Volume 14 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
HE Zhuoyuan, CHEN Shengyao, ZHU Han, et al. Transmit waveform design for symbol-level precoding-based one-bit dual-functional radar-communication[J]. Journal of Radars, 2025, 14(4): 854–866. doi: 10.12000/JR24217
Citation: HE Zhuoyuan, CHEN Shengyao, ZHU Han, et al. Transmit waveform design for symbol-level precoding-based one-bit dual-functional radar-communication[J]. Journal of Radars, 2025, 14(4): 854–866. doi: 10.12000/JR24217

Transmit Waveform Design for Symbol-level Precoding-based One-bit Dual-functional Radar-communication

DOI: 10.12000/JR24217 CSTR: 32380.14.JR24217
Funds:  The National Natural Science Foundation of China (62471230, 62171224), Natural Science Foundation of Jiangsu Province (BK20221486)
More Information
  • This study explores the use of one-bit Digital-to-Analog Converters (DAC) to mitigate the challenges of high hardware costs and excessive power consumption in large-scale Multiple-Input Multiple-Output (MIMO) communication and radar systems. The present study focuses on the design of one-bit transmit waveforms for dual-functional radar and communication systems. Under preset communication Quality of Service (QoS) constraints, the objective was to minimize the integral sidelobe-to-mainlobe ratio of the radar transmit beampattern. This should help enhance the power concentration of the transmitted beampattern and improve the performance of the beampattern synthesis. To address the limited Degrees of Freedom (DoF) caused by one-bit quantization, this study employs symbol-level precoding technology and then fully utilizes the DoFs in spatial and temporal domains to assist waveform design based on the principle of Constructive Interference (CI). To address the nonconvex fractional quadratic objective function and the multiple nonconvex discrete constraints inherent in the proposed waveform design problem, this study introduces an algorithm that combines the Dinkelbach transform with the Alternating Direction Method of Multipliers (ADMM). This approach effectively tackles the NP-hard problem. The numerical results demonstrate that the designed waveform significantly reduces the required DAC resolution and achieves excellent radar beampattern performance while satisfying the QoS requirements of downlink multiuser communications.

     

  • loading
  • [1]
    SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287.
    [2]
    FANG Xinran, FENG Wei, CHEN Yunfei, et al. Joint communication and sensing toward 6G: Models and potential of using MIMO[J]. IEEE Internet of Things Journal, 2023, 10(5): 4093–4116. doi: 10.1109/JIOT.2022.3227215.
    [3]
    WEI Zhiqing, QU Hanyang, WANG Yuan, et al. Integrated sensing and communication signals toward 5G-A and 6G: A survey[J]. IEEE Internet of Things Journal, 2023, 10(13): 11068–11092. doi: 10.1109/JIOT.2023.3235618.
    [4]
    LU Shihang, LIU Fan, LI Yunxin, et al. Integrated sensing and communications: Recent advances and ten open challenges[J]. IEEE Internet of Things Journal, 2024, 11(11): 19094–19120. doi: 10.1109/JIOT.2024.3361173.
    [5]
    ELBIR A M, MISHRA K V, and CHATZINOTAS S. Terahertz-band joint ultra-massive MIMO radar-communications: Model-based and model-free hybrid beamforming[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1468–1483. doi: 10.1109/JSTSP.2021.3117410.
    [6]
    HUA Haocheng, XU Jie, and HAN T X. Optimal transmit beamforming for integrated sensing and communication[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 10588–10603. doi: 10.1109/TVT.2023.3262513.
    [7]
    ZHANG Ruoyu, CHENG Lei, WANG Shuai, et al. Integrated sensing and communication with massive MIMO: A unified tensor approach for channel and target parameter estimation[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 8571–8587. doi: 10.1109/TWC.2024.3351856.
    [8]
    SAXENA A K, FIJALKOW I, and SWINDLEHURST A L. Analysis of one-bit quantized precoding for the multiuser massive MIMO downlink[J]. IEEE Transactions on Signal Processing, 2017, 65(17): 4624–4634. doi: 10.1109/TSP.2017.2715006.
    [9]
    CHENG Ziyang, LIAO Bin, HE Zishu, et al. Transmit signal design for large-scale MIMO system with 1-bit DACs[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4466–4478. doi: 10.1109/TWC.2019.2925343.
    [10]
    WEI Tong, CHENG Ziyang, and LIAO Bin. Transmit beampattern synthesis for MIMO radar with one-bit digital-to-analog converters[J]. Signal Processing, 2021, 188: 108228. doi: 10.1016/j.sigpro.2021.108228.
    [11]
    WEI Tong, CHU Ping, CHENG Ziyang, et al. Transmit beampattern design for MIMO radar with one-bit DACs via block-sparse SDR[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–5. doi: 10.1109/SAM48682.2020.9104317.
    [12]
    DENG Minglong, CHENG Ziyang, HE Zishu, et al. Joint design of one-bit transmit waveform and receive filter for MIMO radar in signal dependent interference[C]. 2022 IEEE Radar Conference (RadarConf22), New York City, USA, 2022: 1–6. doi: 10.1109/RadarConf2248738.2022.9764158.
    [13]
    SAXENA A K, FIJALKOW I, and SWINDLEHURST A L. On one-bit quantized ZF precoding for the multiuser massive MIMO downlink[C]. 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janeiro, Brazil, 2016: 1–5. doi: 10.1109/SAM.2016.7569670.
    [14]
    JACOBSSON S, DURISI G, COLDREY M, et al. Linear precoding with low-resolution DACs for massive MU-MIMO-OFDM downlink[J]. IEEE Transactions on Wireless Communications, 2019, 18(3): 1595–1609. doi: 10.1109/TWC.2019.2894120.
    [15]
    LI Ang, LIU Fan, MASOUROS C, et al. Interference exploitation 1-bit massive MIMO precoding: A partial branch-and-bound solution with near-optimal performance[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3474–3489. doi: 10.1109/TWC.2020.2973987.
    [16]
    WU Zheyu, JIANG Bo, LIU Yafeng, et al. A novel negative ℓ1 penalty approach for multiuser one-bit massive MIMO downlink with PSK signaling[C]. 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, Singapore, 2022: 5323–5327. doi: 10.1109/ICASSP43922.2022.9747030.
    [17]
    WANG Yiran and LI Ang. ADMM based interference exploitation multi-user one-bit massive MIMO precoding[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9561–9566. doi: 10.1109/TVT.2023.3244404.
    [18]
    LI Ang, MASOUROS C, SWINDLEHURST A L, et al. 1-bit massive MIMO transmission: Embracing interference with symbol-level precoding[J]. IEEE Communications Magazine, 2021, 59(5): 121–127. doi: 10.1109/MCOM.001.2000601.
    [19]
    CHENG Ziyang, SHI Shengnan, HE Zishu, et al. Transmit sequence design for dual-function radar-communication system with one-bit DACs[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5846–5860. doi: 10.1109/TWC.2021.3070586.
    [20]
    YU Xiaoyou, YANG Qi, XIAO Zhu, et al. A precoding approach for dual-functional radar-communication system with one-bit DACs[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1965–1977. doi: 10.1109/JSAC.2022.3155532.
    [21]
    LIN Qi, SHEN Hong, LI Zhicheng, et al. One-bit transceiver optimization for mmWave integrated sensing and communication systems[J]. IEEE Transactions on Communications, 2025, 73(2): 800–816. doi: 10.1109/TCOMM.2024.3440830.
    [22]
    MASOUROS C and ZHENG Gan. Exploiting known interference as green signal power for downlink beamforming optimization[J]. IEEE Transactions on Signal Processing, 2015, 63(14): 3628–3640. doi: 10.1109/TSP.2015.2430839.
    [23]
    LIU Rang, LI Ming, LIU Qian, et al. Dual-functional radar-communication waveform design: A symbol-level precoding approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1316–1331. doi: 10.1109/JSTSP.2021.3111438.
    [24]
    WANG Chao, WANG Chengcai, LI Zan, et al. STAR-RIS-enabled secure dual-functional radar-communications: Joint waveform and reflective beamforming optimization[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 4577–4592. doi: 10.1109/TIFS.2023.3297452.
    [25]
    CHENG Ziyang, HAN Chunlin, LIAO Bin, et al. Communication-aware waveform design for MIMO radar with good transmit beampattern[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5549–5562. doi: 10.1109/TSP.2018.2868042.
    [26]
    LIU Rang, LI Hongyu, LI Ming, et al. Secure symbol-level precoding design for QAM signals in MU-MISO wiretap systems[C]. ICC 2020--2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9149044.
    [27]
    SOLTANALIAN M, TANG Bo, LI Jian, et al. Joint design of the receive filter and transmit sequence for active sensing[J]. IEEE Signal Processing Letters, 2013, 20(5): 423–426. doi: 10.1109/LSP.2013.2250279.
    [28]
    TANG Bo and TANG Jun. Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4707–4722. doi: 10.1109/TSP.2016.2569431.
    [29]
    WU Wenjun, TANG Bo, and WANG Xuyang. Constant-modulus waveform design for dual-function radar-communication systems in the presence of clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4005–4017. doi: 10.1109/TAES.2023.3234927.
    [30]
    CHEN Shengyao, FENG Qi, RAN Longyao, et al. Reconfigurable intelligent surface-enabled array radar for interference mitigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 7437–7452. doi: 10.1109/TAES.2024.3417955.
    [31]
    陈胜垚, 何煦, 冯起, 等. 智能超表面辅助的雷达通信一体化系统恒模发射波形与无源波束形成联合设计[J]. 中国科学: 信息科学, 2024, 54(12): 2841–2857. doi: 10.1360/SSI-2024-0034.

    CHEN Shengyao, HE Xu, FENG Qi, et al. Joint design of constant modular transmit waveform and passive beamforming for RIS-aided dual-functional radar and communication[J]. SCIENTIA SINICA Informationis, 2024, 54(12): 2841–2857. doi: 10.1360/SSI-2024-0034.
    [32]
    JIANG Xue, CHEN Jiayi, LIU Xingzhao, et al. Phase-only robust minimum dispersion beamforming[J]. IEEE Transactions on Signal Processing, 2020, 68: 5664–5679. doi: 10.1109/TSP.2020.3026177.
    [33]
    GHADIMI E, TEIXEIRA A, SHAMES I, et al. Optimal parameter selection for the alternating direction method of multipliers (ADMM): Quadratic problems[J]. IEEE Transactions on Automatic Control, 2015, 60(3): 644–658. doi: 10.1109/TAC.2014.2354892.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(271) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint