Volume 10 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113
Citation: LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113

Radar-communication Spectrum Sharing and Integration: Overview and Prospect

DOI: 10.12000/JR20113
More Information
  • The need of extra wireless spectrum is on the rise, given the rapid development of global wireless communication industry. To this end, Radar and Communication Spectrum Sharing (RCSS) has gained considerable attentions recently from both industry and academia. In particular, RCSS aims not only at enabling the spectral cohabitation of radar and communication systems, but also at designing a novel joint system that is capable of both functionalities. In this paper, a systematic overview of RCSS by focusing on the two main research directions are provided, i.e., Radar-Communication Coexistence (RCC) and Dual-Functional Radar-Communication (DFRC). We commence by discussing the coexistence examples of radar and communication at various frequency bands, and then elaborate on the practical application scenarios of the DFRC techniques. As a further step, the state-of-the-art approaches of both RCC and DFRC are reviewed. Finally we conclude the paper by identifying a number of open problems in the research area of RCSS.

     

  • loading
  • [1]
    Price hike for UK mobile spectrum[EB/OL]. https://www.bbc.co.uk/news/technology-34346822, 2015.
    [2]
    MORRIS A. German spectrum auction raises more than €5B[EB/OL]. https://www.fiercewireless.com/europe/german-spectrum-auction-raises-more-than-eu5b, 2015.
    [3]
    [4]
    BROWN P. 75.4 billion 75.4 billion devices connected to the internet of things by 2025[EB/OL]. https://electronics360.globalspec.com/article/6551/75-4-billion-devices-connected-to-the-internet-of-things-by-2025, 2016.
    [5]
    GRIFFITHS H, COHEN L, WATTS S, et al. Radar spectrum engineering and management: Technical and regulatory issues[J]. Proceedings of the IEEE, 2015, 103(1): 85–102. doi: 10.1109/JPROC.2014.2365517
    [6]
    FCC. Connecting America: The national broadband plan[EB/OL]. https://www.fcc.gov/general/national-broadband-plan.
    [7]
    NSF. Spectrum efficiency, energy efficiency, and security (specEES): Enabling spectrum for all[EB/OL]. https://www.nsf.gov/pubs/2016/nsf16616/nsf16616.htm, 2017.
    [8]
    Ofcom. Public sector spectrum release (PSSR): Award of the 2.3 GHz and 3.4 GHz bands[EB/OL]. https://www.ofcom.org.uk/consultations-and-statements/category-1/2.3-3.4-ghz-auction-design, 2015.
    [9]
    CAA. Public sector spectrum release programme: Radar planning and spectrum sharing in the 2.7~2.9 GHz bands[EB/OL]. https://www.caa.co.uk/Commercial-industry/Airspace/Communication-navigation-and-surveillance/Spectrum/Public-sector-spectrum-release-programme/.
    [10]
    PAUL B, CHIRIYATH A R, and BLISS D W. Survey of RF communications and sensing convergence research[J]. IEEE Access, 2017, 5: 252–270. doi: 10.1109/ACCESS.2016.2639038
    [11]
    WYMEERSCH H, SECO-GRANADOS G, DESTINO G, et al. 5G mm wave positioning for vehicular networks[J]. IEEE Wireless Communications, 2017, 24(6): 80–86. doi: 10.1109/MWC.2017.1600374
    [12]
    YANG Chouchang and SHAO Huairong. WiFi-based indoor positioning[J]. IEEE Communications Magazine, 2015, 53(3): 150–157. doi: 10.1109/MCOM.2015.7060497
    [13]
    MA D, SHLEZINGER N, HUANG T, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85–97. doi: 10.1109/MSP.2020.2983832
    [14]
    BLUNT S D, YATHAM P, and STILES J. Intrapulse radar-embedded communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1185–1200. doi: 10.1109/TAES.2010.5545182
    [15]
    WANG Huaiyi, JOHNSON J T, and BAKER C J. Spectrum sharing between communications and ATC radar systems[J]. IET Radar, Sonar & Navigation, 2017, 11(6): 994–1001. doi: 10.1049/iet-rsn.2016.0312
    [16]
    REED J H, CLEGG A W, PADAKI A V, et al. On the co-existence of TD-LTE and radar over 3.5 GHz band: An experimental study[J]. IEEE Wireless Communications Letters, 2016, 5(4): 368–371. doi: 10.1109/LWC.2016.2560179
    [17]
    HESSAR F and ROY S. Spectrum sharing between a surveillance radar and secondary Wi-Fi networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(3): 1434–1448. doi: 10.1109/TAES.2016.150114
    [18]
    CONTRIBUTORS W. List of WLAN channels - Wikipedia, the free encyclopedia[EB/OL]. http://taggedwiki.zubiaga.org/new_content/e4b6f408b1226092f742ee0b5f3cd18a.
    [19]
    CHOI J, VA V, GONZALEZ-PRELCIC N, et al. Millimeter-wave vehicular communication to support massive automotive sensing[J]. IEEE Communications Magazine, 2016, 54(12): 160–167. doi: 10.1109/MCOM.2016.1600071CM
    [20]
    ROH W, SEOL J, PARK J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results[J]. IEEE Communications Magazine, 2014, 52(2): 106–113. doi: 10.1109/MCOM.2014.6736750
    [21]
    KENNEY J B. Dedicated short-range communications (DSRC) standards in the united states[J]. Proceedings of the IEEE, 2011, 99(7): 1162–1182. doi: 10.1109/JPROC.2011.2132790
    [22]
    RAPPAPORT T S, SUN Shu, MAYZUS R, et al. Millimeter wave mobile communications for 5G cellular: It will work![J]. IEEE Access, 2013, 1: 335–349. doi: 10.1109/ACCESS.2013.2260813
    [23]
    HEATH R W, GONZÁLEZ-PRELCIC N, RANGAN S, et al. An overview of signal processing techniques for millimeter wave MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 436–453. doi: 10.1109/JSTSP.2016.2523924
    [24]
    田旋旋. 基于雷达通信一体化机制的车辆情境信息感知方法研究[D]. [博士论文], 哈尔滨工业大学, 2018.

    TIAN Xuanxuan. Research on context sensing method of vehicles using radar and communication integration frameworks[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2018.
    [25]
    XU Chenren, FIRNER B, ZHANG Yanyong, et al. The case for efficient and robust RF-based device-free localization[J]. IEEE Transactions on Mobile Computing, 2016, 15(9): 2362–2375. doi: 10.1109/TMC.2015.2493522
    [26]
    FENG Chen, AU W S A, VALAEE S, et al. Received-signal-strength-based indoor positioning using compressive sensing[J]. IEEE Transactions on Mobile Computing, 2012, 11(12): 1983–1993. doi: 10.1109/TMC.2011.216
    [27]
    WU Kaishun, XIAO Jiang, YI Youwen, et al. CSI-based indoor localization[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(7): 1300–1309. doi: 10.1109/TPDS.2012.214
    [28]
    XU Chenren, FIRNER B, ZHANG Yanyong, et al. Improving RF-based device-free passive localization in cluttered indoor environments through probabilistic classification methods[C]. The ACM/IEEE 11th International Conference on Information Processing in Sensor Networks, Beijing, China, 2012: 209–220.
    [29]
    TAN Bo, CHEN Qingchao, CHETTY K, et al. Exploiting WiFi channel state information for residential healthcare informatics[J]. IEEE Communications Magazine, 2018, 56(5): 130–137. doi: 10.1109/MCOM.2018.1700064
    [30]
    FIORANELLI F, RITCHIE M, and GRIFFITHS H. Bistatic human micro-Doppler signatures for classification of indoor activities[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 610–615.
    [31]
    AMIN M G, ZHANG Y D, AHMAD F, et al. Radar signal processing for elderly fall detection: The future for in-home monitoring[J]. IEEE Signal Processing Magazine, 2016, 33(2): 71–80. doi: 10.1109/MSP.2015.2502784
    [32]
    WU Qisong, ZHANG Y D, TAO Wenbing, et al. Radar-based fall detection based on Doppler time-frequency signatures for assisted living[J]. IET Radar, Sonar & Navigation, 2015, 9(2): 164–172. doi: 10.1049/iet-rsn.2014.0250
    [33]
    DUBOIS C. Google ATAP moves forward with radar touch tech with FCC waiver[EB/OL]. https://www.allaboutcircuits.com/news/Google-ATAP-Project-Soli-radar-touch-sensor-technology-FCC-waiver/, 2019.
    [34]
    ZHANG Shuowen, ZENG Yong, and ZHANG Rui. Cellular-enabled UAV communication: A connectivity-constrained trajectory optimization perspective[J]. IEEE Transactions on Communications, 2019, 67(3): 2580–2604. doi: 10.1109/TCOMM.2018.2880468
    [35]
    RYAN A, ZENNARO M, HOWELL A, et al. An overview of emerging results in cooperative UAV control[C]. The 2004 43rd IEEE Conference on Decision and Control, Bahamas, 2004: 602–607.
    [36]
    ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933
    [37]
    BEARD R W, MCLAIN T W, NELSON D B, et al. Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs[J]. Proceedings of the IEEE, 2006, 94(7): 1306–1324. doi: 10.1109/JPROC.2006.876930
    [38]
    SCHNEIDERMAN R. Unmanned drones are flying high in the military/aerospace sector [special reports][J]. IEEE Signal Processing Magazine, 2012, 29(1): 8–11. doi: 10.1109/MSP.2011.943127
    [39]
    BOGDANOWICZ Z R. Flying swarm of drones over circulant digraph[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2662–2670. doi: 10.1109/TAES.2017.2709858
    [40]
    WINKLER S, ZEADALLY S, and EVANS K. Privacy and civilian drone use: The need for further regulation[J]. IEEE Security & Privacy, 2018, 16(5): 72–80. doi: 10.1109/MSP.2018.3761721
    [41]
    RAMOS D B, LOUBACH D S, and DA CUNHA A M. Developing a distributed real-time monitoring system to track UAVs[J]. IEEE Aerospace and Electronic Systems, 2010, 25(9): 18–25. doi: 10.1109/MAES.2010.5592987
    [42]
    ZHANG Shuhang, ZHANG Hongliang, DI Boya, et al. Cellular UAV-to-X communications: Design and optimization for multi-UAV networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1346–1359. doi: 10.1109/TWC.2019.2892131
    [43]
    HUGHES P K and CHOE J Y. Overview of advanced multifunction RF system (AMRFS)[C]. 2000 IEEE International Conference on Phased Array Systems and Technology, Dana Point, USA, 2000: 21–24.
    [44]
    TAVIK G C, HILTERBRICK C L, EVINS J B, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1009–1020. doi: 10.1109/TMTT.2005.843485
    [45]
    MOLNAR J A, CORRETJER I, and TAVIK G. Integrated topside - integration of narrowband and wideband array antennas for shipboard communications[C].2011 - MILCOM 2011 Military Communications Conference, Baltimore, USA, 2011: 1802–1807.
    [46]
    [47]
    POLYDOROS A and WOO K. LPI detection of frequency-hopping signals using autocorrelation techniques[J]. IEEE Journal on Selected Areas in Communications, 1985, 3(5): 714–726. doi: 10.1109/JSAC.1985.1146255
    [48]
    POLYDOROS A and WEBER C. Detection performance considerations for direct-sequence and time-hopping LPI waveforms[J]. IEEE Journal on Selected Areas in Communications, 1985, 3(5): 727–744. doi: 10.1109/JSAC.1985.1146256
    [49]
    BLUNT S D, METCALF J G, BIGGS C R, et al. Performance characteristics and metrics for intra-pulse radar-embedded communication[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(10): 2057–2066. doi: 10.1109/JSAC.2011.111215
    [50]
    CIUONZO D, DE MAIO A, FOGLIA G, et al. Intrapulse radar-embedded communications via multiobjective optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2960–2974. doi: 10.1109/TAES.2015.140821
    [51]
    BRISKEN S, MOSCADELLI M, SEIDEL V, et al. Passive radar imaging using DVB-S2[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 552–556.
    [52]
    GRIFFITHS H D and BAKER C J. An Introduction to Passive Radar[M]. Boston, USA: Artech House, 2017.
    [53]
    LIU Jun, LI Hongbin, and HIMED B. Two target detection algorithms for passive multistatic radar[J]. IEEE Transactions on Signal Processing, 2014, 62(22): 5930–5939. doi: 10.1109/TSP.2014.2359637
    [54]
    CHALISE B K, AMIN M G, and HIMED B. Performance tradeoff in a unified passive radar and communications system[J]. IEEE Signal Processing Letters, 2017, 24(9): 1275–1279. doi: 10.1109/LSP.2017.2721639
    [55]
    DECARLI N, GUIDI F, and DARDARI D. A novel joint RFID and radar sensor network for passive localization: Design and performance bounds[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1): 80–95. doi: 10.1109/JSTSP.2013.2287174
    [56]
    FORTINO G, PATHAN M, and DI FATTA G. BodyCloud: Integration of cloud computing and body sensor networks[C]. The 4th IEEE International Conference on Cloud Computing Technology and Science, Taipei, China, 2012: 851–856.
    [57]
    BLISS D W. Cooperative radar and communications signaling: The estimation and information theory odd couple[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 50–55.
    [58]
    WANG L S, MCGEEHAN J P, WILLIAMS C, et al. Application of cooperative sensing in radar-communications coexistence[J]. IET Communications, 2008, 2(6): 856–868. doi: 10.1049/iet-com:20070403
    [59]
    SARUTHIRATHANAWORAKUN R, PEHA J M, and CORREIA L M. Opportunistic sharing between rotating radar and cellular[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(10): 1900–1910. doi: 10.1109/JSAC.2012.121106
    [60]
    LI Jian and STOICA P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106–114. doi: 10.1109/MSP.2007.904812
    [61]
    LI Jian and STOICA P. MIMO Radar Signal Processing[M]. New York, USA: John Wiley & Sons, 2008.
    [62]
    LI Bo and PETROPULU A P. Joint transmit designs for coexistence of MIMO wireless communications and sparse sensing radars in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2846–2864. doi: 10.1109/TAES.2017.2717518
    [63]
    LIU Fan, GARCIA-RODRIGUEZ A, MASOUROS C, et al. Interfering channel estimation in radar-cellular coexistence: How much information do we need?[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4238–4253. doi: 10.1109/TWC.2019.2921556
    [64]
    SODAGARI S, KHAWAR A, CLANCY T C, et al. A projection based approach for radar and telecommunication systems coexistence[C]. 2012 IEEE Global Communications Conference, Anaheim, USA, 2012: 5010–5014.
    [65]
    BABAEI A, TRANTER W H, and BOSE T. A nullspace-based precoder with subspace expansion for radar/communications coexistence[C]. 2013 IEEE Global Communications Conference, Atlanta, USA, 2013: 3487–3492.
    [66]
    KHAWAR A, ABDELHADI A, and CLANCY C. Target detection performance of spectrum sharing MIMO radars[J]. IEEE Sensors Journal, 2015, 15(9): 4928–4940. doi: 10.1109/JSEN.2015.2424393
    [67]
    LI Bo, PETROPULU A P, and TRAPPE W. Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[J]. IEEE Transactions on Signal Processing, 2016, 64(17): 4562–4575. doi: 10.1109/TSP.2016.2569479
    [68]
    ZHENG Le, LOPS M, WANG Xiaodong, et al. Joint design of overlaid communication systems and pulsed radars[J]. IEEE Transactions on Signal Processing, 2018, 66(1): 139–154. doi: 10.1109/TSP.2017.2755603
    [69]
    LIU Fan, MASOUROS C, LI Ang, et al. Robust MIMO beamforming for cellular and radar coexistence[J]. IEEE Wireless Communications Letters, 2017, 6(3): 374–377. doi: 10.1109/LWC.2017.2693985
    [70]
    CUI Yuanhao, KOIVUNEN V, and JING Xiaojun. Interference alignment based spectrum sharing for MIMO radar and communication systems[C]. The IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 2018: 1–5.
    [71]
    CHENG Ziyang, LIAO Bin, SHI Shengnan, et al. Co-design for overlaid MIMO radar and downlink MISO communication systems via Cramér -Rao bound minimization[J]. IEEE Transactions on Signal Processing, 2019, 67(24): 6227–6240. doi: 10.1109/TSP.2019.2952048
    [72]
    LIU Fan, MASOUROS C, LI Ang, et al. MIMO radar and cellular coexistence: A power-efficient approach enabled by interference exploitation[J]. IEEE Transactions on Signal Processing, 2018, 66(14): 3681–3695. doi: 10.1109/TSP.2018.2833813
    [73]
    ZHENG Le, LOPS M, and WANG Xiaodong. Adaptive interference removal for uncoordinated radar/communication coexistence[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 45–60. doi: 10.1109/JSTSP.2017.2785783
    [74]
    NARTASILPA N, SALIM A, TUNINETTI D, et al. Communications system performance and design in the presence of radar interference[J]. IEEE Transactions on Communications, 2018, 66(9): 4170–4185. doi: 10.1109/TCOMM.2018.2823764
    [75]
    RICHARDS M A. Fundamentals of Radar Signal Processing[M]. Dallas, USA: Tata McGraw-Hill Education, 2005.
    [76]
    GUERCI J R, GUERCI R M, LACKPOUR A, et al. Joint design and operation of shared spectrum access for radar and communications[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 761–766.
    [77]
    KAY S M. Fundamentals of Statistical Signal Processing, Vol. I: Estimation Theory[M]. Englewood Cliffs, NJ, USA: Prentice Hall, 1993.
    [78]
    CHIRIYATH A R, PAUL B, JACYNA G M, et al. Inner bounds on performance of radar and communications co-existence[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 464–474. doi: 10.1109/TSP.2015.2483485
    [79]
    CHIRIYATH A R, PAUL B, and BLISS D W. Radar-communications convergence: Coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(1): 1–12. doi: 10.1109/TCCN.2017.2666266
    [80]
    RONG Yu, CHIRIYATH A R, and BLISS D W. MIMO radar and communications spectrum sharing: A multiple-access perspective[C]. The IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), Sheffield, UK, 2018: 272–276.
    [81]
    MEALEY R M. A method for calculating error probabilities in a radar communication system[J]. IEEE Transactions on Space Electronics and Telemetry, 1963, 9(2): 37–42. doi: 10.1109/TSET.1963.4337601
    [82]
    ROBERTON M and BROWN E R. Integrated radar and communications based on chirped spread-spectrum techniques[C]. 2003 IEEE MTT-S International Microwave Symposium Digest, Philadelphia, USA, 2003: 611–614.
    [83]
    SADDIK G N, SINGH R S, and BROWN E R. Ultra-wideband multifunctional communications/radar system[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(7): 1431–1437. doi: 10.1109/TMTT.2007.900343
    [84]
    JAMIL M, ZEPERNICK H J, and PETTERSSON M I. On integrated radar and communication systems using Oppermann sequences[C]. 2008 IEEE Military Communications Conference, San Diego, USA, 2008: 1–6.
    [85]
    STURM C and WIESBECK W. Joint integration of digital beam-forming radar with communication[C]. IET International Radar Conference, Guilin, China, 2009: 1–4.
    [86]
    GARMATYUK D, SCHUERGER J, and KAUFFMAN K. Multifunctional software-defined radar sensor and data communication system[J]. IEEE Sensors Journal, 2011, 11(1): 99–106. doi: 10.1109/JSEN.2010.2052100
    [87]
    HAN Liang and WU Ke. Radar and radio data fusion platform for future intelligent transportation system[C]. The 7th European Radar Conference, Paris, France, 2010: 65–68.
    [88]
    STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110
    [89]
    HAN Liang and WU Ke. Joint wireless communication and radar sensing systems-state of the art and future prospects[J]. IET Microwaves, Antennas & Propagation, 2013, 7(11): 876–885.
    [90]
    GAGLIONE D, CLEMENTE C, ILIOUDIS C V, et al. Fractional fourier based waveform for a joint radar-communication system[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6.
    [91]
    CHEN Xingbo, WANG Xiaomo, XU Shanfeng, et al. A novel radar waveform compatible with communication[C]. 2011 International Conference on Computational Problem-Solving (ICCP), Chengdu, China, 2011: 177–181.
    [92]
    刘志鹏. 雷达通信一体化波形研究[D]. [博士论文], 北京理工大学, 2015.

    LIU Zhipeng. Waveform research on integration of radar and communication[D]. [Ph. D. dissertation], Beijing Institute of Technology, 2015.
    [93]
    刘永军. 基于OFDM的雷达通信一体化设计方法研究[D]. [博士论文], 西安电子科技大学, 2019.

    LIU Yongjun. Study on integrated radar and communications design method based on OFDM[D]. [Ph. D. dissertation], Xidian University, 2019.
    [94]
    刘冰凡, 陈伯孝. 基于OFDM-LFM信号的MIMO雷达通信一体化信号共享设计研究[J]. 电子与信息学报, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547

    LIU Bingfan and CHEN Baixiao. Integration of MIMO radar and communication with OFDM-LFM signals[J]. Journal of Electronics &Information Technology, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547
    [95]
    郝跃星. 恒包络OFDM雷达通信一体化关键技术研究[D]. [硕士论文], 西安电子科技大学, 2017.

    HAO Yuexing. Resratch on the key technology of constant envelop OFDM radar-communication integration[D]. [Master dissertation], Xidian University, 2017.
    [96]
    张秋月, 张林让, 谷亚彬, 等. 恒包络OFDM雷达通信一体化信号设计[J]. 西安交通大学学报, 2019, 53(6): 77–84. doi: 10.7652/xjtuxb201906011

    ZHANG Qiuyue, ZHANG Linrang, GU Yabin, et al. Signal design of communication integration for radars with constant envelope OFDM[J]. Journal of Xi'an Jiaotong University, 2019, 53(6): 77–84. doi: 10.7652/xjtuxb201906011
    [97]
    DONNET B J and LONGSTAFF I D. Combining MIMO radar with OFDM communications[C]. 2006 European Radar Conference, Manchester, UK, 2006: 37–40.
    [98]
    HASSANIEN A, AMIN M G, ZHANG Y D, et al. A dual function radar-communications system using sidelobe control and waveform diversity[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 1260–1263.
    [99]
    HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667
    [100]
    HASSANIEN A, AMIN M G, ZHANG Y D, et al. Phase-modulation based dual-function radar-communications[J]. IET Radar, Sonar & Navigation, 2016, 10(8): 1411–1421. doi: 10.1049/iet.rsn.2015.0484
    [101]
    BOUDAHER E, HASSANIEN A, ABOUTANIOS E, et al. Towards a dual-function MIMO radar-communication system[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6.
    [102]
    MCCORMICK P M, BLUNT S D, and METCALF J G. Simultaneous radar and communications emissions from a common aperture, Part I: Theory[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1685–1690.
    [103]
    MCCORMICK P M, RAVENSCROFT B, BLUNT S D, et al. Simultaneous radar and communication emissions from a common aperture, Part II: Experimentation[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1697–1702.
    [104]
    LIU Fan, MASOUROS C, LI Ang, et al. MU-MIMO communications with MIMO radar: From co-existence to joint transmission[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2755–2770. doi: 10.1109/TWC.2018.2803045
    [105]
    LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648
    [106]
    LIU Fan, MASOUROS C, and GRIFFITHS H. Dual-functional radar-communication waveform design under constant-modulus and orthogonality constraints[C]. 2019 Sensor Signal Processing for Defence Conference, Brighton, UK, 2019: 1–5.
    [107]
    KUMARI P, CHOI J, GONZÁLEZ-PRELCIC N, et al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3012–3027. doi: 10.1109/TVT.2017.2774762
    [108]
    GROSSI E, LOPS M, VENTURINO L, et al. Opportunistic radar in IEEE 802.11ad networks[J]. IEEE Transactions on Signal Processing, 2018, 66(9): 2441–2454. doi: 10.1109/TSP.2018.2813300
    [109]
    FORTUNATI S, SANGUINETTI L, GINI F, et al. Massive MIMO radar for target detection[J]. IEEE Transactions on Signal Processing, 2020, 68: 859–871. doi: 10.1109/TSP.2020.2967181
    [110]
    ZHANG Xinying, MOLISCH A F, and KUNG Sunyuan. Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection[J]. IEEE Transactions on Signal Processing, 2005, 53(11): 4091–4103. doi: 10.1109/TSP.2005.857024
    [111]
    EL AYACH O, RAJAGOPAL S, ABU-SURRA S, et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1499–1513. doi: 10.1109/TWC.2014.011714.130846
    [112]
    HAN Shuangfeng, I C L, XU Zhikun, et al. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G[J]. IEEE Communications Magazine, 2015, 53(1): 186–194. doi: 10.1109/MCOM.2015.7010533
    [113]
    MOLISCH A F, RATNAM V V, HAN Shengqian, et al. Hybrid beamforming for massive MIMO: A survey[J]. IEEE Communications Magazine, 2017, 55(9): 134–141. doi: 10.1109/MCOM.2017.1600400
    [114]
    ALKHATEEB A, MO Jianhua, GONZALEZ-PRELCIC N, et al. MIMO precoding and combining solutions for millimeter-wave systems[J]. IEEE Communications Magazine, 2014, 52(12): 122–131. doi: 10.1109/MCOM.2014.6979963
    [115]
    HASSANIEN A and VOROBYOV S A. Phased-MIMO radar: A tradeoff between phased-array and MIMO radars[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3137–3151. doi: 10.1109/TSP.2010.2043976
    [116]
    WILCOX D and SELLATHURAI M. On MIMO radar subarrayed transmit beamforming[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 2076–2081. doi: 10.1109/TSP.2011.2179540
    [117]
    LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976
    [118]
    ZHANG J A, HUANG Xiaojing, GUO Y J, et al. Multibeam for joint communication and radar sensing using steerable analog antenna arrays[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 671–685. doi: 10.1109/TVT.2018.2883796
    [119]
    LUO Yuyue, ZHANG J A, HUANG Xiaojing, et al. Optimization and quantization of multibeam beamforming vector for joint communication and radio sensing[J]. IEEE Transactions on Communications, 2019, 67(9): 6468–6482. doi: 10.1109/TCOMM.2019.2923627
    [120]
    LUO Yuyue, ZHANG J A, HUANG Xiaojing, et al. Multibeam optimization for joint communication and radio sensing using analog antenna arrays[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11000–11013. doi: 10.1109/TVT.2020.3006481
    [121]
    罗渝悦. 应用于车联网中通信雷达一体化系统的波束赋形技术研究[D]. [博士论文], 电子科技大学, 2020.

    LUO Yuyue. Beamforming for joint communication and radar sensing techniques in autonomous vehicular networks[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2020.
    [122]
    LIU Fan, YUAN Weijie, MASOUROS C, et al. Radar-assisted predictive beamforming for vehicular links: Communication served by sensing[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7704–7719. doi: 10.1109/TWC.2020.3015735
    [123]
    YUAN Weijie, LIU Fan, MASOUROS C, et al. Bayesian predictive beamforming for vehicular networks: A low-overhead joint radar-communication approach[J]. arXiv: 2005.07698, 2020.
    [124]
    ZHENG Tongxing, WANG Huiming, YUAN Jinhong, et al. Physical layer security in wireless ad hoc networks under a hybrid full-/half-duplex receiver deployment strategy[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3827–3839. doi: 10.1109/TWC.2017.2689005
    [125]
    YAN Shihao, YANG Nan, GERACI G, et al. Optimization of code rates in SISOME wiretap channels[J]. IEEE Transactions on Wireless Communications, 2015, 14(11): 6377–6388. doi: 10.1109/TWC.2015.2453260
    [126]
    LIU Chenxi, YANG Nan, YUAN Jinhong, et al. Location-based secure transmission for wiretap channels[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(7): 1458–1470. doi: 10.1109/JSAC.2015.2430211
    [127]
    DELIGIANNIS A, DANIYAN A, LAMBOTHARAN S, et al. Secrecy rate optimizations for MIMO communication radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2481–2492. doi: 10.1109/TAES.2018.2820370
    [128]
    CHALISE B K and AMIN M G. Performance tradeoff in a unified system of communications and passive radar: A secrecy capacity approach[J]. Digital Signal Processing, 2018, 82: 282–293. doi: 10.1016/j.dsp.2018.06.017
    [129]
    DIMAS A, CLARK M A, LI Bo, et al. On radar privacy in shared spectrum scenarios[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 2019: 7790–7794.
    [130]
    SU Nanchi, LIU Fan, and MASOUROS C. Secure radar-communication systems with malicious targets: Integrating radar, communications and jamming functionalities[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 83–95. doi: 10.1109/TWC.2020.3023164
    [131]
    RAVITEJA P, PHAN K T, HONG Yi, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501–6515. doi: 10.1109/TWC.2018.2860011
    [132]
    YUAN Weijie, WEI Zhiqiang, YUAN Jinhong, et al. A simple variational Bayes detector for orthogonal time frequency space (OTFS) modulation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7976–7980. doi: 10.1109/TVT.2020.2991443
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(12237) PDF downloads(2280) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint