Hao Tianduo, Cui Chen, Gong Yang, Sun Congyi. Waveform Design for Cognitive Radar Under Low PAR Constraints by Convex Optimization[J]. Journal of Radars, 2018, 7(4): 498-506. doi: 10.12000/JR18002
Citation: ZHANG Yingkui, SUN Guohao, ZHONG Suchuan, et al. Radar waveform design method based on cascade optimization processing under missing clutter prior data[J]. Journal of Radars, 2023, 12(1): 235–246. doi: 10.12000/JR22166

Radar Waveform Design Method Based on Cascade Optimization Processing under Missing Clutter Prior Data

DOI: 10.12000/JR22166
Funds:  The National Natural Science Foundation of China (62201371), Sichuan Provincial Natural Science Foundation (2022NSFSC1952)
More Information
  • Corresponding author: SUN Guohao, sghsjw2005@126.com
  • Received Date: 2022-08-09
  • Rev Recd Date: 2022-10-24
  • Available Online: 2022-10-26
  • Publish Date: 2022-11-03
  • Cognitive radar waveform design often relies on accurate clutter prior information. When prior information data is missing, the constructed clutter model will be severely mismatched, affecting the radar’s ability to suppress clutter. Aiming at the radar waveform optimization problem under missing clutter prior data, this paper establishes point and block-like missing scenarios under the completely random missing mechanism, designs a waveform optimization model with constant modulus and similarity constraints, and proposes a radar waveform training algorithm based on priority filling−reinforcement learning cascade optimization: that is, a cascade method in which the reinforcement learning agent interacts with the clutter environment repaired by a filling algorithm, with the optimization goal of maximizing the signal-to-noise ratio, and the optimal configuration strategy with waveform parameters is obtained through iterative training. Finally, simulations verify the superiority of the proposed algorithm under different missing probability conditions. The results show that the proposed algorithm outperforms the traditional non-cascading optimization algorithm, regarding clutter suppression and effectively improves the detection ability of radar.

     

  • [1]
    TANG Bo and TANG Jun. Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4707–4722. doi: 10.1109/TSP.2016.2569431
    [2]
    TANG Bo, TUCK J, and STOICA P. Polyphase waveform design for MIMO radar space time adaptive processing[J]. IEEE Transactions on Signal Processing, 2020, 68: 2143–2154. doi: 10.1109/TSP.2020.2983833
    [3]
    YU Xianxiang, CUI Guolong, YANG Jing, et al. Wideband MIMO radar waveform design[J]. IEEE Transactions on Signal Processing, 2019, 67(13): 3487–3501. doi: 10.1109/TSP.2019.2916732
    [4]
    WU Linlong and PALOMAR D P. Radar Waveform Design Via the Majorization-Minimization Framework[M]. CUI Guolong, DE MAIO A, FARINA A, et al. Radar Waveform Design Based on Optimization Theory. London: The Institution of Engineering and Technology, 2020: 185–220.
    [5]
    O’ROURKE S M, SETLUR P, RANGASWAMY M, et al. Quadratic semidefinite programming for waveform-constrained joint filter-signal design in STAP[J]. IEEE Transactions on Signal Processing, 2020, 68: 1744–1759. doi: 10.1109/TSP.2020.2977271
    [6]
    TANG Bo, NAGHSH M M, and TANG Jun. Relative entropy-based waveform design for MIMO radar detection in the presence of clutter and interference[J]. IEEE Transactions on Signal Processing, 2015, 63(14): 3783–3796. doi: 10.1109/TSP.2015.2423257
    [7]
    WANG Yikai, XIA Wei, HE Zishu, et al. Polarimetric detection in compound Gaussian clutter with Kronecker structured covariance matrix[J]. IEEE Transactions on Signal Processing, 2017, 65(17): 4562–4576. doi: 10.1109/TSP.2017.2716912
    [8]
    SUN Guohao, HE Zishu, TONG Jun, et al. Mutual information-based waveform design for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 2909–2921. doi: 10.1109/TGRS.2020.3008320
    [9]
    崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8(5): 537–557. doi: 10.12000/JR19072

    CUI Guolong, YU Xianxiang, YANG Jing, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537–557. doi: 10.12000/JR19072
    [10]
    王珽, 赵拥军, 胡涛. 机载MIMO雷达空时自适应处理技术研究进展[J]. 雷达学报, 2015, 4(2): 136–148. doi: 10.12000/JR14091

    WANG Ting, ZHAO Yongjun, and HU Tao. Overview of space-time adaptive processing for airborne MIMO radar[J]. Journal of Radars, 2015, 4(2): 136–148. doi: 10.12000/JR14091
    [11]
    AUBRY A, DE MAIO A, MARANO S, et al. Structured covariance matrix estimation with missing-(complex) data for radar applications via expectation-maximization[J]. IEEE Transactions on Signal Processing, 2021, 69: 5920–5934. doi: 10.1109/TSP.2021.3111587
    [12]
    HIPPERT-FERRER A, EL KORSO M N, BRELOY A, et al. Robust low-rank covariance matrix estimation with a general pattern of missing values[J]. Signal Processing, 2022, 195: 108460. doi: 10.1016/j.sigpro.2022.108460
    [13]
    PAVEZ E and ORTEGA A. Covariance matrix estimation with non uniform and data dependent missing observations[J]. IEEE Transactions on Information Theory, 2021, 67(2): 1201–1215. doi: 10.1109/TIT.2020.3039118
    [14]
    ZHANG Ying, LIE J P, NG B P, et al. Robust minimum 1-norm adaptive beamformer against intermittent sensor failure and steering vector error[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(5): 1796–1801. doi: 10.1109/TAP.2010.2044353
    [15]
    XIONG Can, XIAO Gaobiao, HOU Yibei, et al. A compressed sensing-based element failure diagnosis method for phased array antenna during beam steering[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1756–1760. doi: 10.1109/LAWP.2019.2929353
    [16]
    GAO Yongchan, LIAO Guisheng, and LIU Weijian. High-resolution radar detection in interference and nonhomogeneous noise[J]. IEEE Signal Processing Letters, 2016, 23(10): 1359–1363. doi: 10.1109/LSP.2016.2597738
    [17]
    LIM D, GIANELLI C D, and LI Jian. Automatic target recognition in missing data cases[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(7): 40–49. doi: 10.1109/MAES.2017.150273
    [18]
    SHEN Lei, LIU Zhiwen, XU Yougen, et al. Robust polarimetric adaptive detector against target steering matrix mismatch[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 442–455. doi: 10.1109/TAES.2019.2916708
    [19]
    LOUNICI K. High-dimensional covariance matrix estimation with missing observations[J]. Bernoulli, 2014, 20(3): 1029–1058. doi: 10.3150/12-BEJ487
    [20]
    LIU Junyan and PALOMAR D P. Regularized robust estimation of mean and covariance matrix for incomplete data[J]. Signal Processing, 2019, 165: 278–291. doi: 10.1016/j.sigpro.2019.07.009
    [21]
    XU Danlei, DU Lan, LIU Hongwei, et al. Compressive sensing of stepped-frequency radar based on transfer learning[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3076–3087. doi: 10.1109/TSP.2015.2421473
    [22]
    LV Qinzhe, QUAN Yinghui, WEI Feng, et al. Radar deception jamming recognition based on weighted ensemble CNN with transfer learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5107511. doi: 10.1109/TGRS.2021.3129645
    [23]
    JIANG Wei, HAIMOVICH A M, and SIMEONE O. Joint design of radar waveform and detector via end-to-end learning with waveform constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 552–567. doi: 10.1109/TAES.2021.3103560
    [24]
    LI Jian, GUERCI J R, and XU Luzhou. Signal waveform’s optimal-under-restriction design for active sensing[J]. IEEE Signal Processing Letters, 2006, 13(9): 565–568. doi: 10.1109/LSP.2006.874465
    [25]
    BELLMAN R. A Markovian decision process[J]. Journal of Mathematics and Mechanics, 1957, 6(5): 679–684.
    [26]
    CRIMINISI A, PEREZ P, and TOYAMA K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004, 13(9): 1200–1212. doi: 10.1109/TIP.2004.833105
    [27]
    LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[EB/OL]. http://arxiv.org/abs/1509.02971, 2015.
  • Relative Articles

    [1]CHEN Shaonan, GU Jiaming, XU Chao, SUN Yimiao, WANG Siran, CHEN Zhanye, LIU Shuo, LI Huidong, DAI Junyan, HE Yuan, CHENG Qiang. Fall Feature Simulation and Wi-Fi Sensing Dataset Construction Based on Time-Domain Digital Coding Metasurface[J]. Journal of Radars. doi: 10.12000/JR24247
    [2]LI Yuxi, ZHU Ruichao, SUI Sai, JIA Yuxiang, DING Chang, HAN Yajuan, QU Shaobo, WANG Jiafu. Dynamic Electromagnetic Control Technology and its Application Based on Metasurface[J]. Journal of Radars. doi: 10.12000/JR24259
    [3]ZHANG Peng, YAN Junkun, GAO Chang, LI Kang, LIU Hongwei. Integrated Transmission Resource Management Scheme for Multifunctional Radars in Dynamic Electromagnetic Environments[J]. Journal of Radars, 2025, 14(2): 456-469. doi: 10.12000/JR24230
    [4]ZHOU Qunyan, WANG Siran, DAI Junyan, CHENG Qiang. Simultaneous Direction of Arrival Estimation and Radar Cross-section Reduction Based on Space-time-coding Digital Metasurfaces[J]. Journal of Radars, 2024, 13(1): 150-159. doi: 10.12000/JR23216
    [5]XU Heng, XU Hong, QUAN Yinghui, PAN Qin, SHA Minghui, CHEN Hui, CHENG Qiang, ZHOU Xiaoyang. A Radar Jamming Method Based on Time Domain Coding Metasurface Intrapulse and Interpulse Coding Optimization[J]. Journal of Radars, 2024, 13(1): 215-226. doi: 10.12000/JR23186
    [6]ZHOU Hongcheng, YU Xiaoran, WANG Yu, YAN Zhongming. Research Progress of Electrically Controlled Reconfigurable Polarization Manipulation Using Metasurface[J]. Journal of Radars, 2024, 13(3): 696-713. doi: 10.12000/JR23230
    [7]ZHOU Jingyi, ZHENG Shilie, YU Xianbin, HUI Xiaonan, ZHANG Xianmin. Reconfigurable Mode Vortex Beam Generation Based on Transmissive Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2022, 11(4): 728-735. doi: 10.12000/JR22021
    [8]LAN Lan, LIAO Guisheng, XU Jingwei, ZHU Shengqi, ZENG Cao, ZHANG Yuhong. Waveform Design and Signal Processing Method of a Multifunctional Integrated System Based on a Frequency Diverse Array(in English)[J]. Journal of Radars, 2022, 11(5): 850-870. doi: 10.12000/JR22163
    [9]JIANG Weixiang, TIAN Hanwei, SONG Chao, ZHANG Xin’ge. Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions(in English)[J]. Journal of Radars, 2022, 11(6): 1003-1019. doi: 10.12000/JR22167
    [10]YASIR Saifullah, YANG Guomin, XU Feng. A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering[J]. Journal of Radars, 2021, 10(3): 382-390. doi: 10.12000/JR21061
    [11]LI Shangyang, FU Shilei, XU Feng. DNN-based Intelligent Beamforming on a Programmable Metasurface[J]. Journal of Radars, 2021, 10(2): 259-266. doi: 10.12000/JR21039
    [12]SHUANG Ya, LI Li, WANG Zhuo, WEI Menglin, LI Lianlin. Controllable Manipulation of Wi-Fi Signals Using Tunable Metasurface[J]. Journal of Radars, 2021, 10(2): 313-325. doi: 10.12000/JR21012
    [13]NIAN Yiheng, ZHOU Ningning, ZHU Shitao, ZHANG Anxue. Differential Coincidence Imaging Based on a Randomly Modulated Metamaterial Surface[J]. Journal of Radars, 2021, 10(2): 296-303. doi: 10.12000/JR20136
    [14]SHI Hongyu, LI Guoqiang, LIU Kang, LI Bolin, YI Jianjia, ZHANG Anxue, XU Zhuo. Deflective Vortex Beam Generation Based on Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2021, 10(5): 785-793. doi: 10.12000/JR21070
    [15]YANG Huanhuan, CAO Xiangyu, GAO Jun, LI Tong, LI Sijia, CONG Lili, ZHAO Xia. Recent Advances in Reconfigurable Metasurfaces and Their Applications[J]. Journal of Radars, 2021, 10(2): 206-219. doi: 10.12000/JR20137
    [16]LIU Zhangmeng, YUAN Shuo, KANG Shiqian. Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train[J]. Journal of Radars, 2021, 10(4): 559-570. doi: 10.12000/JR21031
    [17]JIANG Qian, WU Hao, WANG Yanyu. Airborne Multi-functional Maritime Surveillance Radar System Design and Key Techniques[J]. Journal of Radars, 2019, 8(3): 303-317. doi: 10.12000/JR19045
    [18]Liu Junfeng, Liu Shuo, Fu Xiaojian, Cui Tiejun. Terahertz Information Metamaterials and Metasurfaces[J]. Journal of Radars, 2018, 7(1): 46-55. doi: 10.12000/JR17100
    [19]Hong Yongbin, Zhang Yong, Lu Zhenxing, Huang Wei. An Efficient Contrast-based Motion Compensation Algorithm for Stepped-frequency Radar[J]. Journal of Radars, 2016, 5(4): 378-388. doi: 10.12000/JR16068
    [20]Li Da-peng. A New Type of Moment Estimator for the K-distribution Shape Parameter with High Accuracy and Efficiency[J]. Journal of Radars, 2014, 3(4): 439-443. doi: 10.3724/SP.J.1300.2014.14017
  • Cited by

    Periodical cited type(8)

    1. 赵晓琛,赵东涛,袁航,王欢,张群. 低脉冲重复频率条件下无人机微动参数提取. 系统工程与电子技术. 2024(05): 1503-1513 .
    2. 李亚康,陈刚. 小角中子散射物理模型自动化筛选. 计算机工程. 2024(06): 56-64 .
    3. 李中余,桂亮,海宇,武俊杰,王党卫,王安乐,杨建宇. 基于变分模态分解与优选的超高分辨ISAR成像微多普勒抑制方法. 雷达学报. 2024(04): 852-865 . 本站查看
    4. CHEN Siyu,WANG Yong,CAO Rui. A high frequency vibration compensation approach for ultrahigh resolution SAR imaging based on sinusoidal frequency modulation Fourier-Bessel transform. Journal of Systems Engineering and Electronics. 2023(04): 894-905 .
    5. 唐波,谭思炜,张静远. 水下声探测系统载体振动干扰分析及抑制方法. 国防科技大学学报. 2022(06): 89-94 .
    6. 万显荣,谢德强,易建新,胡仕波,童云. 基于STFT谱图滑窗相消的微动杂波去除方法. 雷达学报. 2022(05): 794-804 . 本站查看
    7. 魏嘉琪,张磊,刘宏伟,盛佳恋. 曲线交叠外推的微动多目标宽带分辨算法. 电子与信息学报. 2019(12): 2889-2895 .
    8. 罗迎,龚逸帅,陈怡君,张群. 基于跟踪脉冲的MIMO雷达多目标微动特征提取. 雷达学报. 2018(05): 575-584 . 本站查看

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040204060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.0 %FULLTEXT: 13.0 %META: 79.2 %META: 79.2 %PDF: 7.8 %PDF: 7.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.9 %其他: 14.9 %其他: 0.1 %其他: 0.1 %China: 0.8 %China: 0.8 %India: 0.1 %India: 0.1 %United States: 0.0 %United States: 0.0 %[]: 0.3 %[]: 0.3 %三明: 0.0 %三明: 0.0 %上海: 1.3 %上海: 1.3 %东京: 0.0 %东京: 0.0 %东莞: 0.0 %东莞: 0.0 %中卫: 0.1 %中卫: 0.1 %临沂: 0.0 %临沂: 0.0 %乌海: 0.0 %乌海: 0.0 %亳州: 0.0 %亳州: 0.0 %佛山: 0.1 %佛山: 0.1 %佳木斯: 0.0 %佳木斯: 0.0 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.0 %兰辛: 0.0 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %包头: 0.0 %包头: 0.0 %北京: 17.3 %北京: 17.3 %北京市: 0.2 %北京市: 0.2 %北海: 0.0 %北海: 0.0 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %南宁: 0.1 %南宁: 0.1 %南昌: 0.0 %南昌: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.0 %台北: 0.0 %台州: 0.1 %台州: 0.1 %合肥: 0.5 %合肥: 0.5 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %圣地亚哥: 0.0 %圣地亚哥: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.4 %天津: 0.4 %太原: 0.0 %太原: 0.0 %宁波: 0.1 %宁波: 0.1 %安康: 0.1 %安康: 0.1 %安阳: 0.2 %安阳: 0.2 %宣城: 0.1 %宣城: 0.1 %巴中: 0.0 %巴中: 0.0 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %张家口: 1.2 %张家口: 1.2 %张家口市: 0.1 %张家口市: 0.1 %怒江: 0.0 %怒江: 0.0 %成都: 0.3 %成都: 0.3 %扬州: 0.1 %扬州: 0.1 %新乡: 0.4 %新乡: 0.4 %无锡: 0.1 %无锡: 0.1 %旧金山: 0.0 %旧金山: 0.0 %昆明: 0.0 %昆明: 0.0 %昌吉: 0.0 %昌吉: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.3 %杭州: 1.3 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.0 %沧州: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.1 %济南: 0.1 %淄博: 0.0 %淄博: 0.0 %淮南: 0.0 %淮南: 0.0 %深圳: 0.4 %深圳: 0.4 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.2 %漯河: 0.2 %潍坊: 0.0 %潍坊: 0.0 %烟台: 0.0 %烟台: 0.0 %玉林: 0.1 %玉林: 0.1 %珠海: 0.0 %珠海: 0.0 %白城: 0.0 %白城: 0.0 %白银: 0.3 %白银: 0.3 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %芒廷维尤: 12.6 %芒廷维尤: 12.6 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.0 %衢州: 0.0 %西宁: 37.8 %西宁: 37.8 %西安: 0.4 %西安: 0.4 %贵港: 0.2 %贵港: 0.2 %赤峰: 0.0 %赤峰: 0.0 %运城: 0.1 %运城: 0.1 %连云港: 0.0 %连云港: 0.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.3 %郑州: 1.3 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %银川: 0.1 %银川: 0.1 %镇江: 0.1 %镇江: 0.1 %长春: 0.0 %长春: 0.0 %长沙: 0.7 %长沙: 0.7 %长治: 0.0 %长治: 0.0 %防城港: 0.0 %防城港: 0.0 %青岛: 0.4 %青岛: 0.4 %鞍山: 0.0 %鞍山: 0.0 %黄冈: 0.1 %黄冈: 0.1 %龙岩: 0.0 %龙岩: 0.0 %其他其他ChinaIndiaUnited States[]三明上海东京东莞中卫临沂乌海亳州佛山佳木斯兰州兰辛加利福尼亚州包头北京北京市北海十堰南京南宁南昌厦门台北台州合肥呼和浩特哥伦布嘉兴圣地亚哥大连天津太原宁波安康安阳宣城巴中常州广州库比蒂诺张家口张家口市怒江成都扬州新乡无锡旧金山昆明昌吉朝阳杭州格兰特县武汉沈阳沧州洛阳济南淄博淮南深圳湖州湘潭滨州漯河潍坊烟台玉林珠海白城白银盐城石家庄福州秦皇岛纽约美国伊利诺斯芝加哥芒廷维尤芝加哥苏州衡水衡阳衢州西宁西安贵港赤峰运城连云港邯郸郑州鄂州重庆银川镇江长春长沙长治防城港青岛鞍山黄冈龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1030) PDF downloads(188) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint