMCW-based joint radar-communications system via index modulation[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1348–1364. doi: 10.1109/JSTSP.2021.3118219
|
[23] |
HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. Multi-carrier agile phased array radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 5706–5721. doi: 10.1109/TSP.2020.3026186
|
[24] |
MA Dingyou, HUANG Tianyao, SHLEZINGER N, et al. A DFRC system based on multi-carrier agile FMCW MIMO radar for vehicular applications[C]. 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 2020: 1–7.
|
[25] |
HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. MAJoRCom: A dual-function radar communication system using index modulation[J]. IEEE Transactions on Signal Processing, 2020, 68: 3423–3438. doi: 10.1109/TSP.2020.2994394
|
[26] |
MIZUI K, UCHIDA M, and NAKAGAWA M. Vehicle-to-vehicle communication and ranging system using spread spectrum technique (Proposal of Boomerang Transmission System)[C]. IEEE 43rd Vehicular Technology Conference, Secaucus, USA, 1993: 335–338.
|
[27] |
TAKEDA M, TERADA T, and KOHNO R. Spread spectrum joint communication and ranging system using interference cancellation between a roadside and a vehicle[C]. VTC ’98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No. 98CH36151), Ottawa, Canada, 1998: 1935–1939.
|
[28] |
STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110
|
[29] |
MIZUTANI K and KOHNO R. Inter-vehicle spread spectrum communication and ranging system with concatenated EOE sequence[J]. IEEE Transactions on Intelligent Transportation Systems, 2001, 2(4): 180–191. doi: 10.1109/6979.969363
|
[30] |
HAN Liang and WU Ke. Joint wireless communication and radar sensing systems – state of the art and future prospects[J]. IET Microwaves, Antennas & Propagation, 2013, 7(11): 876–885. doi: 10.1049/iet-map.2012.0450
|
[31] |
HWANG T, YANG Chenyang, WU Gang, et al. OFDM and its wireless applications: A survey[J]. IEEE Transactions on Vehicular Technology, 2009, 58(4): 1673–1694. doi: 10.1109/TVT.2008.2004555
|
[32] |
LEVANON N. Multifrequency complementary phase-coded radar signal[J]. IEE Proceedings - Radar, Sonar and Navigation, 2000, 147(6): 276–284. doi: 10.1049/ip-rsn:20000734
|
[33] |
STURM C, ZWICK T, and WIESBECK W. An OFDM system concept for joint radar and communications operations[C]. VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, Barcelona, Spain, 2009: 1–5.
|
[34] |
LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Design of integrated radar and communication system based on MIMO-OFDM waveform[J]. Journal of Systems Engineering and Electronics, 2017, 28(4): 669–680. doi: 10.21629/JSEE.2017.04.06
|
[35] |
BRAUN M, STURM C, NIETHAMMER A, et al. Parametrization of joint OFDM-based radar and communication systems for vehicular applications[C]. 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 2009: 3020–3024.
|
[36] |
LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 2017, 21(10): 2174–2177. doi: 10.1109/LCOMM.2017.2723890
|
[37] |
LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Robust OFDM integrated radar and communications waveform design based on information theory[J]. Signal Processing, 2019, 162: 317–329. doi: 10.1016/j.sigpro.2019.05.001
|
[38] |
LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Transmit power adaptation for orthogonal frequency division multiplexing integrated radar and communication systems[J]. Journal of Applied Remote Sensing, 2017, 11(3): 035017. doi: 10.1117/1.JRS.11.035017
|
[39] |
LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Multiobjective optimal waveform design for OFDM integrated radar and communication systems[J]. Signal Processing, 2017, 141: 331–342. doi: 10.1016/j.sigpro.2017.06.026
|
[40] |
LIU Yongjun, LIAO Guisheng and YANG Zhiwei. Range and angle estimation for MIMO-OFDM integrated radar and communication systems[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016, pp. 1–4.
|
[41] |
LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Joint range and angle estimation for an integrated system combining MIMO radar with OFDM communication[J]. Multidimensional Systems and Signal Processing, 2019, 30(2): 661–687. doi: 10.1007/s11045-018-0576-2
|
[42] |
HAKOBYAN G and YANG Bin. A novel OFDM-MIMO radar with non-equidistant dynamic subcarrier interleaving[C]. 2016 European Radar Conference (EuRAD), London, UK, 2016: 45–48.
|
[43] |
KNILL C, ROOS F, SCHWEIZER B, et al. Random multiplexing for an MIMO-OFDM radar with compressed sensing-based reconstruction[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(4): 300–302. doi: 10.1109/LMWC.2019.2901405
|
[44] |
LIU Yongjun, LIAO Guisheng, CHEN Yufeng, et al. Super-resolution range and velocity estimations with OFDM integrated radar and communications waveform[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11659–11672. doi: 10.1109/TVT.2020.3016470
|
[45] |
LELLOUCH G, MISHRA A K, and INGGS M. Stepped OFDM radar technique to resolve range and doppler simultaneously[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 937–950. doi: 10.1109/TAES.2014.130753
|
[46] |
HUANG Tianyao and ZHAO Tong. Low PMEPR OFDM radar waveform design using the iterative least squares algorithm[J]. IEEE Signal Processing Letters, 2015, 22(11): 1975–1979. doi: 10.1109/LSP.2015.2449305
|
[47] |
TURLAPATY A, JIN Yuanwei, and XU Yang. Range and velocity estimation of radar targets by weighted OFDM modulation[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 1358–1362.
|
[48] |
MUNS G R, MISHRA K V, GUERRA C B, et al. Beam alignment and tracking for autonomous vehicular communication using IEEE 802.11ad-based radar[C]. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 2019: 535–540.
|
[49] |
GROSSI E, LOPS M, VENTURINO L, et al. Opportunistic automotive radar using the IEEE 802.11ad standard[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1196–1200.
|
[50] |
KUMARI P, HEATH R W, and VOROBYOV S A. Virtual pulse design for IEEE 802. 11AD-based joint communication-radar[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 3315–3319.
|
[51] |
LIU Zhipeng, CHEN Xingbo, WANG Xiaomo, et al. Communication analysis of integrated waveform based on LFM and MSK[C]. IET International Radar Conference 2015, Hangzhou, China, 2015.
|
[52] |
ZHANG Yu, LI Qingyu, HUANG Ling, et al. A modified waveform design for radar-communication integration based on LFM-CPM[C]. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 2017: 1–5.
|
[53] |
SAHIN C, JAKABOSKY J, MCCORMICK P M, et al. A novel approach for embedding communication symbols into physical radar waveforms[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1498–1503.
|
[54] |
ROBERTON M and BROWN E R. Integrated radar and communications based on chirped spread-spectrum techniques[C]. IEEE MTT-S International Microwave Symposium Digest, 2003, Philadelphia, USA, 2003: 611–614.
|
[55] |
SADDIK G N, SINGH R S, and BROWN E R. Ultra-wideband multifunctional communications/radar system[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(7): 1431–1437. doi: 10.1109/TMTT.2007.900343
|
[56] |
LIU Xiang, COHEN D, HUANG Tianyao, et al. Unambiguous delay-Doppler recovery from random phase coded pulses[J]. IEEE Transactions on Signal Processing, 2021, 69: 4991–5004. doi: 10.1109/TSP.2021.3105921
|
[57] |
HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667
|
[58] |
HASSANIEN A, AMIN M G, ZHANG Y D, et al. Non-coherent PSK-based dual-function radar-communication systems[C]. 2016 IEEE Radar Conference (RadarConf), Philadelphia, USA, 2016: 1–6.
|
[59] |
BASAR E, WEN Miaowen, MESLEH R, et al. Index modulation techniques for next-generation wireless networks[J]. IEEE Access, 2017, 5: 16693–16746. doi: 10.1109/ACCESS.2017.2737528
|
[60] |
WANG Jintao, JIA Shuyun, and SONG Jian. Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme[J]. IEEE Transactions on Wireless Communications, 2012, 11(4): 1605–1615. doi: 10.1109/TWC.2012.030512.111635
|
[61] |
BAŞAR E, AYGÖLÜ Ü, PANAYIRCI E, et al. Orthogonal frequency division multiplexing with index modulation[J]. IEEE Transactions on Signal Processing, 2013, 61(22): 5536–5549. doi: 10.1109/TSP.2013.2279771
|
[62] |
BOUDAHER E, HASSANIEN A, ABOUTANIOS E, et al. Towards a dual-function MIMO radar-communication system[C]. 2016 IEEE Radar Conference (RadarConf), Philadelphia, USA, 2016.
|
[63] |
WANG Xiangrong, HASSANIEN A, and AMIN M G. Dual-function MIMO radar communications system design via sparse array optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1213–1226. doi: 10.1109/TAES.2018.2866038
|
[64] |
WANG Xiangrong and XU Jing. Co-design of joint radar and communications systems utilizing frequency hopping code diversity[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019.
|
[65] |
HU Chenxi, LIU Yimin, MENG Huadong, et al. Randomized switched antenna array FMCW radar for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8): 3624–3641. doi: 10.1109/TVT.2014.2308895
|
[66] |
LIU Yimin, RUAN Hang, WANG Lei, et al. The random frequency diverse array: A new antenna structure for uncoupled direction-range indication in active sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 295–308. doi: 10.1109/JSTSP.2016.2627183
|
[67] |
HUANG Tianyao, LIU Yimin, XU Xingyu, et al. Analysis of frequency agile radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2018, 66(23): 6228–6240. doi: 10.1109/TSP.2018.2876301
|
[68] |
LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739
|
[69] |
MCCORMICK P M, BLUNT S D, and METCALF J G. Simultaneous radar and communications emissions from a common aperture, Part I: Theory[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1685–1690.
|
[70] |
LIU Fan, MASOUROS C, LI Ang, et al. MU-MIMO communications with MIMO radar: From co-existence to joint transmission[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2755–2770. doi: 10.1109/TWC.2018.2803045
|
[71] |
LIU Fan, LIU Yafeng, LI Ang, et al. Cramér-Rao bound optimization for joint radar-communication design[J]. arXiv: 2101.12530. http://arxiv.org/abs/2101.12530, 2021.
|
[72] |
LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648
|
[73] |
LIU Xiang, HUANG Tianyao, and LIU Yimin. Transmit design for joint MIMO radar and multiuser communications with transmit covariance constraint[J]. arXiv: 2109.00779. http://arxiv.org/abs/2109.00779, 2021.
|
[74] |
WEINER I. High-SNR channel capacity for communication over radar waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1261–1268. doi: 10.1109/TAES.2018.2884858
|
[75] |
LIU Xiang, HUANG Tianyao, LIU Yimin, et al. Achievable sum-rate capacity optimization for joint MIMO multiuser communications and radar[C]. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 2021: 466–470.
|
[76] |
LI Jian, XU Luzhou, STOICA P, et al. Range compression and waveform optimization for MIMO radar: A Cramér-Rao bound based study[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 218–232. doi: 10.1109/TSP.2007.901653
|
[77] |
STOICA P, LI Jian, and XIE Yao. On probing signal design for MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4151–4161. doi: 10.1109/TSP.2007.894398
|
[78] |
FUHRMANN D R and SAN ANTONIO G. Transmit beamforming for MIMO radar systems using signal cross-correlation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 171–186. doi: 10.1109/TAES.2008.4516997
|
[79] |
KOBAYASHI M, CAIRE G, and KRAMER G. Joint state sensing and communication: Optimal tradeoff for a memoryless case[C]. 2018 IEEE International Symposium on Information Theory (ISIT), Vail, USA, 2018: 111–115.
|
[80] |
KOBAYASHI M, HAMAD H, KRAMER G, et al. Joint state sensing and communication over memoryless multiple access channels[C]. 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 2019: 270–274.
|