Volume 10 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
ZHAO Yuzhen, CHEN Longyong, ZHANG Fubo, et al. A new method of joint radar and communication waveform design and signal processing based on OFDM-chirp[J]. Journal of Radars, 2021, 10(3): 453–466. doi: 10.12000/JR21028
Citation: ZHAO Yuzhen, CHEN Longyong, ZHANG Fubo, et al. A new method of joint radar and communication waveform design and signal processing based on OFDM-chirp[J]. Journal of Radars, 2021, 10(3): 453–466. doi: 10.12000/JR21028

A New Method of Joint Radar and Communication Waveform Design and Signal Processing Based on OFDM-chirp

DOI: 10.12000/JR21028
Funds:  Beijing Science and Technology New Star Program (Z201100006820014), The National Ministries Foundation
More Information
  • Waveform design of joint radar and communication has become a focus of intense research in recent years. Some scholars have proposed to use the odd and even carrier of Orthogonal Frequency Division Multiplexing (OFDM) signal to modulate the radar and communication functions, respectively, to realize the integration. However, OFDM systems generally use cyclic prefix to avoid Inter-Carrier Interference (ICI) and Inter-Symbol Interference (ISI) caused by multipath effects, reducing energy utilization and creating false targets, which affect radar performance. In addition, the traditional OFDM integrated signal is more sensitive to Doppler shift. A small Doppler frequency offset will also cause a considerable drop in orthogonal performance. On this basis, this paper proposes a new waveform design and processing method. This method uses blank guard intervals to replace cyclic prefixes, which can resist multipath effects while avoiding false targets introduced by cyclic prefixes, effectively preventing ICI and ISI. In terms of signal processing methods, this paper proposes a method for channel estimation and Doppler compensation using the priori information of the radar signal. Compared with the traditional method, this new method reduces the system’s resource overhead, such as pilot frequency and training sequence. It improves energy utilization and spectrum efficiency. The peak side lobe ratio, integration side lobe rate, and bit error ratio are also improved. Simulation experiments verify the effectiveness of this method.

     

  • loading
  • [1]
    CHIRIYATH A R, PAUL B, and BLISS D W. Radar-communications convergence: Coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 2007, 3(1): 1–12. doi: 10.1109/TCCN.2017.2666266
    [2]
    HAN Liang and WU Ke. Joint wireless communication and radar sensing systems - state of the art and future prospects[J]. IET Microwaves, Antennas & Propagation, 2013, 7(11): 876–885. doi: 10.1049/iet-map.2012.0450
    [3]
    WANG Jie, LIANG Xingdong, CHEN Longyong, et al. First demonstration of joint wireless communication and high-resolution SAR imaging using airborne MIMO radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6619–6632. doi: 10.1109/TGRS.2019.2907561
    [4]
    LIU Yongjun, LIAO Guisheng, CHEN Yufeng, et al. Super-resolution range and velocity estimations with OFDM integrated radar and communications waveform[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11659–11672. doi: 10.1109/TVT.2020.3016470
    [5]
    刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113
    [6]
    王杰. 自适应多维波形SAR关键技术研究[D]. [博士论文], 中国科学院研究生院, 2015: 8–12.

    WANG Jie. Research on the key technologies of adaptive multidimensional waveform synthetic aperture radar[D]. [Ph. D. dissertation], Graduate School of Chinese Academy of Sciences, 2015: 8–12.
    [7]
    梁兴东, 李强, 王杰, 等. 雷达通信一体化技术研究综述[J]. 信号处理, 2020, 36(10): 1615–1627. doi: 10.16798/j.issn.1003-0530.2020.10.001

    LIANG Xingdong, LI Qiang, WANG Jie, et al. Joint wireless communication and radar sensing: Review and future prospects[J]. Journal of Signal Processing, 2020, 36(10): 1615–1627. doi: 10.16798/j.issn.1003-0530.2020.10.001
    [8]
    ROSSLER JR C W. Adaptive radar with application to joint communication and synthetic aperture radar (CoSAR)[D]. [Ph. D. dissertation], The Ohio State University, 2013.
    [9]
    BLUNT S D, YATHAM P, and STILES J. Intrapulse radar-embedded communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1185–1200. doi: 10.1109/TAES.2010.5545182
    [10]
    LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Robust OFDM integrated radar and communications waveform design based on information theory[J]. Signal Processing, 2019, 162: 317–329. doi: 10.1016/j.sigpro.2019.05.001
    [11]
    LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Multiobjective optimal waveform design for OFDM integrated radar and communication systems[J]. Signal Processing, 2017, 141: 331–342. doi: 10.1016/j.sigpro.2017.06.026
    [12]
    LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 2017, 21(10): 2174–2177. doi: 10.1109/LCOMM.2017.2723890
    [13]
    LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Joint range and angle estimation for an integrated system combining MIMO radar with OFDM communication[J]. Multidimensional Systems and Signal Processing, 2019, 30(2): 661–687. doi: 10.1007/s11045-018-0576-2
    [14]
    LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Transmit power adaptation for orthogonal frequency division multiplexing integrated radar and communication systems[J]. Journal of Applied Remote Sensing, 2017, 11(3): 035017. doi: 10.1117/1.JRS.11.035017
    [15]
    MIZUI K, UCHIDA M, and NAKAGAWA M. Vehicle-to-vehicle communication and ranging system using spread spectrum technique (Proposal of Boomerang Transmission System)[C]. IEEE 43rd Vehicular Technology Conference, Secaucus, USA, 1993: 335–338.
    [16]
    DONNET B J and LONGSTAFF I D. Combining MIMO radar with OFDM communications[C]. 2006 European Radar Conference, Manchester, UK, 2006: 37–40.
    [17]
    肖博, 霍凯, 刘永祥. 雷达通信一体化研究现状与发展趋势[J]. 电子与信息学报, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515

    XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics &Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515
    [18]
    张天贤, 夏香根. OFDM SAR成像方法综述[J]. 雷达学报, 2020, 9(2): 243–258. doi: 10.12000/JR19116

    ZHANG Tianxian and XIA Xianggen. An overview of OFDM SAR imaging methods[J]. Journal of Radars, 2020, 9(2): 243–258. doi: 10.12000/JR19116
    [19]
    KIM J H, YOUNIS M, MOREIRA A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453–2466. doi: 10.1109/tgrs.2014.2360148
    [20]
    WANG Jie, LIANG Xingdong, and CHEN Longyong. MIMO SAR system using digital implemented OFDM waveforms[C]. The 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 7428–7431.
    [21]
    李向宁, 谈振辉. OFDM基本原理及其在移动通信中的应用[J]. 重庆邮电学院学报, 2003, 15(2): 25–30, 44.

    LI Xiangning and TAN Zhenhui. OFDM principle and its applications in mobile communication[J]. Journal of Chongqing University of Posts and Telecommunications, 2003, 15(2): 25–30, 44.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4914) PDF downloads(547) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint