Citation: | LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113 |
[1] |
Price hike for UK mobile spectrum[EB/OL]. https://www.bbc.co.uk/news/technology-34346822, 2015.
|
[2] |
MORRIS A. German spectrum auction raises more than €5B[EB/OL]. https://www.fiercewireless.com/europe/german-spectrum-auction-raises-more-than-eu5b, 2015.
|
[3] |
RIAZ S. US completes first 5G auction[EB/OL]. https://www.mobileworldlive.com/featured-content/top-three/us-completes-first-5g-auction/, 2019.
|
[4] |
BROWN P. 75.4 billion 75.4 billion devices connected to the internet of things by 2025[EB/OL]. https://electronics360.globalspec.com/article/6551/75-4-billion-devices-connected-to-the-internet-of-things-by-2025, 2016.
|
[5] |
GRIFFITHS H, COHEN L, WATTS S, et al. Radar spectrum engineering and management: Technical and regulatory issues[J]. Proceedings of the IEEE, 2015, 103(1): 85–102. doi: 10.1109/JPROC.2014.2365517
|
[6] |
FCC. Connecting America: The national broadband plan[EB/OL]. https://www.fcc.gov/general/national-broadband-plan.
|
[7] |
NSF. Spectrum efficiency, energy efficiency, and security (specEES): Enabling spectrum for all[EB/OL]. https://www.nsf.gov/pubs/2016/nsf16616/nsf16616.htm, 2017.
|
[8] |
Ofcom. Public sector spectrum release (PSSR): Award of the 2.3 GHz and 3.4 GHz bands[EB/OL]. https://www.ofcom.org.uk/consultations-and-statements/category-1/2.3-3.4-ghz-auction-design, 2015.
|
[9] |
CAA. Public sector spectrum release programme: Radar planning and spectrum sharing in the 2.7~2.9 GHz bands[EB/OL]. https://www.caa.co.uk/Commercial-industry/Airspace/Communication-navigation-and-surveillance/Spectrum/Public-sector-spectrum-release-programme/.
|
[10] |
PAUL B, CHIRIYATH A R, and BLISS D W. Survey of RF communications and sensing convergence research[J]. IEEE Access, 2017, 5: 252–270. doi: 10.1109/ACCESS.2016.2639038
|
[11] |
WYMEERSCH H, SECO-GRANADOS G, DESTINO G, et al. 5G mm wave positioning for vehicular networks[J]. IEEE Wireless Communications, 2017, 24(6): 80–86. doi: 10.1109/MWC.2017.1600374
|
[12] |
YANG Chouchang and SHAO Huairong. WiFi-based indoor positioning[J]. IEEE Communications Magazine, 2015, 53(3): 150–157. doi: 10.1109/MCOM.2015.7060497
|
[13] |
MA D, SHLEZINGER N, HUANG T, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85–97. doi: 10.1109/MSP.2020.2983832
|
[14] |
BLUNT S D, YATHAM P, and STILES J. Intrapulse radar-embedded communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1185–1200. doi: 10.1109/TAES.2010.5545182
|
[15] |
WANG Huaiyi, JOHNSON J T, and BAKER C J. Spectrum sharing between communications and ATC radar systems[J]. IET Radar, Sonar & Navigation, 2017, 11(6): 994–1001. doi: 10.1049/iet-rsn.2016.0312
|
[16] |
REED J H, CLEGG A W, PADAKI A V, et al. On the co-existence of TD-LTE and radar over 3.5 GHz band: An experimental study[J]. IEEE Wireless Communications Letters, 2016, 5(4): 368–371. doi: 10.1109/LWC.2016.2560179
|
[17] |
HESSAR F and ROY S. Spectrum sharing between a surveillance radar and secondary Wi-Fi networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(3): 1434–1448. doi: 10.1109/TAES.2016.150114
|
[18] |
CONTRIBUTORS W. List of WLAN channels - Wikipedia, the free encyclopedia[EB/OL]. http://taggedwiki.zubiaga.org/new_content/e4b6f408b1226092f742ee0b5f3cd18a.
|
[19] |
CHOI J, VA V, GONZALEZ-PRELCIC N, et al. Millimeter-wave vehicular communication to support massive automotive sensing[J]. IEEE Communications Magazine, 2016, 54(12): 160–167. doi: 10.1109/MCOM.2016.1600071CM
|
[20] |
ROH W, SEOL J, PARK J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results[J]. IEEE Communications Magazine, 2014, 52(2): 106–113. doi: 10.1109/MCOM.2014.6736750
|
[21] |
KENNEY J B. Dedicated short-range communications (DSRC) standards in the united states[J]. Proceedings of the IEEE, 2011, 99(7): 1162–1182. doi: 10.1109/JPROC.2011.2132790
|
[22] |
RAPPAPORT T S, SUN Shu, MAYZUS R, et al. Millimeter wave mobile communications for 5G cellular: It will work![J]. IEEE Access, 2013, 1: 335–349. doi: 10.1109/ACCESS.2013.2260813
|
[23] |
HEATH R W, GONZÁLEZ-PRELCIC N, RANGAN S, et al. An overview of signal processing techniques for millimeter wave MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 436–453. doi: 10.1109/JSTSP.2016.2523924
|
[24] |
田旋旋. 基于雷达通信一体化机制的车辆情境信息感知方法研究[D]. [博士论文], 哈尔滨工业大学, 2018.
TIAN Xuanxuan. Research on context sensing method of vehicles using radar and communication integration frameworks[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2018.
|
[25] |
XU Chenren, FIRNER B, ZHANG Yanyong, et al. The case for efficient and robust RF-based device-free localization[J]. IEEE Transactions on Mobile Computing, 2016, 15(9): 2362–2375. doi: 10.1109/TMC.2015.2493522
|
[26] |
FENG Chen, AU W S A, VALAEE S, et al. Received-signal-strength-based indoor positioning using compressive sensing[J]. IEEE Transactions on Mobile Computing, 2012, 11(12): 1983–1993. doi: 10.1109/TMC.2011.216
|
[27] |
WU Kaishun, XIAO Jiang, YI Youwen, et al. CSI-based indoor localization[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(7): 1300–1309. doi: 10.1109/TPDS.2012.214
|
[28] |
XU Chenren, FIRNER B, ZHANG Yanyong, et al. Improving RF-based device-free passive localization in cluttered indoor environments through probabilistic classification methods[C]. The ACM/IEEE 11th International Conference on Information Processing in Sensor Networks, Beijing, China, 2012: 209–220.
|
[29] |
TAN Bo, CHEN Qingchao, CHETTY K, et al. Exploiting WiFi channel state information for residential healthcare informatics[J]. IEEE Communications Magazine, 2018, 56(5): 130–137. doi: 10.1109/MCOM.2018.1700064
|
[30] |
FIORANELLI F, RITCHIE M, and GRIFFITHS H. Bistatic human micro-Doppler signatures for classification of indoor activities[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 610–615.
|
[31] |
AMIN M G, ZHANG Y D, AHMAD F, et al. Radar signal processing for elderly fall detection: The future for in-home monitoring[J]. IEEE Signal Processing Magazine, 2016, 33(2): 71–80. doi: 10.1109/MSP.2015.2502784
|
[32] |
WU Qisong, ZHANG Y D, TAO Wenbing, et al. Radar-based fall detection based on Doppler time-frequency signatures for assisted living[J]. IET Radar, Sonar & Navigation, 2015, 9(2): 164–172. doi: 10.1049/iet-rsn.2014.0250
|
[33] |
DUBOIS C. Google ATAP moves forward with radar touch tech with FCC waiver[EB/OL]. https://www.allaboutcircuits.com/news/Google-ATAP-Project-Soli-radar-touch-sensor-technology-FCC-waiver/, 2019.
|
[34] |
ZHANG Shuowen, ZENG Yong, and ZHANG Rui. Cellular-enabled UAV communication: A connectivity-constrained trajectory optimization perspective[J]. IEEE Transactions on Communications, 2019, 67(3): 2580–2604. doi: 10.1109/TCOMM.2018.2880468
|
[35] |
RYAN A, ZENNARO M, HOWELL A, et al. An overview of emerging results in cooperative UAV control[C]. The 2004 43rd IEEE Conference on Decision and Control, Bahamas, 2004: 602–607.
|
[36] |
ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933
|
[37] |
BEARD R W, MCLAIN T W, NELSON D B, et al. Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs[J]. Proceedings of the IEEE, 2006, 94(7): 1306–1324. doi: 10.1109/JPROC.2006.876930
|
[38] |
SCHNEIDERMAN R. Unmanned drones are flying high in the military/aerospace sector [special reports][J]. IEEE Signal Processing Magazine, 2012, 29(1): 8–11. doi: 10.1109/MSP.2011.943127
|
[39] |
BOGDANOWICZ Z R. Flying swarm of drones over circulant digraph[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2662–2670. doi: 10.1109/TAES.2017.2709858
|
[40] |
WINKLER S, ZEADALLY S, and EVANS K. Privacy and civilian drone use: The need for further regulation[J]. IEEE Security & Privacy, 2018, 16(5): 72–80. doi: 10.1109/MSP.2018.3761721
|
[41] |
RAMOS D B, LOUBACH D S, and DA CUNHA A M. Developing a distributed real-time monitoring system to track UAVs[J]. IEEE Aerospace and Electronic Systems, 2010, 25(9): 18–25. doi: 10.1109/MAES.2010.5592987
|
[42] |
ZHANG Shuhang, ZHANG Hongliang, DI Boya, et al. Cellular UAV-to-X communications: Design and optimization for multi-UAV networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1346–1359. doi: 10.1109/TWC.2019.2892131
|
[43] |
HUGHES P K and CHOE J Y. Overview of advanced multifunction RF system (AMRFS)[C]. 2000 IEEE International Conference on Phased Array Systems and Technology, Dana Point, USA, 2000: 21–24.
|
[44] |
TAVIK G C, HILTERBRICK C L, EVINS J B, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1009–1020. doi: 10.1109/TMTT.2005.843485
|
[45] |
MOLNAR J A, CORRETJER I, and TAVIK G. Integrated topside - integration of narrowband and wideband array antennas for shipboard communications[C].2011 - MILCOM 2011 Military Communications Conference, Baltimore, USA, 2011: 1802–1807.
|
[46] |
DARPA. Shared spectrum access for radar and communications (SSPARC)[EB/OL]. https://www.federalgrantswire.com/shared-spectrum-access-for-radar-and-communications-ssparc-darpa-baa-13-24.html#.X40Vavk6s7M, 2013.
|
[47] |
POLYDOROS A and WOO K. LPI detection of frequency-hopping signals using autocorrelation techniques[J]. IEEE Journal on Selected Areas in Communications, 1985, 3(5): 714–726. doi: 10.1109/JSAC.1985.1146255
|
[48] |
POLYDOROS A and WEBER C. Detection performance considerations for direct-sequence and time-hopping LPI waveforms[J]. IEEE Journal on Selected Areas in Communications, 1985, 3(5): 727–744. doi: 10.1109/JSAC.1985.1146256
|
[49] |
BLUNT S D, METCALF J G, BIGGS C R, et al. Performance characteristics and metrics for intra-pulse radar-embedded communication[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(10): 2057–2066. doi: 10.1109/JSAC.2011.111215
|
[50] |
CIUONZO D, DE MAIO A, FOGLIA G, et al. Intrapulse radar-embedded communications via multiobjective optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2960–2974. doi: 10.1109/TAES.2015.140821
|
[51] |
BRISKEN S, MOSCADELLI M, SEIDEL V, et al. Passive radar imaging using DVB-S2[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 552–556.
|
[52] |
GRIFFITHS H D and BAKER C J. An Introduction to Passive Radar[M]. Boston, USA: Artech House, 2017.
|
[53] |
LIU Jun, LI Hongbin, and HIMED B. Two target detection algorithms for passive multistatic radar[J]. IEEE Transactions on Signal Processing, 2014, 62(22): 5930–5939. doi: 10.1109/TSP.2014.2359637
|
[54] |
CHALISE B K, AMIN M G, and HIMED B. Performance tradeoff in a unified passive radar and communications system[J]. IEEE Signal Processing Letters, 2017, 24(9): 1275–1279. doi: 10.1109/LSP.2017.2721639
|
[55] |
DECARLI N, GUIDI F, and DARDARI D. A novel joint RFID and radar sensor network for passive localization: Design and performance bounds[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1): 80–95. doi: 10.1109/JSTSP.2013.2287174
|
[56] |
FORTINO G, PATHAN M, and DI FATTA G. BodyCloud: Integration of cloud computing and body sensor networks[C]. The 4th IEEE International Conference on Cloud Computing Technology and Science, Taipei, China, 2012: 851–856.
|
[57] |
BLISS D W. Cooperative radar and communications signaling: The estimation and information theory odd couple[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 50–55.
|
[58] |
WANG L S, MCGEEHAN J P, WILLIAMS C, et al. Application of cooperative sensing in radar-communications coexistence[J]. IET Communications, 2008, 2(6): 856–868. doi: 10.1049/iet-com:20070403
|
[59] |
SARUTHIRATHANAWORAKUN R, PEHA J M, and CORREIA L M. Opportunistic sharing between rotating radar and cellular[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(10): 1900–1910. doi: 10.1109/JSAC.2012.121106
|
[60] |
LI Jian and STOICA P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106–114. doi: 10.1109/MSP.2007.904812
|
[61] |
LI Jian and STOICA P. MIMO Radar Signal Processing[M]. New York, USA: John Wiley & Sons, 2008.
|
[62] |
LI Bo and PETROPULU A P. Joint transmit designs for coexistence of MIMO wireless communications and sparse sensing radars in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2846–2864. doi: 10.1109/TAES.2017.2717518
|
[63] |
LIU Fan, GARCIA-RODRIGUEZ A, MASOUROS C, et al. Interfering channel estimation in radar-cellular coexistence: How much information do we need?[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4238–4253. doi: 10.1109/TWC.2019.2921556
|
[64] |
SODAGARI S, KHAWAR A, CLANCY T C, et al. A projection based approach for radar and telecommunication systems coexistence[C]. 2012 IEEE Global Communications Conference, Anaheim, USA, 2012: 5010–5014.
|
[65] |
BABAEI A, TRANTER W H, and BOSE T. A nullspace-based precoder with subspace expansion for radar/communications coexistence[C]. 2013 IEEE Global Communications Conference, Atlanta, USA, 2013: 3487–3492.
|
[66] |
KHAWAR A, ABDELHADI A, and CLANCY C. Target detection performance of spectrum sharing MIMO radars[J]. IEEE Sensors Journal, 2015, 15(9): 4928–4940. doi: 10.1109/JSEN.2015.2424393
|
[67] |
LI Bo, PETROPULU A P, and TRAPPE W. Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[J]. IEEE Transactions on Signal Processing, 2016, 64(17): 4562–4575. doi: 10.1109/TSP.2016.2569479
|
[68] |
ZHENG Le, LOPS M, WANG Xiaodong, et al. Joint design of overlaid communication systems and pulsed radars[J]. IEEE Transactions on Signal Processing, 2018, 66(1): 139–154. doi: 10.1109/TSP.2017.2755603
|
[69] |
LIU Fan, MASOUROS C, LI Ang, et al. Robust MIMO beamforming for cellular and radar coexistence[J]. IEEE Wireless Communications Letters, 2017, 6(3): 374–377. doi: 10.1109/LWC.2017.2693985
|
[70] |
CUI Yuanhao, KOIVUNEN V, and JING Xiaojun. Interference alignment based spectrum sharing for MIMO radar and communication systems[C]. The IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 2018: 1–5.
|
[71] |
CHENG Ziyang, LIAO Bin, SHI Shengnan, et al. Co-design for overlaid MIMO radar and downlink MISO communication systems via Cramér -Rao bound minimization[J]. IEEE Transactions on Signal Processing, 2019, 67(24): 6227–6240. doi: 10.1109/TSP.2019.2952048
|
[72] |
LIU Fan, MASOUROS C, LI Ang, et al. MIMO radar and cellular coexistence: A power-efficient approach enabled by interference exploitation[J]. IEEE Transactions on Signal Processing, 2018, 66(14): 3681–3695. doi: 10.1109/TSP.2018.2833813
|
[73] |
ZHENG Le, LOPS M, and WANG Xiaodong. Adaptive interference removal for uncoordinated radar/communication coexistence[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 45–60. doi: 10.1109/JSTSP.2017.2785783
|
[74] |
NARTASILPA N, SALIM A, TUNINETTI D, et al. Communications system performance and design in the presence of radar interference[J]. IEEE Transactions on Communications, 2018, 66(9): 4170–4185. doi: 10.1109/TCOMM.2018.2823764
|
[75] |
RICHARDS M A. Fundamentals of Radar Signal Processing[M]. Dallas, USA: Tata McGraw-Hill Education, 2005.
|
[76] |
GUERCI J R, GUERCI R M, LACKPOUR A, et al. Joint design and operation of shared spectrum access for radar and communications[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 761–766.
|
[77] |
KAY S M. Fundamentals of Statistical Signal Processing, Vol. I: Estimation Theory[M]. Englewood Cliffs, NJ, USA: Prentice Hall, 1993.
|
[78] |
CHIRIYATH A R, PAUL B, JACYNA G M, et al. Inner bounds on performance of radar and communications co-existence[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 464–474. doi: 10.1109/TSP.2015.2483485
|
[79] |
CHIRIYATH A R, PAUL B, and BLISS D W. Radar-communications convergence: Coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(1): 1–12. doi: 10.1109/TCCN.2017.2666266
|
[80] |
RONG Yu, CHIRIYATH A R, and BLISS D W. MIMO radar and communications spectrum sharing: A multiple-access perspective[C]. The IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), Sheffield, UK, 2018: 272–276.
|
[81] |
MEALEY R M. A method for calculating error probabilities in a radar communication system[J]. IEEE Transactions on Space Electronics and Telemetry, 1963, 9(2): 37–42. doi: 10.1109/TSET.1963.4337601
|
[82] |
ROBERTON M and BROWN E R. Integrated radar and communications based on chirped spread-spectrum techniques[C]. 2003 IEEE MTT-S International Microwave Symposium Digest, Philadelphia, USA, 2003: 611–614.
|
[83] |
SADDIK G N, SINGH R S, and BROWN E R. Ultra-wideband multifunctional communications/radar system[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(7): 1431–1437. doi: 10.1109/TMTT.2007.900343
|
[84] |
JAMIL M, ZEPERNICK H J, and PETTERSSON M I. On integrated radar and communication systems using Oppermann sequences[C]. 2008 IEEE Military Communications Conference, San Diego, USA, 2008: 1–6.
|
[85] |
STURM C and WIESBECK W. Joint integration of digital beam-forming radar with communication[C]. IET International Radar Conference, Guilin, China, 2009: 1–4.
|
[86] |
GARMATYUK D, SCHUERGER J, and KAUFFMAN K. Multifunctional software-defined radar sensor and data communication system[J]. IEEE Sensors Journal, 2011, 11(1): 99–106. doi: 10.1109/JSEN.2010.2052100
|
[87] |
HAN Liang and WU Ke. Radar and radio data fusion platform for future intelligent transportation system[C]. The 7th European Radar Conference, Paris, France, 2010: 65–68.
|
[88] |
STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110
|
[89] |
HAN Liang and WU Ke. Joint wireless communication and radar sensing systems-state of the art and future prospects[J]. IET Microwaves, Antennas & Propagation, 2013, 7(11): 876–885.
|
[90] |
GAGLIONE D, CLEMENTE C, ILIOUDIS C V, et al. Fractional fourier based waveform for a joint radar-communication system[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6.
|
[91] |
CHEN Xingbo, WANG Xiaomo, XU Shanfeng, et al. A novel radar waveform compatible with communication[C]. 2011 International Conference on Computational Problem-Solving (ICCP), Chengdu, China, 2011: 177–181.
|
[92] |
刘志鹏. 雷达通信一体化波形研究[D]. [博士论文], 北京理工大学, 2015.
LIU Zhipeng. Waveform research on integration of radar and communication[D]. [Ph. D. dissertation], Beijing Institute of Technology, 2015.
|
[93] |
刘永军. 基于OFDM的雷达通信一体化设计方法研究[D]. [博士论文], 西安电子科技大学, 2019.
LIU Yongjun. Study on integrated radar and communications design method based on OFDM[D]. [Ph. D. dissertation], Xidian University, 2019.
|
[94] |
刘冰凡, 陈伯孝. 基于OFDM-LFM信号的MIMO雷达通信一体化信号共享设计研究[J]. 电子与信息学报, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547
LIU Bingfan and CHEN Baixiao. Integration of MIMO radar and communication with OFDM-LFM signals[J]. Journal of Electronics &Information Technology, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547
|
[95] |
郝跃星. 恒包络OFDM雷达通信一体化关键技术研究[D]. [硕士论文], 西安电子科技大学, 2017.
HAO Yuexing. Resratch on the key technology of constant envelop OFDM radar-communication integration[D]. [Master dissertation], Xidian University, 2017.
|
[96] |
张秋月, 张林让, 谷亚彬, 等. 恒包络OFDM雷达通信一体化信号设计[J]. 西安交通大学学报, 2019, 53(6): 77–84. doi: 10.7652/xjtuxb201906011
ZHANG Qiuyue, ZHANG Linrang, GU Yabin, et al. Signal design of communication integration for radars with constant envelope OFDM[J]. Journal of Xi'an Jiaotong University, 2019, 53(6): 77–84. doi: 10.7652/xjtuxb201906011
|
[97] |
DONNET B J and LONGSTAFF I D. Combining MIMO radar with OFDM communications[C]. 2006 European Radar Conference, Manchester, UK, 2006: 37–40.
|
[98] |
HASSANIEN A, AMIN M G, ZHANG Y D, et al. A dual function radar-communications system using sidelobe control and waveform diversity[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 1260–1263.
|
[99] |
HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667
|
[100] |
HASSANIEN A, AMIN M G, ZHANG Y D, et al. Phase-modulation based dual-function radar-communications[J]. IET Radar, Sonar & Navigation, 2016, 10(8): 1411–1421. doi: 10.1049/iet.rsn.2015.0484
|
[101] |
BOUDAHER E, HASSANIEN A, ABOUTANIOS E, et al. Towards a dual-function MIMO radar-communication system[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6.
|
[102] |
MCCORMICK P M, BLUNT S D, and METCALF J G. Simultaneous radar and communications emissions from a common aperture, Part I: Theory[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1685–1690.
|
[103] |
MCCORMICK P M, RAVENSCROFT B, BLUNT S D, et al. Simultaneous radar and communication emissions from a common aperture, Part II: Experimentation[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1697–1702.
|
[104] |
LIU Fan, MASOUROS C, LI Ang, et al. MU-MIMO communications with MIMO radar: From co-existence to joint transmission[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2755–2770. doi: 10.1109/TWC.2018.2803045
|
[105] |
LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648
|
[106] |
LIU Fan, MASOUROS C, and GRIFFITHS H. Dual-functional radar-communication waveform design under constant-modulus and orthogonality constraints[C]. 2019 Sensor Signal Processing for Defence Conference, Brighton, UK, 2019: 1–5.
|
[107] |
KUMARI P, CHOI J, GONZÁLEZ-PRELCIC N, et al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3012–3027. doi: 10.1109/TVT.2017.2774762
|
[108] |
GROSSI E, LOPS M, VENTURINO L, et al. Opportunistic radar in IEEE 802.11ad networks[J]. IEEE Transactions on Signal Processing, 2018, 66(9): 2441–2454. doi: 10.1109/TSP.2018.2813300
|
[109] |
FORTUNATI S, SANGUINETTI L, GINI F, et al. Massive MIMO radar for target detection[J]. IEEE Transactions on Signal Processing, 2020, 68: 859–871. doi: 10.1109/TSP.2020.2967181
|
[110] |
ZHANG Xinying, MOLISCH A F, and KUNG Sunyuan. Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection[J]. IEEE Transactions on Signal Processing, 2005, 53(11): 4091–4103. doi: 10.1109/TSP.2005.857024
|
[111] |
EL AYACH O, RAJAGOPAL S, ABU-SURRA S, et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1499–1513. doi: 10.1109/TWC.2014.011714.130846
|
[112] |
HAN Shuangfeng, I C L, XU Zhikun, et al. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G[J]. IEEE Communications Magazine, 2015, 53(1): 186–194. doi: 10.1109/MCOM.2015.7010533
|
[113] |
MOLISCH A F, RATNAM V V, HAN Shengqian, et al. Hybrid beamforming for massive MIMO: A survey[J]. IEEE Communications Magazine, 2017, 55(9): 134–141. doi: 10.1109/MCOM.2017.1600400
|
[114] |
ALKHATEEB A, MO Jianhua, GONZALEZ-PRELCIC N, et al. MIMO precoding and combining solutions for millimeter-wave systems[J]. IEEE Communications Magazine, 2014, 52(12): 122–131. doi: 10.1109/MCOM.2014.6979963
|
[115] |
HASSANIEN A and VOROBYOV S A. Phased-MIMO radar: A tradeoff between phased-array and MIMO radars[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3137–3151. doi: 10.1109/TSP.2010.2043976
|
[116] |
WILCOX D and SELLATHURAI M. On MIMO radar subarrayed transmit beamforming[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 2076–2081. doi: 10.1109/TSP.2011.2179540
|
[117] |
LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976
|
[118] |
ZHANG J A, HUANG Xiaojing, GUO Y J, et al. Multibeam for joint communication and radar sensing using steerable analog antenna arrays[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 671–685. doi: 10.1109/TVT.2018.2883796
|
[119] |
LUO Yuyue, ZHANG J A, HUANG Xiaojing, et al. Optimization and quantization of multibeam beamforming vector for joint communication and radio sensing[J]. IEEE Transactions on Communications, 2019, 67(9): 6468–6482. doi: 10.1109/TCOMM.2019.2923627
|
[120] |
LUO Yuyue, ZHANG J A, HUANG Xiaojing, et al. Multibeam optimization for joint communication and radio sensing using analog antenna arrays[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11000–11013. doi: 10.1109/TVT.2020.3006481
|
[121] |
罗渝悦. 应用于车联网中通信雷达一体化系统的波束赋形技术研究[D]. [博士论文], 电子科技大学, 2020.
LUO Yuyue. Beamforming for joint communication and radar sensing techniques in autonomous vehicular networks[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2020.
|
[122] |
LIU Fan, YUAN Weijie, MASOUROS C, et al. Radar-assisted predictive beamforming for vehicular links: Communication served by sensing[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7704–7719. doi: 10.1109/TWC.2020.3015735
|
[123] |
YUAN Weijie, LIU Fan, MASOUROS C, et al. Bayesian predictive beamforming for vehicular networks: A low-overhead joint radar-communication approach[J]. arXiv: 2005.07698, 2020.
|
[124] |
ZHENG Tongxing, WANG Huiming, YUAN Jinhong, et al. Physical layer security in wireless ad hoc networks under a hybrid full-/half-duplex receiver deployment strategy[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3827–3839. doi: 10.1109/TWC.2017.2689005
|
[125] |
YAN Shihao, YANG Nan, GERACI G, et al. Optimization of code rates in SISOME wiretap channels[J]. IEEE Transactions on Wireless Communications, 2015, 14(11): 6377–6388. doi: 10.1109/TWC.2015.2453260
|
[126] |
LIU Chenxi, YANG Nan, YUAN Jinhong, et al. Location-based secure transmission for wiretap channels[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(7): 1458–1470. doi: 10.1109/JSAC.2015.2430211
|
[127] |
DELIGIANNIS A, DANIYAN A, LAMBOTHARAN S, et al. Secrecy rate optimizations for MIMO communication radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2481–2492. doi: 10.1109/TAES.2018.2820370
|
[128] |
CHALISE B K and AMIN M G. Performance tradeoff in a unified system of communications and passive radar: A secrecy capacity approach[J]. Digital Signal Processing, 2018, 82: 282–293. doi: 10.1016/j.dsp.2018.06.017
|
[129] |
DIMAS A, CLARK M A, LI Bo, et al. On radar privacy in shared spectrum scenarios[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 2019: 7790–7794.
|
[130] |
SU Nanchi, LIU Fan, and MASOUROS C. Secure radar-communication systems with malicious targets: Integrating radar, communications and jamming functionalities[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 83–95. doi: 10.1109/TWC.2020.3023164
|
[131] |
RAVITEJA P, PHAN K T, HONG Yi, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501–6515. doi: 10.1109/TWC.2018.2860011
|
[132] |
YUAN Weijie, WEI Zhiqiang, YUAN Jinhong, et al. A simple variational Bayes detector for orthogonal time frequency space (OTFS) modulation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7976–7980. doi: 10.1109/TVT.2020.2991443
|