Ren Bo, Shi Longfei, Wang Guoyu. Polarimetric Analysis of the Interference from Base Stations to UHF-band Radar[J]. Journal of Radars, 2016, 5(2): 164-173. doi: 10.12000/JR15134
Citation: LIU Yan, WAN Xianrong, and YI Jianxin. OFDM waveform design for joint radar-communication based on data distortion[J]. Journal of Radars, 2024, 13(1): 160–173. doi: 10.12000/JR23205

OFDM Waveform Design for Joint Radar-communication Based on Data Distortion

DOI: 10.12000/JR23205
Funds:  The National Natural Science Foundation of China (61931015, 62071335, 62250024), The Innovation Group Project of Natural Science Foundation of Hubei Province (2021CFA002), The Fundamental Research Funds for the Central Universities of China (2042022dx0001)
More Information
  • Corresponding author: WAN Xianrong, xrwan@whu.edu.cn
  • Received Date: 2023-10-20
  • Rev Recd Date: 2023-12-28
  • Available Online: 2023-12-29
  • Publish Date: 2024-01-09
  • Orthogonal Frequency Division Multiplexing (OFDM) waveform design is one of the key physical layer technologies for achieving joint radar-communication. OFDM waveforms usually have issues with high Peak to Average Power Ratio (PAPR) and high waveform autocorrelation sidelobe levels. This paper proposes an integrated waveform design method based on data distortion to address the communication rate degradation problem of existing joint PAPR and autocorrelation sidelobe reduction methods. The paper also takes the Error Vector Magnitude (EVM) of communication data as one of the optimization objectives, reducing the communication bit error rate caused by data distortion. Firstly, an optimization model was constructed to minimize the Integrated Sidelobe Level Ratio (ISLR) and EVM under PAPR constraints. Secondly, based on the characteristics of the modulation constellation, the multi-objective high-dimensional non-convex optimization problem is transformed into two single objective optimization subproblems by using the data distortion of outer constellation modulation and all modulation data distortion. Convex relaxation operation and Alternating Direction Method of Multipliers (ADMM) are respectively used to solve the simplified subproblems, resulting in low ISLR waveform and low EVM waveform under PAPR constraint. The simulation results show that the integrated waveform designed by the proposed method can meet the requirements of PAPR, and has good sensing and communication performance.

     

  • [1]
    刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113
    [2]
    余显祥, 姚雪, 杨婧, 等. 面向感知应用的通感一体化信号设计技术与综述[J]. 雷达学报, 2023, 12(2): 247–261. doi: 10.12000/JR23015

    YU Xianxiang, YAO Xue, YANG Jing, et al. Radar-centric DFRC signal design: Overview and future research avenues[J]. Journal of Radars, 2023, 12(2): 247–261. doi: 10.12000/JR23015
    [3]
    兰岚, 廖桂生, 许京伟, 等. 基于频率分集阵列的多功能一体化波形设计与信号处理方法[J]. 雷达学报, 2022, 11(5): 850–870. doi: 10.12000/JR22163

    LAN Lan, LIAO Guisheng, XU Jingwei, et al. Waveform design and signal processing method of a multifunctional integrated system based on a frequency diverse array[J]. Journal of Radars, 2022, 11(5): 850–870. doi: 10.12000/JR22163
    [4]
    马丁友, 刘祥, 黄天耀, 等. 雷达通信一体化: 共用波形设计和性能边界[J]. 雷达学报, 2022, 11(2): 198–212. doi: 10.12000/JR21146

    MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars, 2022, 11(2): 198–212. doi: 10.12000/JR21146
    [5]
    HWANG T, YANG Chenyang, WU Gang, et al. OFDM and its wireless applications: A survey[J]. IEEE Transactions on Vehicular Technology, 2009, 58(4): 1673–1694. doi: 10.1109/TVT.2008.2004555
    [6]
    XU Zhaoyi and PETROPULU A. A bandwidth efficient dual-function radar communication system based on a MIMO radar using OFDM waveforms[J]. IEEE Transactions on Signal Processing, 2023, 71: 401–416. doi: 10.1109/TSP.2023.3241779
    [7]
    肖博, 霍凯, 刘永祥. 雷达通信一体化研究现状与发展趋势[J]. 电子与信息学报, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515

    XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics & Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515
    [8]
    吴文俊, 唐波, 汤俊, 等. 杂波环境中雷达通信一体化系统波形设计算法研究[J]. 雷达学报, 2022, 11(4): 570–580. doi: 10.12000/JR22105

    WU Wenjun, TANG Bo, TANG Jun, et al. Waveform design for dual-function radar-communication systems in clutter[J]. Journal of Radars, 2022, 11(4): 570–580. doi: 10.12000/JR22105
    [9]
    NI Zhitong, ZHANG J A, WU Kai, et al. Uplink sensing using CSI ratio in perceptive mobile networks[J]. IEEE Transactions on Signal Processing, 2023, 71: 2699–2712. doi: 10.1109/TSP.2023.3294626
    [10]
    COLONE F, FILIPPINI F, and PASTINA D. Passive radar: Past, present, and future challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2023, 38(1): 54–69. doi: 10.1109/MAES.2022.3221685
    [11]
    万显荣, 易建新, 占伟杰, 等. 基于多照射源的被动雷达研究进展与发展趋势[J]. 雷达学报, 2020, 9(6): 939–958. doi: 10.12000/JR20143

    WAN Xianrong, YI Jianxin, ZHAN Weijie, et al. Research progress and development trend of the multi-illuminator-based passive radar[J]. Journal of Radars, 2020, 9(6): 939–958. doi: 10.12000/JR20143
    [12]
    RAHMATALLAH Y and MOHAN S. Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy[J]. IEEE Communications Surveys & Tutorials, 2013, 15(4): 1567–1592. doi: 10.1109/SURV.2013.021313.00164
    [13]
    ARMSTRONG J. Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering[J]. Electronics Letters, 2002, 38(5): 246–247. doi: 10.1049/el:20020175
    [14]
    WANG Y C and LUO Z Q. Optimized iterative clipping and filtering for PAPR reduction of OFDM signals[J]. IEEE Transactions on Communications, 2011, 59(1): 33–37. doi: 10.1109/TCOMM.2010.102910.090040
    [15]
    TANG Bo, QIN Kaiyu, ZHANG Xiangyin, et al. A clipping-noise compression method to reduce PAPR of OFDM Signals[J]. IEEE Communications Letters, 2019, 23(8): 1389–1392. doi: 10.1109/LCOMM.2019.2916052
    [16]
    SOHN I and KIM S C. Neural network based simplified clipping and filtering technique for PAPR reduction of OFDM signals[J]. IEEE Communications Letters, 2015, 19(8): 1438–1441. doi: 10.1109/LCOMM.2015.2441065
    [17]
    KRONGOLD B S and JONES D L. PAR reduction in OFDM via active constellation extension[J]. IEEE Transactions on Broadcasting, 2003, 49(3): 258–268. doi: 10.1109/TBC.2003.817088
    [18]
    LI Haibo, JIANG Tao, and ZHOU Yang. An improved tone reservation scheme with fast convergence for PAPR reduction in OFDM systems[J]. IEEE Transactions on Broadcasting, 2011, 57(4): 902–906. doi: 10.1109/TBC.2011.2169622
    [19]
    NI Chunxing, MA Yahui, and JIANG Tao. A novel adaptive tone reservation scheme for PAPR reduction in large-scale multi-user MIMO-OFDM systems[J]. IEEE Wireless Communications Letters, 2016, 5(5): 480–483. doi: 10.1109/LWC.2016.2588489
    [20]
    WU Wenhua, CAO Yunhe, WANG Shenghua, et al. Joint optimization of PAPR reduction based on modified TR scheme for MIMO-OFDM radar[J]. Digital Signal Processing, 2018, 80: 27–36. doi: 10.1016/j.dsp.2018.05.008
    [21]
    ZHANG Siyu and SHAHRRAVA B. A SLM scheme for PAPR reduction in Polar coded OFDM-IM systems without using side information[J]. IEEE Transactions on Broadcasting, 2021, 67(2): 463–472. doi: 10.1109/TBC.2020.3039696
    [22]
    季策, 祝雯靖, 魏颖, 等. 降低OFDM系统PAPR的改进SLM算法[J]. 通信学报, 2018, 39(4): 152–158. doi: 10.11959/j.issn.1000-436x.2018059

    JI Ce, ZHU Wenjing, WEI Ying, et al. Improved SLM algorithm for PAPR reduction in OFDM system[J]. Journal on Communications, 2018, 39(4): 152–158. doi: 10.11959/j.issn.1000-436x.2018059
    [23]
    王鑫海, 王超宇, 张宁, 等. 一种相位域低积分旁瓣雷达波形优化方法[J]. 雷达学报, 2022, 11(2): 255–263. doi: 10.12000/JR21137

    WANG Xinhai, WANG Chaoyu, ZHANG Ning, et al. Phase-only method for designing a unimodular radar waveform with low ISL[J]. Journal of Radars, 2022, 11(2): 255–263. doi: 10.12000/JR21137
    [24]
    LELLOUCH G, MISHRA A K, and INGGS M. Design of OFDM radar pulses using genetic algorithm based techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1953–1966. doi: 10.1109/TAES.2016.140671
    [25]
    TSAI L S, CHUNG W H, and SHIU D S. Synthesizing low autocorrelation and low PAPR OFDM sequences under spectral constraints through convex optimization and GS algorithm[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2234–2243. doi: 10.1109/TSP.2011.2108652
    [26]
    STOICA P, HE Hao, and LI Jian. New algorithms for designing unimodular sequences with good correlation properties[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1415–1425. doi: 10.1109/TSP.2009.2012562
    [27]
    周凯, 李德鑫, 粟毅, 等. 雷达脉冲压缩低旁瓣发射波形和非匹配滤波联合设计方法[J]. 电子学报, 2021, 49(9): 1701–1707. doi: 10.12263/DZXB.20201405

    ZHOU Kai, LI Deixin, SU Yi, et al. Joint design of transmitted waveform and mismatched filter sup-pressing radar pulse compression sidelobe level[J]. Acta Electronica Sinica, 2021, 49(9): 1701–1707. doi: 10.12263/DZXB.20201405
    [28]
    ZHOU Shenghua, LIANG Xueling, YU Yao, et al. Joint radar-communications Co-Use waveform design using optimized phase perturbation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1227–1240. doi: 10.1109/TAES.2019.2909254
    [29]
    BARUFFA G, RUGINI L, FRESCURA F, et al. Low-complexity PAPR reduction by coded data insertion on DVB-T2 reserved carriers[J]. IEEE Access, 2023, 11: 73377–73393. doi: 10.1109/ACCESS.2023.3296256
    [30]
    BULUSU S S K C, CRUSSIÈRE M, HÉLARD J F, et al. Quasi-optimal tone reservation PAPR reduction algorithm for next generation broadcasting systems: A performance/complexity/latency tradeoff with testbed implementation[J]. IEEE Transactions on Broadcasting, 2018, 64(4): 883–899. doi: 10.1109/TBC.2018.2811623
    [31]
    HUANG Yixuan, HU Su, MA Shiyong, et al. Designing low-PAPR waveform for OFDM-based RadCom systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6979–6993. doi: 10.1109/TWC.2022.3153606
    [32]
    VARSHNEY P, BABU P, and STOICA P. Low-PAPR OFDM waveform design for radar and communication systems[J]. IEEE Transactions on Radar Systems, 2023, 1: 69–74. doi: 10.1109/TRS.2023.3275210
    [33]
    WEN Cai, HUANG Yan, ZHENG Le, et al. Transmit waveform design for dual-function radar-communication systems via hybrid linear-nonlinear precoding[J]. IEEE Transactions on Signal Processing, 2023, 71: 2130–2145. doi: 10.1109/TSP.2023.3278858
    [34]
    WANG Luqing and TELLAMBURA C. A simplified clipping and filtering technique for PAR reduction in OFDM systems[J]. IEEE Signal Processing Letters, 2005, 12(6): 453–456. doi: 10.1109/LSP.2005.847886
    [35]
    JIANG Tao and WU Yiyan. An overview: Peak-to-average power ratio reduction techniques for OFDM signals[J]. IEEE Transactions on Broadcasting, 2008, 54(2): 257–268. doi: 10.1109/TBC.2008.915770
    [36]
    杨婧, 余显祥, 沙明辉, 等. MIMO系统探通一体化信号矩阵设计方法[J]. 雷达学报, 2023, 12(2): 262–274. doi: 10.12000/JR22087

    YANG Jing, YU Xianxiang, SHA Minghui, et al. Dual function radar and communication signal matrix design method for MIMO system[J]. Journal of Radars, 2023, 12(2): 262–274. doi: 10.12000/JR22087
    [37]
    LIU Shuang, WANG Yajun, LIAN Zhuxian, et al. Joint suppression of PAPR and OOB radiation for OFDM systems[J]. IEEE Transactions on Broadcasting, 2023, 69(2): 528–537. doi: 10.1109/TBC.2023.3243410
    [38]
    WANG Yongchao, WANG Yanjiao, and SHI Qingjiang. Optimized signal distortion for PAPR reduction of OFDM signals with IFFT/FFT complexity via ADMM approaches[J]. IEEE Transactions on Signal Processing, 2019, 67(2): 399–414. doi: 10.1109/TSP.2018.2880711
    [39]
    GRANT M and BOYD S. CVX: Matlab software for disciplined convex programming, version 2.2[EB/OL]. http://cvxr.com/cvx, 2020.
    [40]
    DU Zhen, LIU Fan, XIONG Yifeng, et al. Probabilistic constellation shaping for OFDM-based ISAC signaling[EB/OL]. http://arxiv.org/abs/2310.18090, 2023.
  • Relative Articles

    [1]LI Yuxi, ZHU Ruichao, SUI Sai, JIA Yuxiang, DING Chang, HAN Yajuan, QU Shaobo, WANG Jiafu. Dynamic Electromagnetic Control Technology and its Application Based on Metasurface[J]. Journal of Radars. doi: 10.12000/JR24259
    [2]CHEN Shaonan, GU Jiaming, XU Chao, SUN Yimiao, WANG Siran, CHEN Zhanye, LIU Shuo, LI Huidong, DAI Junyan, HE Yuan, CHENG Qiang. Fall Feature Simulation and Wi-Fi Sensing Dataset Construction Based on Time-Domain Digital Coding Metasurface[J]. Journal of Radars. doi: 10.12000/JR24247
    [3]ZHOU Hongcheng, YU Xiaoran, WANG Yu, YAN Zhongming. Research Progress of Electrically Controlled Reconfigurable Polarization Manipulation Using Metasurface[J]. Journal of Radars, 2024, 13(3): 696-713. doi: 10.12000/JR23230
    [4]ZHOU Qunyan, WANG Siran, DAI Junyan, CHENG Qiang. Simultaneous Direction of Arrival Estimation and Radar Cross-section Reduction Based on Space-time-coding Digital Metasurfaces[J]. Journal of Radars, 2024, 13(1): 150-159. doi: 10.12000/JR23216
    [5]XU Heng, XU Hong, QUAN Yinghui, PAN Qin, SHA Minghui, CHEN Hui, CHENG Qiang, ZHOU Xiaoyang. A Radar Jamming Method Based on Time Domain Coding Metasurface Intrapulse and Interpulse Coding Optimization[J]. Journal of Radars, 2024, 13(1): 215-226. doi: 10.12000/JR23186
    [6]ZHANG Liwen, PAN Jian, ZHANG Youcheng, CHEN Yuanpei, MA Zhe, HUANG Xuhui, SUN Kewu. Capturing Temporal-dependence in Radar Echo for Spatial-temporal Sparse Target Detection[J]. Journal of Radars, 2023, 12(2): 356-375. doi: 10.12000/JR22228
    [7]WANG Bingnan, ZHAO Juanying, LI Wei, SHI Ruihua, XIANG Maosheng, ZHOU Yu, JIA Jianjun. Array Synthetic Aperture Ladar with High Spatial Resolution Technology[J]. Journal of Radars, 2022, 11(6): 1110-1118. doi: 10.12000/JR22204
    [8]JIANG Weixiang, TIAN Hanwei, SONG Chao, ZHANG Xin’ge. Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions(in English)[J]. Journal of Radars, 2022, 11(6): 1003-1019. doi: 10.12000/JR22167
    [9]YANG Huanhuan, CAO Xiangyu, GAO Jun, LI Tong, LI Sijia, CONG Lili, ZHAO Xia. Recent Advances in Reconfigurable Metasurfaces and Their Applications[J]. Journal of Radars, 2021, 10(2): 206-219. doi: 10.12000/JR20137
    [10]LIU Zhangmeng, YUAN Shuo, KANG Shiqian. Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train[J]. Journal of Radars, 2021, 10(4): 559-570. doi: 10.12000/JR21031
    [11]WANG Ruichuan, WANG Yanfei. Terrain Classification of Polarimetric SAR Images Using Semi-supervised Spatial-channel Selective Kernel Network[J]. Journal of Radars, 2021, 10(4): 516-530. doi: 10.12000/JR21080
    [12]FANG Zuqi, CHENG Qiang, CUI Tiejun. Nonlinear Quasi-Bessel Beam Generation Based on the Time-domain Digital-Coding Metasurface[J]. Journal of Radars, 2021, 10(2): 267-273. doi: 10.12000/JR21043
    [13]YASIR Saifullah, YANG Guomin, XU Feng. A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering[J]. Journal of Radars, 2021, 10(3): 382-390. doi: 10.12000/JR21061
    [14]HU Qi, CHEN Ke, ZHENG Yilin, XU Zhiyuan, WANG Jian, ZHAO Junming, FENG Yijun. Time-varying Polarization-converting Programmable Metasurface and Its Application in Wireless Communication System[J]. Journal of Radars, 2021, 10(2): 304-312. doi: 10.12000/JR21042
    [15]LI Shangyang, FU Shilei, XU Feng. DNN-based Intelligent Beamforming on a Programmable Metasurface[J]. Journal of Radars, 2021, 10(2): 259-266. doi: 10.12000/JR21039
    [16]Liu Junfeng, Liu Shuo, Fu Xiaojian, Cui Tiejun. Terahertz Information Metamaterials and Metasurfaces[J]. Journal of Radars, 2018, 7(1): 46-55. doi: 10.12000/JR17100
    [17]Liu Wei-jian, Wang Li-cai, Di Yuan-shui, Jian Tao, Xie Dang, Wang Yong-liang. Adaptive Energy Detector and Its Application for Mismatched Signal Detection(in English)[J]. Journal of Radars, 2015, 4(2): 149-159. doi: 10.12000/JR14132
    [18]Feng Fan, Dang Hong-xing, Tan Xiao-min. Study on Adaptive Digital Beamforming for Spaceborne SAR Based on Capon Spatial Spectrum Estimation[J]. Journal of Radars, 2014, 3(1): 53-60. doi: 10.3724/SP.J.1300.2014.13131
    [19]Huang Chuan-lu, Chao Kun, Mao Yun-zhi. Error Self-calibration Method in Spatial Spectrum Estimation[J]. Journal of Radars, 2014, 3(5): 518-523. doi: 10.3724/SP.J.1300.2014.13147
    [20]Li Zi-qi, Mei Jin-jie, Hu Deng-oeng, Shen Xu-chi, Li Xiao-bai. Peak-to-Average Power Ratio Reduction for Integration of Radar and Communication Systems Based on OFDM Signals with Block Golay Coding[J]. Journal of Radars, 2014, 3(5): 548-555. doi: 10.3724/SP.J.1300.2014.14059
  • Cited by

    Periodical cited type(1)

    1. 逄爽,曾旸,杨琪,邓彬,王宏强. Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band. Chinese Physics B. 2022(06): 872-877 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.6 %FULLTEXT: 30.6 %META: 62.2 %META: 62.2 %PDF: 7.3 %PDF: 7.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.6 %其他: 6.6 %其他: 1.4 %其他: 1.4 %Boiling Springs: 0.1 %Boiling Springs: 0.1 %Botswana: 0.1 %Botswana: 0.1 %Burlington: 0.1 %Burlington: 0.1 %Canada: 0.1 %Canada: 0.1 %Canton: 0.1 %Canton: 0.1 %China: 0.8 %China: 0.8 %Egypt: 0.1 %Egypt: 0.1 %France: 0.4 %France: 0.4 %Greece: 0.1 %Greece: 0.1 %Herndon: 0.0 %Herndon: 0.0 %Hong Kong, China: 0.1 %Hong Kong, China: 0.1 %Howard: 0.1 %Howard: 0.1 %India: 0.0 %India: 0.0 %Iran (ISLAMIC Republic Of): 0.2 %Iran (ISLAMIC Republic Of): 0.2 %Italy: 0.2 %Italy: 0.2 %Korea Republic of: 0.4 %Korea Republic of: 0.4 %Malvern: 0.0 %Malvern: 0.0 %Matale: 0.2 %Matale: 0.2 %Palo Alto: 0.1 %Palo Alto: 0.1 %Pathum Thani: 0.5 %Pathum Thani: 0.5 %Portugal: 0.1 %Portugal: 0.1 %San Mateo: 0.1 %San Mateo: 0.1 %Singapore: 0.1 %Singapore: 0.1 %Taichung: 0.0 %Taichung: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %Thailand: 0.1 %Thailand: 0.1 %Turkey: 0.1 %Turkey: 0.1 %United States: 0.4 %United States: 0.4 %Viet Nam: 0.1 %Viet Nam: 0.1 %[]: 2.5 %[]: 2.5 %万隆: 0.3 %万隆: 0.3 %三亚: 0.2 %三亚: 0.2 %上海: 2.2 %上海: 2.2 %东京: 0.4 %东京: 0.4 %东京都: 0.0 %东京都: 0.0 %东莞: 0.2 %东莞: 0.2 %中卫: 0.1 %中卫: 0.1 %临汾: 0.4 %临汾: 0.4 %丹东: 0.0 %丹东: 0.0 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %伊斯坦布尔: 0.1 %伊斯坦布尔: 0.1 %伦敦: 0.1 %伦敦: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.1 %兰辛: 0.1 %凤凰城: 0.1 %凤凰城: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 8.7 %北京: 8.7 %匹兹堡: 0.1 %匹兹堡: 0.1 %十堰: 0.1 %十堰: 0.1 %南京: 2.6 %南京: 2.6 %南昌: 0.1 %南昌: 0.1 %南通: 0.0 %南通: 0.0 %卡拉奇: 0.0 %卡拉奇: 0.0 %厦门: 0.1 %厦门: 0.1 %台北: 0.3 %台北: 0.3 %台州: 0.0 %台州: 0.0 %台湾: 0.0 %台湾: 0.0 %合肥: 0.9 %合肥: 0.9 %吉隆坡: 0.1 %吉隆坡: 0.1 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.0 %哥伦布: 0.0 %喀什: 0.0 %喀什: 0.0 %圣彼得堡: 0.1 %圣彼得堡: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.0 %天津: 0.0 %太原: 0.6 %太原: 0.6 %奥胡斯: 0.3 %奥胡斯: 0.3 %奥马哈: 0.1 %奥马哈: 0.1 %孟买: 0.1 %孟买: 0.1 %宁波: 0.1 %宁波: 0.1 %安庆: 0.1 %安庆: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 0.3 %宣城: 0.3 %巴中: 0.1 %巴中: 0.1 %巴黎: 0.1 %巴黎: 0.1 %布洛涅-比扬古: 0.1 %布洛涅-比扬古: 0.1 %常德: 0.0 %常德: 0.0 %广州: 0.8 %广州: 0.8 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %开封: 0.1 %开封: 0.1 %张家口: 0.3 %张家口: 0.3 %张家界: 0.1 %张家界: 0.1 %德罕: 0.1 %德罕: 0.1 %意法半: 0.0 %意法半: 0.0 %成都: 0.8 %成都: 0.8 %扬州: 0.1 %扬州: 0.1 %拉贾斯坦: 0.1 %拉贾斯坦: 0.1 %新乡: 0.1 %新乡: 0.1 %新余: 0.1 %新余: 0.1 %新加坡: 0.2 %新加坡: 0.2 %无锡: 0.1 %无锡: 0.1 %昆明: 0.4 %昆明: 0.4 %昌吉回族自治州: 0.0 %昌吉回族自治州: 0.0 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.0 %朝阳: 0.0 %本那比: 0.1 %本那比: 0.1 %杭州: 1.0 %杭州: 1.0 %查尔斯顿: 0.1 %查尔斯顿: 0.1 %株洲: 0.0 %株洲: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.2 %桂林: 0.2 %武汉: 2.0 %武汉: 2.0 %毕节: 0.0 %毕节: 0.0 %汉中: 0.1 %汉中: 0.1 %汕头: 0.0 %汕头: 0.0 %江门: 0.0 %江门: 0.0 %沈阳: 0.2 %沈阳: 0.2 %沙田: 0.1 %沙田: 0.1 %法兰克福: 0.4 %法兰克福: 0.4 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.1 %济南: 0.1 %海口: 0.2 %海口: 0.2 %淮南: 0.0 %淮南: 0.0 %深圳: 1.0 %深圳: 1.0 %温州: 0.0 %温州: 0.0 %渭南: 0.7 %渭南: 0.7 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %湛江: 0.1 %湛江: 0.1 %漯河: 0.3 %漯河: 0.3 %烟台: 0.0 %烟台: 0.0 %瓦拉纳西县: 0.1 %瓦拉纳西县: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.4 %纽约: 0.4 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %肇庆: 0.1 %肇庆: 0.1 %芒廷维尤: 28.4 %芒廷维尤: 28.4 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.8 %苏州: 0.8 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.1 %衡水: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 16.6 %西宁: 16.6 %西安: 2.4 %西安: 2.4 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %运城: 0.8 %运城: 0.8 %连云港: 0.1 %连云港: 0.1 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.1 %郑州: 0.1 %都伯林: 0.2 %都伯林: 0.2 %重庆: 0.3 %重庆: 0.3 %长春: 0.0 %长春: 0.0 %长沙: 0.6 %长沙: 0.6 %长治: 0.3 %长治: 0.3 %青岛: 0.1 %青岛: 0.1 %香港: 0.4 %香港: 0.4 %香港特别行政区: 0.5 %香港特别行政区: 0.5 %马哈拉施特拉: 0.0 %马哈拉施特拉: 0.0 %马鞍山: 0.0 %马鞍山: 0.0 %鹰潭: 0.0 %鹰潭: 0.0 %其他其他Boiling SpringsBotswanaBurlingtonCanadaCantonChinaEgyptFranceGreeceHerndonHong Kong, ChinaHowardIndiaIran (ISLAMIC Republic Of)ItalyKorea Republic ofMalvernMatalePalo AltoPathum ThaniPortugalSan MateoSingaporeTaichungTaiwan, ChinaThailandTurkeyUnited StatesViet Nam[]万隆三亚上海东京东京都东莞中卫临汾丹东乌鲁木齐伊斯坦布尔伦敦佛山保定兰州兰辛凤凰城加利福尼亚州北京匹兹堡十堰南京南昌南通卡拉奇厦门台北台州台湾合肥吉隆坡呼和浩特哈尔滨哥伦布喀什圣彼得堡大庆大连天津太原奥胡斯奥马哈孟买宁波安庆安康宣城巴中巴黎布洛涅-比扬古常德广州库比蒂诺开封张家口张家界德罕意法半成都扬州拉贾斯坦新乡新余新加坡无锡昆明昌吉回族自治州晋城朝阳本那比杭州查尔斯顿株洲格兰特县桂林武汉毕节汉中汕头江门沈阳沙田法兰克福泰米尔纳德洛阳济南海口淮南深圳温州渭南湖州湘潭湛江漯河烟台瓦拉纳西县石家庄福州秦皇岛纽约美国伊利诺斯芝加哥肇庆芒廷维尤芝加哥苏州蚌埠衡水衢州西宁西安贵阳赣州运城连云港邢台邯郸郑州都伯林重庆长春长沙长治青岛香港香港特别行政区马哈拉施特拉马鞍山鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1298) PDF downloads(192) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint