Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157
Citation: ZHANG Liwen, PAN Jian, ZHANG Youcheng, et al. Capturing temporal-dependence in radar echo for spatial-temporal sparse target detection[J]. Journal of Radars, 2023, 12(2): 356–375. doi: 10.12000/JR22228

Capturing Temporal-dependence in Radar Echo for Spatial-temporal Sparse Target Detection

DOI: 10.12000/JR22228
Funds:  Young Science Foundation of National Natural Science Foundation of China (62206258)
More Information
  • Corresponding author: ZHANG Liwen, lwzhang9161@126.com; MA Zhe, zhema_thu@163.com
  • Received Date: 2022-11-28
  • Rev Recd Date: 2023-02-07
  • Available Online: 2023-02-11
  • Publish Date: 2023-03-01
  • Existing data-driven object detection methods use the Constant False Alarm Rate (CFAR) principle to achieve more robust detection performance using supervised learning. This study systematically proposes a data-driven target detection framework based on the measured echo data from the ground early warning radar for low-altitude slow dim target detection. This framework addresses two key problems in this field: (1) aiming at the problem that current data-driven object detection methods fail to make full use of feature representation learning to exert its advantages, a representation learning method of echo temporal dependency is proposed, and two implementations, including unsupervised- and supervised-learning are given; (2) Low-altitude slow dim targets show extreme sparsity in the radar detection range, such unevenness of target-clutter sample scale causes the trained model to seriously tilt to the clutter samples, resulting in the decision deviation. Therefore, we further propose incorporating the data balancing policy of abnormal detection into the framework. Finally, ablation experiments are performed on the measured X-band echo data for each component in the proposed framework. Experimental results completely validate the effectiveness of our echo temporal representation learning and balancing policy. Additionally, under real sequential validation, our proposed method achieves comprehensive detection performance that is superior to multiple CFAR methods.

     

  • [1]
    BIJELIC M, GRUBER T, and RITTER W. A benchmark for lidar sensors in fog: Is detection breaking down?[C]. 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 2018: 760–767.
    [2]
    MADANI Sohrab, GUAN Jayden, AHMED Waleed, et al. Radatron: Accurate Detection Using Multi-resolution Cascaded MIMO Radar, ECCV 2022, 160–178.
    [3]
    王俊, 郑彤, 雷鹏, 等. 深度学习在雷达中的研究综述[J]. 雷达学报, 2018, 7(4): 395–411. doi: 10.12000/JR18040

    WANG Jun, ZHENG Tong, LEI Peng, et al. Study on deep learning in radar[J]. Journal of Radars, 2018, 7(4): 395–411. doi: 10.12000/JR18040
    [4]
    ROHLING H. Radar CFAR thresholding in clutter and multiple target situations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(4): 608–621. doi: 10.1109/TAES.1983.309350
    [5]
    KELLY E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi: 10.1109/TAES.1986.310745
    [6]
    ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. doi: 10.1109/7.135446
    [7]
    COLUCCIA A and RICCI G. Radar detection in K-distributed clutter plus thermal noise based on KNN methods[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019: 1–5,
    [8]
    COLUCCIA A, FASCISTA A, and RICCI G. A KNN-based radar detector for coherent targets in non-Gaussian noise[J]. IEEE Signal Processing Letters, 2021, 28: 778–782. doi: 10.1109/LSP.2021.3071972
    [9]
    BRODESKI D, BILIK I, and GIRYES R. Deep radar detector[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019: 1–6,
    [10]
    BALL J E. Low signal-to-noise ratio radar target detection using Linear Support Vector Machines (L-SVM)[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 1291–1294.
    [11]
    WANG Jingang and LI Songbin. Maritime radar target detection in sea clutter based on CNN with dual-perspective attention[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3500405. doi: 10.1109/LGRS.2022.3230443
    [12]
    QU Qizhe, WANG Yongliang, LIU Weijian, et al. A false alarm controllable detection method based on CNN for sea-surface small targets[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4025705. doi: 10.1109/LGRS.2022.3190865
    [13]
    WANG Yizhou, JIANG Zhongyu, LI Yudong, et al. RODNet: A real-time radar object detection network cross-supervised by camera-radar fused object 3D localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 954–967. doi: 10.1109/JSTSP.2021.3058895
    [14]
    GAO Xiangyu, XING Guanbin, ROY S, et al. RAMP-CNN: A novel neural network for enhanced automotive radar object recognition[J]. IEEE Sensors Journal, 2021, 21(4): 5119–5132. doi: 10.1109/JSEN.2020.3036047
    [15]
    KAUL P, DE MARTINI D, GADD M, et al. RSS-Net: Weakly-supervised multi-class semantic segmentation with FMCW radar[C]. 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, USA, 2020: 431–436.
    [16]
    OUAKNINE A, NEWSON A, PÉREZ P, et al. Multi-view radar semantic segmentation[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 15651–15660.
    [17]
    WANG Li, TANG Jun, and LIAO Qingmin. A study on radar target detection based on deep neural networks[J]. IEEE Sensors Letters, 2019, 3(3): 7000504. doi: 10.1109/LSENS.2019.2896072
    [18]
    LORAN T, DA SILVA A B C, JOSHI S K, et al. Ship detection based on faster R-CNN using range-compressed airborne radar data[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3500205. doi: 10.1109/LGRS.2022.3229141
    [19]
    OUAKNINE A, NEWSON A, REBUT J, et al. CARRADA dataset: Camera and automotive radar with range- angle- Doppler annotations[C]. 25th International Conference on Pattern Recognition, Milan, Italy, 2021: 5068–5075.
    [20]
    HUANG Zhongling, PAN Zongxu, and LEI Bin. What, where, and how to transfer in SAR target recognition based on deep CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2324–2336. doi: 10.1109/tgrs.2019.2947634
    [21]
    JITHESH V, SAGAYARAJ M J, and SRINIVASA K G. LSTM recurrent neural networks for high resolution range profile based radar target classification[C]. 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, India, 2017: 1–6.
    [22]
    丁鹭飞, 耿富录, 陈建春. 雷达原理[M]. 4版. 北京: 电子工业出版社, 2009: 169–170.

    DING Lufei, GENG Fulu, and CHEN Jianchun. Principles of Radar[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2009: 169–170.
    [23]
    MAHAFZA B R. MATLAB Simulations for Radar Systems Design[M]. New York, USA: Chapman and Hall, 2003: 19.
    [24]
    MARHON S A, CAMERON C J F, and KREMER S C. Recurrent Neural Networks[M]. BIANCHINI M, MAGGINI M, and JAIN L C. Handbook on Neural Information Processing. Berlin: Springer, 2013: 29–65.
    [25]
    GRAVES A. Generating sequences with recurrent neural networks[EB/OL]. https://arxiv.org/abs/1308.0850, 2013.
    [26]
    HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
    [27]
    ZHANG Liwen, HAN Jiqing, and DENG Shiwen. Unsupervised temporal feature learning based on sparse coding embedded BoAW for acoustic event recognition[C]. The 19th Annual Conference of the International Speech Communication Association, Hyderabad, India, 2018: 3284–3288.
    [28]
    DRUCKER H, BURGES C J C, KAUFMAN L, et al. Support vector regression machines[C]. The 9th International Conference on Neural Information Processing Systems, Denver, Colorado, 1996: 155–161.
    [29]
    LIN C J, WENG R C, and KEERTHI S S. Trust region newton method for large-scale logistic regression[J]. Journal of Machine Learning Research, 2008, 9: 627–650.
    [30]
    VEDALDI A and ZISSERMAN A. Efficient additive kernels via explicit feature maps[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 480–492. doi: 10.1109/TPAMI.2011.153
    [31]
    ARANDJELOVIĆ R and ZISSERMAN A. Three things everyone should know to improve object retrieval[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2911–2918.
    [32]
    CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. The 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014: 1724–1734.
    [33]
    CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321–357. doi: 10.1613/jair.953
    [34]
    ZHANG Hongyi, CISSÉ M, DAUPHIN Y N, et al. mixup: Beyond empirical risk minimization[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
    [35]
    VAPNIK V N. Statistical Learning Theory[M]. New York: Wiley, 1998.
    [36]
    GRAVES A and SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM networks[C]. 2005 IEEE International Joint Conference on Neural Networks, Montreal, Canada, 2005: 2047–2052.
    [37]
    ZHANG Xiaohu, ZOU Yuexian, and SHI Wei. Dilated convolution neural network with LeakyReLU for environmental sound classification[C]. 2017 22nd International Conference on Digital Signal Processing (DSP), London, UK, 2017: 1–5.
    [38]
    DIEDERIK P and KINGMA J B. Adam: A method for stochastic optimization[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
  • Relative Articles

    [1]YANG Lei, HUO Xin, SHEN Ruiyang, SONG Hao, HU Zhongwei. Credible Inference of Near-field Sparse Array Synthesis for Three-dimensional Millimeter-wave Imagery[J]. Journal of Radars, 2024, 13(5): 1092-1108. doi: 10.12000/JR24097
    [2]LIN Yuqing, QIU Xiaolan, PENG Lingxiao, LI Hang, DING Chibiao. Non-line-of-sight Target Relocation by Multipath Model in SAR 3D Urban Area Imaging[J]. Journal of Radars, 2024, 13(4): 777-790. doi: 10.12000/JR24057
    [3]WANG Mou, WEI Shunjun, SHEN Rong, ZHOU Zichen, SHI Jun, ZHANG Xiaoling. 3D SAR Imaging Method Based on Learned Sparse Prior[J]. Journal of Radars, 2023, 12(1): 36-52. doi: 10.12000/JR22101
    [4]MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001
    [5]REN Zishuai, ZHANG Zhao, GAO Yuxin, GUO Rui. Three-dimensional Imaging of Tomographic SAR Based on Adaptive Elevation Constraint[J]. Journal of Radars, 2023, 12(5): 1056-1068. doi: 10.12000/JR23111
    [6]HU Zhanyi. A Note on Visual Semantics in SAR 3D Imaging[J]. Journal of Radars, 2022, 11(1): 20-26. doi: 10.12000/JR21149
    [7]JIANG Yanwen, FAN Hongqi, LI Shuangxun. A Sparse Bayesian Learning Approach for Vortex Electromagnetic Wave Three-dimensional Imaging in the Terahertz Band[J]. Journal of Radars, 2021, 10(5): 718-724. doi: 10.12000/JR21151
    [8]ZHENG Tong, JIANG Libing, WANG Zhuang. Three-dimensional Multiple-Input Multiple-Output Radar Imaging Method Based on Integration of Multi-snapshot Images[J]. Journal of Radars, 2020, 9(4): 739-752. doi: 10.12000/JR19069
    [9]SUN Dou, LU Dongwei, XING Shiqi, YANG Xiao, LI Yongzhen, WANG Xuesong. Full-polarization SAR Joint Multidimensional Reconstruction Based on Sparse Reconstruction[J]. Journal of Radars, 2020, 9(5): 865-877. doi: 10.12000/JR20092
    [10]ZHAO Wanwan, WANG Pengbo, MEN Zhirong, LI Chunsheng. Imaging Method for Co-prime-sampling Space-borne SAR Based on 2D Sparse-signal Reconstruction[J]. Journal of Radars, 2020, 9(1): 131-142. doi: 10.12000/JR19086
    [11]SHI Jun, QUE Yujia, ZHOU Zenan, ZHOU Yuanyuan, ZHANG Xiaoling, SUN Mingfang. Near-field Millimeter Wave 3D Imaging and Object Detection Method[J]. Journal of Radars, 2019, 8(5): 578-588. doi: 10.12000/JR18089
    [12]Hong Wen, Wang Yanping, Lin Yun, Tan Weixian, Wu Yirong. Research Progress on Three-dimensional SAR Imaging Techniques[J]. Journal of Radars, 2018, 7(6): 633-654. doi: 10.12000/JR18109
    [13]Hui Ye, Bai Xueru. RID Image Series-based High-resolution Three-dimensional Imaging of Micromotion Targets[J]. Journal of Radars, 2018, 7(5): 548-556. doi: 10.12000/JR18056
    [14]Gao Jingkun, Deng Bin, Qin Yuliang, Wang Hongqiang, Li Xiang. Near-field 3D SAR Imaging Techniques Using a Scanning MIMO Array[J]. Journal of Radars, 2018, 7(6): 676-684. doi: 10.12000/JR18102
    [15]Tian He, Li Daojing. Motion Compensation and 3-D Imaging Algorithm in Sparse Flight Based Airborne Array SAR[J]. Journal of Radars, 2018, 7(6): 717-729. doi: 10.12000/JR18101
    [16]Jin Tian, Song Yongping. Sparse Imaging of Building Layouts in Ultra-wideband Radar[J]. Journal of Radars, 2018, 7(3): 275-284. doi: 10.12000/JR18031
    [17]Yan Min, Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. LASAR High-resolution 3D Imaging Algorithm Based on Sparse Bayesian Regularization[J]. Journal of Radars, 2018, 7(6): 705-716. doi: 10.12000/JR18067
    [18]Liu Xiangyang, Yang Jungang, Meng Jin, Zhang Xiao, Niu Dezhi. Sparse Three-dimensional Imaging Based on Hough Transform for Forward-looking Array SAR in Low SNR[J]. Journal of Radars, 2017, 6(3): 316-323. doi: 10.12000/JR17011
    [19]He Feng, Yang Yang, Dong Zhen, Liang Dian-nong. Progress and Prospects of Curvilinear SAR 3-D Imaging[J]. Journal of Radars, 2015, 4(2): 130-135. doi: 10.12000/JR14119
    [20]Wang Jie, Shen Ming-wei, Wu Di, Zhu Dai-yin. An Efficient STAP Algorithm for Nonsidelooking Airborne Radar Based on Mainlobe Clutter Compensation[J]. Journal of Radars, 2014, 3(2): 235-240. doi: 10.3724/SP.J.1300.2014.13122
  • Cited by

    Periodical cited type(14)

    1. 董孟琛,杨剑,李传祥,李伙明. 一种基于复合滤波的海面雷达距离多普勒图像去噪算法. 火箭军工程大学学报. 2025(01): 13-20 .
    2. 汪翔,王彦斌,汪育苗,崔国龙. 基于图神经网络的多尺度特征融合雷达目标检测方法. 雷达科学与技术. 2025(01): 39-47 .
    3. 施端阳,林强,胡冰,杜小帅. 基于YOLO的航管一次雷达目标检测方法. 系统工程与电子技术. 2024(01): 143-151 .
    4. 周利,胡杰民,付连庆,凌三力. 基于MDCFT与水平集的高海情弹载雷达成像检测方法. 系统工程与电子技术. 2024(04): 1247-1254 .
    5. 汪翔,汪育苗,陈星宇,臧传飞,崔国龙. 基于深度学习的多特征融合海面目标检测方法. 雷达学报. 2024(03): 554-564 . 本站查看
    6. 许述文,何绮,茹宏涛. 基于无监督图互信息最大化的海面小目标异常检测. 电子与信息学报. 2024(07): 2712-2720 .
    7. 关键,伍僖杰,丁昊,刘宁波,黄勇,曹政,魏嘉彧. 基于三维凹包学习算法的海面小目标检测方法. 电子与信息学报. 2023(05): 1602-1610 .
    8. 薛安克,毛克成,张乐. 多分类器联合虚警可控的海上小目标检测方法. 电子与信息学报. 2023(07): 2528-2536 .
    9. 施赛楠,姜丽,李东宸,吴旭姿. 基于双重虚警控制XGBoost的海面小目标检测. 雷达科学与技术. 2023(03): 314-323+328 .
    10. 刘安邦,施赛楠,杨静,曹鼎. 基于虚警可控梯度提升树的海面小目标检测. 南京信息工程大学学报(自然科学版). 2022(03): 341-347 .
    11. 许述文,茹宏涛. 基于标签传播算法的海面漂浮小目标检测方法. 电子与信息学报. 2022(06): 2119-2126 .
    12. 关键,伍僖杰,丁昊,刘宁波,董云龙,张鹏飞. 基于对角积分双谱的海面慢速小目标检测方法. 电子与信息学报. 2022(07): 2449-2460 .
    13. 施端阳,林强,胡冰,张馨予. 深度学习在雷达目标检测中的应用综述. 雷达科学与技术. 2022(06): 589-605 .
    14. 伍僖杰,丁昊,刘宁波,关键. 基于时频脊-Radon变换的海面小目标检测方法. 信号处理. 2021(09): 1599-1611 .

    Other cited types(22)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.1 %FULLTEXT: 21.1 %META: 71.0 %META: 71.0 %PDF: 7.9 %PDF: 7.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.7 %其他: 17.7 %其他: 0.3 %其他: 0.3 %China: 0.4 %China: 0.4 %India: 0.0 %India: 0.0 %Kao-sung: 0.1 %Kao-sung: 0.1 %Rochester: 0.0 %Rochester: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.3 %[]: 0.3 %上海: 2.1 %上海: 2.1 %东莞: 0.3 %东莞: 0.3 %丹东: 0.0 %丹东: 0.0 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %九江: 0.1 %九江: 0.1 %休斯敦: 0.1 %休斯敦: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %兰州: 0.1 %兰州: 0.1 %包头: 0.0 %包头: 0.0 %北京: 13.4 %北京: 13.4 %十堰: 0.0 %十堰: 0.0 %南京: 1.2 %南京: 1.2 %南宁: 0.0 %南宁: 0.0 %南昌: 0.1 %南昌: 0.1 %厦门: 0.1 %厦门: 0.1 %台北: 0.0 %台北: 0.0 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %商洛: 0.0 %商洛: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %固原: 0.1 %固原: 0.1 %多伦多: 0.1 %多伦多: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.4 %天津: 0.4 %太原: 0.0 %太原: 0.0 %威海: 0.0 %威海: 0.0 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.0 %宿迁: 0.0 %常州: 0.3 %常州: 0.3 %常德: 0.2 %常德: 0.2 %广州: 0.8 %广州: 0.8 %延安: 0.0 %延安: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 1.0 %张家口: 1.0 %张家口市: 0.0 %张家口市: 0.0 %德州: 0.0 %德州: 0.0 %忻州市代县: 0.1 %忻州市代县: 0.1 %成都: 0.3 %成都: 0.3 %扬州: 0.2 %扬州: 0.2 %新乡: 0.6 %新乡: 0.6 %无锡: 0.3 %无锡: 0.3 %昆明: 0.4 %昆明: 0.4 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.3 %杭州: 1.3 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.2 %桂林: 0.2 %武汉: 0.3 %武汉: 0.3 %永州: 0.1 %永州: 0.1 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %泰安: 0.2 %泰安: 0.2 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %淮南: 0.0 %淮南: 0.0 %淮安: 0.0 %淮安: 0.0 %深圳: 0.5 %深圳: 0.5 %温州: 0.0 %温州: 0.0 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.2 %漯河: 0.2 %玉林: 0.0 %玉林: 0.0 %石家庄: 0.6 %石家庄: 0.6 %石家庄市: 0.0 %石家庄市: 0.0 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽伦堡: 0.1 %纽伦堡: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %罗奥尔凯埃: 0.1 %罗奥尔凯埃: 0.1 %罗拉赫: 0.1 %罗拉赫: 0.1 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %芒廷维尤: 16.0 %芒廷维尤: 16.0 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.4 %苏州: 0.4 %莫斯科: 0.1 %莫斯科: 0.1 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 28.6 %西宁: 28.6 %西安: 1.6 %西安: 1.6 %西安市: 0.0 %西安市: 0.0 %贵港: 0.4 %贵港: 0.4 %运城: 0.3 %运城: 0.3 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.2 %重庆: 0.2 %钱德勒: 0.2 %钱德勒: 0.2 %长春: 0.1 %长春: 0.1 %长沙: 1.3 %长沙: 1.3 %长治: 0.1 %长治: 0.1 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %随州: 0.0 %随州: 0.0 %青岛: 0.1 %青岛: 0.1 %驻马店: 0.1 %驻马店: 0.1 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他ChinaIndiaKao-sungRochesterUnited States[]上海东莞丹东乌鲁木齐九江休斯敦佛山保定兰州包头北京十堰南京南宁南昌厦门台北台州合肥吉林呼和浩特哥伦布商洛嘉兴固原多伦多大连天津太原威海宝鸡宣城宿迁常州常德广州延安开封张家口张家口市德州忻州市代县成都扬州新乡无锡昆明晋城朝阳杭州格兰特县桂林武汉永州沈阳沧州泰安泰米尔纳德洛阳济南淮南淮安深圳温州湖州湘潭漯河玉林石家庄石家庄市福州秦皇岛纽伦堡纽约绍兴罗奥尔凯埃罗拉赫美国伊利诺斯芝加哥芒廷维尤芝加哥苏州莫斯科衡水衡阳衢州西宁西安西安市贵港运城邯郸郑州重庆钱德勒长春长沙长治阿姆斯特丹随州青岛驻马店黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1489) PDF downloads(271) Cited by(36)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint