Processing math: 100%
TAN Pengyuan, ZHU Jianjun, FU Haiqiang, et al. Inversion of forest height based on ALOS-2 PARSAR-2 multi-baseline polarimetric SAR interferometry data[J]. Journal of Radars, 2020, 9(3): 569–577. doi: 10.12000/JR20030
Citation: ZHU Shengqi, YU Kun, XU Jingwei, et al. Research progress and prospect for the noval waveform diverse array radar[J]. Journal of Radars, 2021, 10(6): 795–810. doi: 10.12000/JR21188

Research Progress and Prospect for the Noval Waveform Diverse Array Radar

DOI: 10.12000/JR21188
Funds:  The National Natural Science Foundation of China (61931016, 62071344, 62101402, 61911530246), The Excellent Youth Foundation of Shaanxi Scientific Committee (2019JC-16), The China Postdocatoral Science Foundation (2021TQ0261, 2021M702547)
More Information
  • Corresponding author: ZHU Shengqi, zhushengqi8@163.com
  • Received Date: 2021-11-24
  • Accepted Date: 2021-12-23
  • Rev Recd Date: 2021-12-23
  • Available Online: 2021-12-24
  • Publish Date: 2021-12-28
  • It is difficult for the traditional radar to suppress deceptive mainlobe interference and separate the range ambiguous clutter. The proposal of a waveform diverse array changes the way of obtaining information through utilizing degrees-of-freedom in the transmit dimension. Through flexible system design and signal processing methods, this array enhances the ability of information extraction and improves the anti-jamming and detection performance, compared with the traditional phased array and Multiple-Input Multiple-Output (MIMO) radar. This paper summarizes the research progress of waveform diverse array radars in China and overseas and provides the basic concepts of the array diversity system regarding frequency, time, and phase modulation. Furthermore, the research trend of waveform diverse array radars has been discussed. Based on the existing basic theory and key technology research, the advantages of a waveform diverse array in providing new information about targets and increasing the additional controllable degrees-of-freedom of the system are verified, thereby improving the multidimensional detection capability of the new radar system.

     

  • 森林高度是估算森林蓄积量及生物量的重要基础数据,对于研究森林资源状况以及分析全球生态环境、气候变化具有重要意义。极化合成孔径雷达干涉测量技术(Polarimetric SAR Interferometry, PolInSAR)采用微波监测模式,其回波信号不仅记录垂直结构及其属性信息,且可以区分同一分辨单元内不同散射体高度的能力,已被视为大范围、高分辨率、高精度反演森林高度的有效手段之一[1]

    为了实现利用PolInSAR观测量准确地提取森林高度,Thrauhft等人[2]建立了随机地体二层散射模型(Random Volume over Ground, RVoG),该模型将森林散射场景抽象为两层,即由随机均匀分布的散射体组成的植被层,以及微波信号不可穿透的地表层。随后,Papathanassiou等人[3,4]进一步分析PolInSAR复相干性与RVoG模型的关联,建立了利用PolInSAR反演森林高度的框架。实质上,该框架是基于体散射去相干的模型表达来反演森林高度等参数的,并且利用不同PolInSAR数据都获得了较高的反演精度[5-7]

    由于森林场景具有显著的时变性,具有长时间间隔的星载重轨干涉SAR(如ALOS-1至少为46天,ALOS-2为14天)散射场景内介电常数变化(如降雨)和风动都会产生严重的时间去相干。因此,除了体去相干的影响,时间去相干也是星载重轨极化干涉SAR数据中不可忽略的去相干因素,决定了森林参数反演的精度,甚至是反演成败的关键。为此,Yang等人[8]在随机移动散射模型(Random Motion over Ground, RMoG)[9]和体时去相干散射模型 (Volume Temporal Decorrelation, VTD)模型[10]基础上,提出一种时间去相干半经验森林高度反演方法。该方法结合少量机载LiDAR森林高度数据辅助时间去相干半经验模型解算,利用ALOS-1 PARSAR-1 HV极化相干幅度成功实现了大尺度森林高度反演。

    然而,该方法需假设HV极化不包含地表散射回波能量贡献,事实上,L波段SAR信号具有较强的穿透性,尤其当森林高度较低或密度较小时,HV极化方式会记录显著地表回波信号。此外,该方法只适用于单基线干涉数据,尚未考虑多基线条件下,如何充分利用观测几何的多样性提升反演结果的可靠性。因此本文的目的是针对上述反演方法的限制,利用ALOS-2 PARSAR-2多基线PolInSAR数据更为准确地提取森林高度。主要思路如下:首先利用相干最大分离算法(Maximum Coherence Difference, MCD)在极化空间内寻求具有最少地面散射能量贡献的极化方式,以获得更为纯净的森林冠层散射贡献。然后利用该极化方式的相干幅度,在少量森林高度地面调查数据辅助下基于时间去相干半经验模型进行森林高度反演。在此基础之上,结合多基线数据根据PolInSAR相干集在复数平面内的几何表达,甄选最优观测干涉数据的反演结果作为森林高度反演最终结果。

    综合顾及垂直方向上散射体分布产生的体去相干、散射场景内介电特性改变和植被风动引起的时间去相干同时占主导地位,星载重轨PolInSAR复相干系数一般形式表示为[8]

    γ(ω)=eiφ0γvdγv/m+γgdμ(ω)1+μ(ω) (1)

    式中,φ0为地表相位;γvdγgd分别表示植被体层和地面层介电特性改变引起的时间去相干复因子;μ(ω)为地体幅度比,与极化方式有关;γv/m为体散射去相干和时间去相干(植被风动引起)产生的耦合去相干

    γv/m=h0exp[12(4πλ)2σ2r(z)]f(z)exp(ikzz)dzh0f(z)dz (2)

    其中,h表示森林高度;f(z)为指数形式的垂直结构函数,描述垂直方向z上散射体的分布;σr(z)为散射体沿雷达视线方向的随机运动标准差,假定与森林高度呈线性关系

    σr(z)=σrhrz (3)

    式中,σr表示在参考高度hr(根据先验信息一般设为15 m[8,9])处的运动标准差。

    为了解决上述模型过参数化问题,Yang等人[8]对散射场景做如下假设:(1) 散射场景内时间去相干与消光系数在空间上具有一致性;(2) HV极化方式具有较小地面散射能量贡献,可假定其地体幅度比μmin=0,此时对于该极化方式可忽略地面层介电常数改变引起的时间去相干;(3) 假定干涉场景为零空间基线理想情况(忽略森林垂直结构引起的体散射去相干),即垂直有效波束kz=0,此时对于式(2)适用积分第一中值定理(即对于在给定区间[a,b]有连续函数f(x)和同号可积函数g(x),区间内存在一点ε满足baf(x)g(x)dx=f(ε)bag(x)dx。因此在上述假定条件下,式(1)可简化为时间去相干半经验模型[8,11]

    γ=Ssceneexp[12(4πσrαλhr)2h2]Sscenesinc(hCscene) (4)

    其中,α为中值ε关于森林高度的比例因子,即ε=αh(0α1); Sscene, Cscene分别与植被体层介电特性改变和风动引起的时间去相干有关

    Sscene=|γvd|; Cscene=λhr2π2σrα (5)

    已有方法主要选用对森林冠层较为敏感的HV极化方式进行模型求解,但是ALOS-2 PALSAR-2发射具有较强穿透能力的L波段电磁波,HV极化方式回波信号中同样会记录显著地表回波信号。鉴于此,本文利用ALOS-2 PALSAR-2全极化数据结合极化相干最优理论,尽可能抑制地表回波信号的干扰。具体方法如下:

    在主辅极化SAR影像散射机制相同的情况下,极化干涉SAR的复相干系数表示为[12]

    γ=ωHΩ12ωωHT11ωωHT22ω (6)

    式中,自相关矩阵T11T22都是标准Hermitian相干矩阵,分别描述主辅影像的极化特性,Ω12为互相关矩阵,不仅包含极化信息,还包含了主副影像不同极化通道间的干涉相位关系。ω为归一化复投影矢量,通过转换ω可以计算极化空间内任意极化基下对应散射机制的复相干系数,组成相干集。该复相干系数集合形成的区域边界范围可以看作将相干复平面旋转任意角度,得到的实部最大和最小相干系数[13]

    Re(γeiϕ)=ωHAωωHTωA=eiϕΩ12+eiϕΩH122,T=T11+T222} (7)

    式中,ϕ为旋转相位,在[0,π)范围内等间隔采样角度。式(7)求极值可以转化为求解特征值问题即Aω=λTω,进而得到最大和最小特征值分别对应的特征向量ω1ω2,那么相干区域的一对边界点可以表示为[14]

    γ1=ωH1Ω12ω1ωH1Tω1, γ2=ωH2Ω12ω2ωH2Tω2 (8)

    相比传统InSAR技术只能获取HH, HV或VV极化方式对应的复相干系数,相干集中包含了特定极化散射机理对应的复相干系数,为寻求极化空间内具有更为纯净森林冠层散射贡献的极化方式提供了可能。相干区域范围示意如图1所示,其中在相干区域成对边界点中距离最远的一对相干系数点γA, γB(也就是相干区域长轴两端点),可以表征植被层和地表层有效相位中心的最大分离[15]。根据式(9)进一步确定体散射占优极化方式复相干γ(μmin)与地表散射占优极化方式的复相干γ(μmax)

    图  1  不同干涉对相干区域在复平面上的示意图
    Figure  1.  Coherent regions on the complex plane for different interferometric pairs
    kz>0:ifarg(γAγB)>0thenγ(μmin)=γA,γ(μmax)=γBifarg(γAγB)<0thenγ(μmin)=γB,γ(μmax)=γAkz<0:ifarg(γAγB)<0thenγ(μmin)=γA,γ(μmax)=γBifarg(γAγB)>0thenγ(μmin)=γB,γ(μmax)=γA} (9)

    其中,μmin表示具有最小地体幅度比的极化方式,对应体散射占优极化方式复相干;μmax表示具有最大地体幅度比的极化方式,对应表面散射占优极化方式复相干;kz为垂直有效波束,取决于成像相对几何关系(垂直基线B,斜距R,入射角θ和雷达波长λ)[16]

    kz=4πBλRsinθ (10)

    即便简化了模型参数和采用多基线PolInSAR数据增加了观测量,利用传统多维非线性迭代求解时间去相干半经验模型仍存在秩亏问题。因此本文采用一种外部数据辅助反演法[8],即先利用小范围真实森林高度数据辅助解算出模型参数SsceneCscene,然后代入模型中即可得到整个散射场景范围的森林高度结果。模型参数求解具体思路如下:对于给定模型参数初始值,利用训练数据中的μmin极化方式相干幅度结合式(4)可以得到反演森林高度结果hinvert,它与对应真实森林高度数据hreal确定的散点图如图2所示。理想情况下,两者数据散点应沿虚线y=x分布,但实际上在初始模型参数误差存在情况下,两者散点点阵椭圆主轴与y=x并非一致,而是存在一定的偏差。因此通过利用训练数据对其调整来寻求散射场景最佳模型参数。

    图  2  反演森林高度与真实森林高度散点点阵椭圆示意图
    Figure  2.  Scatters ellipse between invert height and real height

    主成分分析思想[17]为实现上述思路提供了契机,即通过对训练数据中hrealhinvert这两个二维数据的协方差矩阵进行特征值分解,可以确定该二维数据降维后的主轴(也就是散点点阵椭圆的长轴)斜率k

    X=[Var(hreal)Cov(hreal,hinvert)Cov(hinvert,hreal)Var(hinvert)]=[P11P12P21P22][λ100λ2][P11P12P21P22]1k=P21P11} (11)

    其中λ1λ2为按降序排列的特征值,P为特征值对应的特征向量的元素。而点阵椭圆质心与虚线y=x的偏差 b可以表示为

    b=M(hreal)M(hinvert)[M(hreal)+M(hinvert)]/2 (12)

    式中,M 表示取平均运算。

    散点点阵椭圆主轴确定后,显然可以通过建立使逼近参数k, b分别趋近于1, 0的目标函数

    (k1)2+(b0)2=min (13)

    该目标函数可以利用高斯-牛顿迭代算法进行非线性最小二乘求解,如式(14)所示

    [SsceneCscene]=(JT0J0)1JT0[1k00b0]+[Sscene0Cscene0] (14)

    式中,表示最终迭代次数;通过给定模型参数初始值Sscene0, Cscene0,结合上述主成分思想可以得到初始点相应的k0, b0以及雅克比矩阵J0

    J0=[kSscenekCscenebSscenebCscene]|Sscene0Cscene0 (15)

    然后将得到修正后的模型参数作为新的初始点进行下一次迭代,经过多次迭代后即可获得最佳模型参数Sscene, Cscene,迭代终止条件为(ε为经验阈值,本文设为106)

    |[SsceneCscene][S(1)sceneC(1)scene]|<ε (16)

    在利用训练数据求得时间去相干半经验模型参数后,对每个像元求解一元非线性方程得到整个散射场景内的森林高度结果。

    时间去相干、体去相干以及其他噪声等因素会共同影响PolInSAR复相干性在复平面单位圆上的几何表达[18]。在多基线配置下,不同干涉对在同一分辨单元内往往呈现出不同的相干区域结构(如图1所示)。而相干特性P可以作为评价相干区域结构的指标[19]

    P=|γ(μmin)γ(μmax)||γ(μmin)+γ(μmax)| (17)

    式中,γ(μmin), γ(μmax)为2.2节所述相干区域长轴的两端点,分别对应体散射极化通道与地表散射极化通道的复相干系数。|γ(μmin)γ(μmax)|即为极化相干区域的长轴,反映了不同极化相干点在复数单位圆的分离程度;|γ(μmin)+γ(μmax)|为相干区域质心到坐标原点距离的2倍,反映了相干区域整体相干性的平均水平。因此,P 值越大说明该干涉对具有更好的相干性质量与极化分离度,反演的结果更为可靠。

    通过相干特性指标P 甄选出不同干涉对在同一分辨单元内反演出的最优森林高度值作为多基线PolInSAR森林高度融合结果,多基线PolInSAR融合反演框架可表示为

    maxP1(γ1(μmin),γ1(μmax))P2(γ2(μmin),γ2(μmax))PN(γN(μmin),γN(μmax)) (18)

    式中,N 为极化干涉SAR观测基线数。

    研究区域黄丰桥国有林场(27°05—27°24 N, 113°35—113°55 E)呈带状分布,横跨湖南省攸县东西两部(如图3所示)。该林场属亚热带季风湿润性气候区,年平均气温17.8 °C,年降水量1410.8 mm,大部分降雨发生于春、夏季。林场境内森林茂盛,拥有森林蓄积量90.12×104 m3,森林覆盖率达90%。林分类型以针叶林为主,包括杉木、油松、落叶松等。

    图  3  实验区:绿线范围为黄丰桥(HFQ)林场研究区域,蓝色虚线为ALOS-2 PALSAR-2影像范围,圆点为地面实测林分样地
    Figure  3.  The test site: the green line indicates the study area of HuangFengQiao (HFQ) forestry center, the blue dotted line indicates the ALOS-2 PALSAR-2 image range, and the dots are field measurement plots

    地面实测数据由中南林业科技大学于2016年6~7月采集得到,通过在林区范围内选取60个相互独立的林分样地以确保避免空间自相关,每个林分样地规格为30×30 m。树高则基于单木测高原理利用激光测高仪测得,林分高度范围为4.60~20.20 m,平均高度为13.24 m。本文通过随机采样,将60个林分样地数据随机分为45个训练数据(图3黄点所示)和15个验证数据(图3红点所示)两组。

    多基线星载重轨PolInSAR数据是利用日本宇航局(JAXA)提供的5景覆盖研究区域的ALOS-2 PALSAR-2 L波段全极化数据。该SAR影像范围如图3蓝色虚线所示,获取时间为2016年6月至8月,获取模式为StripMap2(SM2),影像主要参数信息如表1所示。将5景SAR影像组成3个时间基线为14天的干涉影像对(BL1, BL2, BL3),然后各自进行配准处理,并进行公共带通滤波以确保去除几何去相干。相干性以11×11窗口进行估计,并应用Boxcar滤波进行平滑处理以消除斑点效应。最后利用SRTM DEM对SAR影像进行地理编码,并将其重采样至与DEM空间分辨率一致(30×30 m)。图4为3个干涉对的HV极化和μmin极化的相干性统计图,由统计图可见不同干涉对的相干性均较低,说明研究区域受时间去相干影响较为严重。

    表  1  ALOS-2 PALSAR-2参数信息
    Table  1.  Parameter information of ALOS-2 PALSAR-2
    日期(2016年)垂直有效波数(rad/m)时间基线(天)距离向/方位向分辨率(m)中心入射角 (°)极化方式
    0616—0630 (BL1)0.013~0.015
    0630—0714 (BL2)0.010~0.011142.86/2.9738.99Full
    0811—0825 (BL3)0.009~0.010
    下载: 导出CSV 
    | 显示表格
    图  4  相干性统计图
    Figure  4.  The histograms of coherence

    以选取的15个验证林分的实测森林高度(H-field)对反演结果(H-invert)进行分析评价,图5为3个干涉对利用HV极化反演得到的散点图结果,均方根误差RMSE分别为:4.20 m, 4.03 m和3.42 m。利用μmin极化方式反演的验证结果如图6所示,3个干涉对的反演精度分别提高了:20%, 17%和12%,除此之外,相关系数R2也分别有所提高。分析认为采用全极化数据结合PolInSAR相干优化算法扩展了极化空间,相比已有方法中选用的HV极化,μmin极化含有更少地表散射贡献,更贴近时间去相干半经验模型推导过程中基于“零”地体幅度比的关键假设。

    图  5  单基线InSAR反演高度与验证数据散点图
    Figure  5.  Scatterplot comparison between inversion height of single baseline InSAR and validation data
    图  6  单基线PolInSAR反演高度与验证数据散点图
    Figure  6.  Scatterplot comparison between inversion height of single baseline PolInSAR and validation data

    从上述单基线森林高度反演结果看,不同干涉对反演整体精度较为接近,但是对于同一林分在利用不同干涉对反演的结果却存在明显差异。因此,当多基线数据可用时,我们进一步在单基线PolInSAR森林高度反演结果的基础上挖掘PolInSAR数据本身特性并对其森林高度反演能力进行评判。与时间去相干相关的参数SsceneCscene共同反映了散射场景内的时间去相干影响水平,其中Sscene与植被体层介电特性变化相关,Cscene反映了植被体层随机运动引起时间去相关水平。表2即为单基线PolInSAR模型参数解算结果,对于不同干涉对,Sscene越小,表明该基线在散射场景内植被体层介电变化(降水等引起)越显著;Cscene越小,则表明植被体层随机运动(风动等引起)越强烈。从图4相干性统计图也可以看出,干涉对BL1相干性相对更低,受时间去相干的影响更为严重。因此,在不同时间去相干以及其他噪声影响下,每个干涉对在同一分辨单元内会具有不同的的相干特性,呈现出优劣不同的相干区域结构。

    表  2  单基线PolInSAR模型参数解算结果
    Table  2.  Model parameter results of single baseline PolInSAR inversion
    模型参数BL1BL2BL3
    Sscene0.690.780.78
    Cscene9.8810.0811.14
    下载: 导出CSV 
    | 显示表格

    3个干涉对在验证林分的相干特性P值、反演森林高度值以及多基线融合森林高度值如表3所示,从整体看,根据相干特性P值大小从3个单基线PolInSAR反演结果中甄选出的森林高度结果更接近于实测真实森林高度。整个实验区的多基线PolInSAR融合反演结果以及精度评定如图7所示,均方根误差RMSE为2.05 m,相比于已有的方法,本文提出的多基线PolInSAR融合反演策略精度至少提高了40%(与图5中BL3基线结果对比),同时,相关系数也提升至0.81。

    表  3  3个干涉对的相干特性P值以及森林高度值
    Table  3.  Coherence characteristic P-value and forest heights for three interferometric pairs
    林分样地编号BL1 P值 / 森林高度(m)BL2 P值 / 森林高度(m)BL3 P值 / 森林高度(m)多基线融合结果(m)实测森林高度(m)
    10.130 / 17.820.113 / 17.020.081 / 16.8917.8214.43
    20.116 / 14.380.104 / 15.300.091 / 16.5214.3814.20
    30.092 / 12.460.075 / 15.830.135 / 11.3411.349.80
    40.103 / 15.210.111 / 15.340.119 / 14.1914.1916.00
    50.106 / 6.860.106 / 7.240.131 / 8.318.3110.70
    60.110 / 12.980.083 / 14.670.118 / 11.8911.8913.50
    70.114 / 13.350.096 / 15.300.101 / 16.1013.3513.43
    80.079 / 14.290.106 / 16.150.117 / 16.2216.2216.95
    90.069 / 12.120.090 / 17.630.060 / 12.3017.6320.10
    100.104 / 12.330.089 / 13.670.102 / 11.7212.3315.60
    110.075 / 18.340.103 / 16.750.154 / 10.1610.1613.30
    120.113 / 9.080.134 / 9.460.106 / 12.699.4611.00
    130.086 / 13.760.096 / 9.070.109 / 16.0016.0016.40
    140.197 / 10.170.230 / 8.710.186 / 9.518.716.00
    150.103 / 14.590.064 / 19.170.128 / 15.4015.4014.70
    下载: 导出CSV 
    | 显示表格
    图  7  多基线PolInSAR融合反演
    Figure  7.  Multi baseline PolInSAR fusion inversion

    在多基线全极化数据可用条件下,弥补单基线InSAR观测信息不足以及几何结构单一的问题,对于反演结果整体精度提升具有重要作用。本文提出了一种星载重轨多基线PolInSAR反演森林高度的策略,对InSAR极化空间和观测几何空间进行扩展,主要结论如下:

    (1) 该方法利用MCD相干优化算法获得对体散射最为敏感的极化方式,并基于时间去相干半经验模型进行森林高度反演,使每条单基线反演精度在一定程度上都有所提高。

    (2) 利用由相干特性指标P确定的相干区域最优准则可以优选出同一分辨单元内最优的单基线森林高度反演结果。因此,相比仅利用单基线单一极化反演方法,多基线PolInSAR融合策略具有更好的稳定性,精度也更高。

  • [1]
    WICKS M C. A brief history of waveform diversity[C]. 2009 IEEE Radar Conference, Pasadena, USA, 2009: 328–333. doi: 10.1109/RADAR.2009.4977142.
    [2]
    CAPRARO G T, BRADARIC I, and WICKS M C. Waveform diversity and electromagnetic compatibility[C]. 2007 IEEE International Symposium on Electromagnetic Compatibility, Honolulu, USA, 2007: 1–7. doi: 10.1109/ISEMC.2007.40.
    [3]
    GARNHAM J W and ROMAN J R. Why and what is waveform diversity, and how does it affect electromagnetics?[C]. 2007 IEEE International Symposium on Electromagnetic Compatibility, Honolulu, USA, 2007: 1–5. doi: 10.1109/ISEMC.2007.41.
    [4]
    GARNHAM J W and ROMAN J R. How will waveform diversity affect electromagnetic compatibility?[C]. 2007 International Waveform Diversity and Design Conference, Pisa, Italy, 2007: 98–101. doi: 10.1109/WDDC.2007.4339388.
    [5]
    NEHORAI A, GINI F, GRECO M S, et al. Introduction to the issue on adaptive waveform design for agile sensing and communication[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 2–5. doi: 10.1109/jstsp.2007.897065
    [6]
    PAPANDREOU-SUPPAPPOLA A, NEHORAI A, and CALDERBANK R. Waveform-agile sensing and processing [From the Guest Editors][J]. IEEE Signal Processing Magazine, 2009, 26(1): 10–11. doi: 10.1109/msp.2008.930413
    [7]
    兰岚, 许京伟, 朱圣棋, 等. 波形分集阵列雷达抗干扰进展[J]. 系统工程与电子技术, 2021, 43(6): 1437–1451. doi: 10.12305/j.issn.1001-506X.2021.06.01

    LAN Lan, XU Jingwei, ZHU Shengqi, et al. Advances in anti-jamming using waveform diverse array radar[J]. Systems Engineering and Electronics, 2021, 43(6): 1437–1451. doi: 10.12305/j.issn.1001-506X.2021.06.01
    [8]
    ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Multi-mission multi-mode waveform diversity[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 580–582. doi: 10.1109/RADAR.2006.1631858.
    [9]
    许京伟, 朱圣棋, 廖桂生, 等. 频率分集阵雷达技术探讨[J]. 雷达学报, 2018, 7(2): 167–182. doi: 10.12000/JR18023

    XU Jingwei, ZHU Shengqi, LIAO Guisheng, et al. An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2): 167–182. doi: 10.12000/JR18023
    [10]
    WANG Wenqin. Overview of frequency diverse array in radar and navigation applications[J]. IET Radar, Sonar & Navigation, 2016, 10(6): 1001–1012. doi: 10.1049/iet-rsn.2015.0464
    [11]
    王文钦, 邵怀宗, 陈慧. 频控阵雷达: 概念、原理与应用[J]. 电子与信息学报, 2016, 38(4): 1000–1011. doi: 10.11999/JEIT151235

    WANG Wenqin, SHAO Huaizong, and CHEN Hui. Frequency diverse array radar: Concept, principle and application[J]. Journal of Electronics &Information Technology, 2016, 38(4): 1000–1011. doi: 10.11999/JEIT151235
    [12]
    王文钦, 陈慧, 郑植, 等. 频控阵雷达技术及其应用研究进展[J]. 雷达学报, 2018, 7(2): 153–166. doi: 10.12000/JR18029

    WANG Wenqin, CHEN Hui, ZHENG Zhi, et al. Advances on frequency diverse array radar and its applications[J]. Journal of Radars, 2018, 7(2): 153–166. doi: 10.12000/JR18029
    [13]
    SECMEN M, DEMIR S, HIZAL A, et al. Frequency diverse array antenna with periodic time modulated pattern in range and angle[C]. 2007 IEEE Radar Conference, Waltham, USA, 2007: 427–430. doi: 10.1109/RADAR.2007.374254.
    [14]
    XU Yanhong, SHI Xiaowei, XU Jingwei, et al. Beampattern analysis of planar frequency diverse array[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2015, 25(5): 436–444. doi: 10.1002/mmce.20881
    [15]
    WANG Wenqin and SO H C. Transmit subaperturing for range and angle estimation in frequency diverse array radar[J]. IEEE Transactions on Signal Processing, 2014, 62(8): 2000–2011. doi: 10.1109/TSP.2014.2305638
    [16]
    KHAN W, QURESHI I M, and SAEED S. Frequency diverse array radar with logarithmically increasing frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 499–502. doi: 10.1109/LAWP.2014.2368977
    [17]
    SHAO Huaizong, DAI Jun, XIONG Jie, et al. Dot-shaped range-angle beampattern synthesis for frequency diverse array[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1703–1706. doi: 10.1109/LAWP.2016.2527818
    [18]
    LIU Yimin, RUAN Hang, WANG Lei, et al. The random frequency diverse array: A new antenna structure for uncoupled direction-range indication in active sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 295–308. doi: 10.1109/JSTSP.2016.2627183
    [19]
    BASIT A, QURESHI I M, KHAN W, et al. Beam pattern synthesis for an FDA radar with hamming window-based nonuniform frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2283–2286. doi: 10.1109/LAWP.2017.2714761
    [20]
    XIONG Jie, WANG Wenqin, SHAO Huaizong, et al. Frequency diverse array transmit beampattern optimization with genetic algorithm[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 469–472. doi: 10.1109/LAWP.2016.2584078
    [21]
    LAN Lan, LIAO Guisheng, XU Jingwei, et al. Range-angle pencil-beamforming for non-uniformly distributed array radar[J]. Multidimensional Systems and Signal Processing, 2018, 29(3): 867–886. doi: 10.1007/s11045-017-0477-9
    [22]
    WANG Wenqin, DAI Miaomiao, and ZHENG Zhi. FDA Radar ambiguity function characteristics analysis and optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1368–1380. doi: 10.1109/TAES.2017.2785598
    [23]
    XU Yanhong, SHI Xiaowei, XU Jingwei, et al. Range-angle-dependent beamforming of pulsed frequency diverse array[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3262–3267. doi: 10.1109/TAP.2015.2423698
    [24]
    SHAO Huaizong, LI Xiong, WANG Wenqin, et al. Time-invariant transmit beampattern synthesis via weight design for FDA radar[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–4. doi: 10.1109/RADAR.2016.7485212.
    [25]
    WANG Yuxi, LI Wei, HUANG Guoce, et al. Time-invariant range-angle-dependent beampattern synthesis for FDA radar targets tracking[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2375–2379. doi: 10.1109/LAWP.2017.2718580
    [26]
    CHEN Baoxin, CHEN Xiaolong, HUANG Yong, et al. Transmit beampattern synthesis for the FDA radar[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 98–101. doi: 10.1109/LAWP.2017.2776957
    [27]
    XU Jingwei, LIAO Guisheng, ZHU Shengqi, et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3396–3410. doi: 10.1109/TSP.2015.2422680
    [28]
    XIONG Jie, WANG Wenqin, and GAO Kuandong. FDA-MIMO radar range-angle estimation: CRLB, MSE, and resolution analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 284–294. doi: 10.1109/TAES.2017.2756498
    [29]
    卢刚. 雷达有源假目标抑制方法研究[D]. [博士论文], 电子科技大学, 2008.

    LU Gang. Study of algorithms on suppression of radar active false targets[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2008.
    [30]
    XU Jingwei, LIAO Guisheng, ZHU Shengqi, et al. Deceptive jamming suppression with frequency diverse MIMO radar[J]. Signal Processing, 2015, 113: 9–17. doi: 10.1016/j.sigpro.2015.01.014
    [31]
    LAN Lan, LIAO Guisheng, XU Jingwei, et al. Suppression approach to main-beam deceptive jamming in FDA-MIMO radar using nonhomogeneous sample detection[J]. IEEE Access, 2018, 6(1): 34582–34597. doi: 10.1109/ACCESS.2018.2850816
    [32]
    LAN Lan, LIAO Guisheng, and XU Jingwei. A method to suppress the main-beam deceptive jamming in FDA-MIMO radar with random polyphase codes[C]. The 10th Sensor Array and Multichannel Signal Processing Workshop, Sheffield, UK, 2018: 509–513. doi: 10.1109/SAM.2018.8448892.
    [33]
    谭清莉, 张艺乐, 张伟, 等. FDA-MIMO雷达主瓣欺骗干扰对抗方法[J]. 雷达科学与技术, 2017, 15(6): 671–676. doi: 10.3969/j.issn.1672-2337.2017.06.017

    TAN Qingli, ZHANG Yile, ZHANG Wei, et al. A method of mainlobe deception jamming countermeasure in FDA-MIMO radar[J]. Radar Science and Technology, 2017, 15(6): 671–676. doi: 10.3969/j.issn.1672-2337.2017.06.017
    [34]
    张昭建, 谢军伟, 李欣, 等. 基于FDA-MIMO的距离欺骗干扰鉴别方法[J]. 北京航空航天大学学报, 2017, 43(4): 738–746. doi: 10.13700/j.bh.1001-5965.2016.0257

    ZHANG Zhaojian, XIE Junwei, LI Xin, et al. Discrimination method of range deception jamming based on FDA-MIMO[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 738–746. doi: 10.13700/j.bh.1001-5965.2016.0257
    [35]
    张劲东, 李彧晟, 朱晓华. 基于波形分集的雷达抗欺骗干扰[J]. 数据采集与处理, 2010, 25(2): 138–142. doi: 10.3969/j.issn.1004-9037.2010.02.002

    ZHANG Jindong, LI Yusheng, and ZHU Xiaohua. Approach of radar against deception jamming based on waveform diversity[J]. Journal of Data Acquisition &Processing, 2010, 25(2): 138–142. doi: 10.3969/j.issn.1004-9037.2010.02.002
    [36]
    LI Zhihui, ZHANG Yongshun, GE Qichao, et al. A robust deceptive jamming suppression method based on covariance matrix reconstruction with frequency diverse array MIMO radar[C]. 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xiamen, China, 2017: 1–5. doi: 10.1109/ICSPCC.2017.8242590.
    [37]
    WANG Yuzhuo and ZHU Shengqi. Range Ambiguous clutter suppression for FDA-MIMO forward looking airborne radar based on main lobe correction[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2032–2046. doi: 10.1109/TVT.2021.3057436
    [38]
    WANG Yuzhuo and ZHU Shengqi. Main-beam range deceptive jamming suppression with simulated annealing FDA-MIMO radar[J]. IEEE Sensors Journal, 2020, 20(16): 9056–9070. doi: 10.1109/JSEN.2020.2982194
    [39]
    XU Jingwei, ZHU Shengqi, and LIAO Guisheng. Range ambiguous clutter suppression for airborne FDA-STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1620–1631. doi: 10.1109/JSTSP.2015.2465353
    [40]
    XU Jingwei, LIAO Guisheng, and SO H C. Space-time adaptive processing with vertical frequency diverse array for range-ambiguous clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5352–5364. doi: 10.1109/TGRS.2016.2561308
    [41]
    XU Jingwei, LIAO Guisheng, ZHANG Yuhong, et al. An adaptive range-angle-Doppler processing approach for FDA-MIMO radar using three-dimensional localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 309–320. doi: 10.1109/JSTSP.2016.2615269
    [42]
    WEN Cai, PENG Jinye, ZHOU Yan, et al. Enhanced three-dimensional joint domain localized STAP for airborne FDA-MIMO radar under dense false-target jamming scenario[J]. IEEE Sensors Journal, 2018, 8(10): 4154–4166. doi: 10.1109/JSEN.2018.2820905
    [43]
    WANG Wenqin, SO H C, and SHAO Huaizong. Nonuniform frequency diverse array for range-angle imaging of targets[J]. IEEE Sensors Journal, 2014, 14(8): 2469–2476. doi: 10.1109/JSEN.2014.2304720
    [44]
    王成浩, 廖桂生, 许京伟. FDA-SAR 高分辨宽测绘带成像距离解模糊方法[J]. 电子学报, 2017, 45(9): 2085–2091. doi: 10.3969/j.issn.0372-2112.2017.09.005

    WANG Chenghao, LIAO Guisheng, and XU Jingwei. Range ambiguity resolving method for high-resolution and wide-swath imaging with FDA-SAR[J]. Acta Electronica Sinica, 2017, 45(9): 2085–2091. doi: 10.3969/j.issn.0372-2112.2017.09.005
    [45]
    XU Luzhou, LI Jian, and STOICA P. Radar imaging via adaptive MIMO techniques[C]. The 14th European Signal Processing Conference, Florence, Italy, 2006.
    [46]
    LI Jian and STOICA P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106–114. doi: 10.1109/MSP.2007.904812
    [47]
    TABRIKIAN J. Bounds for target localization by MIMO radars[C]. The Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006, Waltham, USA, 2006: 278–281. doi: 10.1109/SAM.2006.1706137.
    [48]
    HUA Guang and ABEYSEKERA S S. MIMO radar transmit beampattern design with ripple and transition band control[J]. IEEE Transactions on Signal Processing, 2013, 61(11): 2963–2974. doi: 10.1109/TSP.2013.2252173
    [49]
    BABUR G, AUBRY P, and CHEVALIER F L. Space-time radar waveforms: Circulating codes[J]. Journal of Electrical and Computer Engineering, 2013, 2013: 809691. doi: 10.1155/2013/809691
    [50]
    CHEVALIER F L. Space-time transmission and coding for airborne radars[J]. Radar Science and Technology, 2008, 6(6): 411–421.
    [51]
    MELVIN W L and SCHEER J A. Principles of Modern Radar: Advanced Techniques[M]. Edison: SciTech, 2013.
    [52]
    BABUR G, AUBRY P, and CHEVALIER F L. Space-time codes for active antenna systems: Comparative performance analysis[C]. The IET International Radar Conference 2013, Xi’an, China, 2013: 1–6. doi: 10.1049/cp.2013.0240.
    [53]
    FAUCON T, PINAUD G, and CHEVALIER F L. Mismatched filtering for circulating space-time codes[C]. The IET International Radar Conference 2015, Hangzhou, China, 2015. doi: 10.1049/cp.2015.1185.
    [54]
    BABUR G, AUBRY P, and CHEVALIER F L. Simple transmit diversity technique for phased array radar[J]. IET Radar, Sonar & Navigation, 2016, 10(6): 1046–1056. doi: 10.1049/iet-rsn.2015.0311
    [55]
    ROUSSEL K, BABUR G, and CHEVALIER F L. Optimization of low sidelobes radar waveforms: Circulating codes[C]. 2014 International Radar Conference, Lille, France, 2014: 1–6. doi: 10.1109/RADAR.2014.7060290.
    [56]
    BABUR G, AUBRY P J, and CHEVALIER F L. Antenna coupling effects for space-time radar waveforms: Analysis and calibration[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(5): 2572–2586. doi: 10.1109/TAP.2014.2309111
    [57]
    BABUR G, MANOKHIN G O, GELTSER A A, et al. Low-cost digital beamforming on receive in phased array radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1355–1364. doi: 10.1109/TAES.2017.2671078
    [58]
    BABUR G, MANOKHIN G O, MONASTYREV E A, et al. Simple calibration technique for phased array radar systems[J]. Progress in Electromagnetics Research M, 2017, 55: 109–119. doi: 10.2528/PIERM16101203
    [59]
    LI Shengyuan, LIU Nan, ZHANG Linrang, et al. Transmit beampattern synthesis for MIMO radar using extended circulating code[J]. IET Radar, Sonar & Navigation, 2018, 12(6): 610–616. doi: 10.1049/iet-rsn.2017.0386
    [60]
    WANG Huake, LIAO Guisheng, ZHANG Yuhong, et al. Transmit beampattern synthesis for chirp space-time coding array by time delay design[J]. Digital Signal Processing, 2021, 110: 102901. doi: 10.1016/j.dsp.2020.102901
    [61]
    WANG Huake, LIAO Guisheng, XU Jingwei, et al. Direction-of-Arrival estimation for circulating space-time coding arrays: From beamspace MUSIC to spatial smoothing in the transform domain[J]. Sensors, 2018, 18(11): 3689. doi: 10.3390/s18113689
    [62]
    LI Shengyuan, ZHANG Linrang, LIU Nan, et al. Transmit diversity technique based on joint slow-time coding with circulating code[J]. IET Radar, Sonar & Navigation, 2017, 11(8): 1243–1250. doi: 10.1049/iet-rsn.2016.0595
    [63]
    王华柯, 廖桂生, 许京伟, 等. 空时编码阵波束域超分辨角度估计方法[J]. 系统工程与电子技术, 2019, 41(7): 1433–1440. doi: 10.3969/j.issn.1001-506X.2019.07.01

    WANG Huake, LIAO Guisheng, XU Jingwei, et al. Beam-space MUSIC spectral estimation method based on the Space-time coding array[J]. Systems Engineering and Electronics, 2019, 41(7): 1433–1440. doi: 10.3969/j.issn.1001-506X.2019.07.01
    [64]
    NUNN C J and COXSON G E. Best-known autocorrelation peak sidelobe levels for binary codes of length 71 to 105[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 392–395. doi: 10.1109/TAES.2008.4517015
    [65]
    NUNN C J and COXSON G E. Polyphase pulse compression codes with optimal peak and integrated sidelobes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 775–781. doi: 10.1109/TAES.2009.5089560
    [66]
    BORDONI F, YOUNIS M, and KRIEGER G. Ambiguity suppression by azimuth phase coding in multichannel SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 617–629. doi: 10.1109/TGRS.2011.2161672
    [67]
    WANG Hanbing, ZHANG Yuhong, XU Jingwei, et al. Range ambiguity suppression in a synthetic aperture radar using pulse phase coding and two-pulse cancellation[J]. International Journal of Remote Sensing, 2018, 39(20): 6525–6539. doi: 10.1080/01431161.2018.1460509
    [68]
    DALL J and KUSK A. Azimuth phase coding for range ambiguity suppression in SAR[C]. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, USA, 2004: 1734–1737. doi: 10.1109/IGARSS.2004.1370667.
    [69]
    KRIEGER G, GEBERT N, and MOREIRA A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31–46. doi: 10.1109/TGRS.2007.905974
    [70]
    LOMBARDO P, PASTINA D, and TURIN F. Ground moving target detection based on MIMO SAR systems[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 5081–5095. doi: 10.1109/JSTARS.2015.2461594
    [71]
    KIM J H, YOUNIS M, MOREIRA A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453–2466. doi: 10.1109/TGRS.2014.2360148
    [72]
    DENG Hai and HIMED B. Interference mitigation processing for spectrum-sharing between radar and wireless communications systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1911–1919. doi: 10.1109/TAES.2013.6558027
    [73]
    弗朗索瓦·勒舍瓦利耶. 机载雷达的空时发射与编码[J]. 雷达科学与技术, 2008, 6(6): 411–421. doi: 10.3969/j.issn.1672-2337.2008.06.003

    CHEVALIER F L. Space-time transmission and coding for airborne radars[J]. Radar Science and Technology, 2008, 6(6): 411–421. doi: 10.3969/j.issn.1672-2337.2008.06.003
    [74]
    JAJAMOVICH G H, LOPS M, and WANG Xiaodong. Space-time coding for MIMO radar detection and ranging[J]. IEEE Transactions on Signal Processing, 2010, 58(12): 6195–6206. doi: 10.1109/TSP.2010.2072923
    [75]
    WANG Huake, QUAN Yinghui, LIAO Guisheng, et al. Space-time coding technique for coherent frequency diverse array[J]. IEEE Transactions on Signal Processing, 2021, 69: 5994–6008. doi: 10.1109/TSP.2021.3114998
    [76]
    CALVARY P and JANER D. Spatio-temporal coding for radar array processing[C]. The 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, Seattle, USA, 1998: 2509–2512. doi: 10.1109/ICASSP.1998.681661.
    [77]
    SONG Xiufeng, ZHOU Shengli, and WILLETT P. Reducing the waveform cross correlation of MIMO radar with space-time coding[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4213–4224. doi: 10.1109/TSP.2010.2048207
    [78]
    XU Jingwei, ZHANG Yuhong, LIAO Guisheng, et al. Resolving range ambiguity via multiple-input multiple-output radar with element-pulse coding[J]. IEEE Transactions on Signal Processing, 2020, 68: 2770–2783. doi: 10.1109/TSP.2020.2988371
    [79]
    XU Jingwei and SO H C. Study on coding scheme with EPC-MIMO radar in clutter-free scenario[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020. doi: 10.1109/SAM48682.2020.9104270.
    [80]
    LAN Lan, LIAO Guisheng, XU Jingwei, et al. Mainlobe deceptive jammer suppression using element-pulse coding with MIMO radar[J]. Signal Processing, 2021, 182: 107955. doi: 10.1016/j.sigpro.2020.107955
    [81]
    WANG Hanbing, ZHANG Yuhong, XU Jingwei, et al. Study on coding scheme for space-pulse-phase-coding-based high-resolution and wide-swath SAR imaging[J]. International Journal of Remote Sensing, 2020, 41(18): 7202–7216. doi: 10.1080/01431161.2020.1754498
    [82]
    WANG Hanbing, ZHANG Yuhong, XU Jingwei, et al. A novel range ambiguity resolving approach for high-resolution and wide-swath SAR imaging utilizing space-pulse phase coding[J]. Signal Processing, 2020, 168: 107323. doi: 10.1016/j.sigpro.2019.107323
    [83]
    许京伟, 兰岚, 朱圣棋, 等. 相干频率分集阵雷达匹配滤波器设计[J]. 系统工程与电子技术, 2018, 40(8): 1720–1728. doi: 10.3969/j.issn.1001-506X.2018.08.08

    XU Jingwei, LAN Lan, ZHU Shengqi, et al. Design of matched filter for coherent FDA radar[J]. Systems Engineering and Electronics, 2018, 40(8): 1720–1728. doi: 10.3969/j.issn.1001-506X.2018.08.08
    [84]
    LAN Lan, LIAO Guisheng, XU Jingwei, et al. Transceive beamforming with accurate nulling in FDA-MIMO radar for imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4145–4159. doi: 10.1109/TGRS.2019.2961324
    [85]
    WANG Chenghao, XU Jingwei, LIAO Guisheng, et al. A range ambiguity resolution approach for high-resolution and wide-swath SAR imaging using frequency diverse array[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 336–346. doi: 10.1109/JSTSP.2016.2605064
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(3)

    Article views(3878) PDF downloads(549) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    • 表  1  ALOS-2 PALSAR-2参数信息
      Table  1.  Parameter information of ALOS-2 PALSAR-2
      日期(2016年)垂直有效波数(rad/m)时间基线(天)距离向/方位向分辨率(m)中心入射角 (°)极化方式
      0616—0630 (BL1)0.013~0.015
      0630—0714 (BL2)0.010~0.011142.86/2.9738.99Full
      0811—0825 (BL3)0.009~0.010
      下载: 导出CSV 
      | 显示表格
    • 表  2  单基线PolInSAR模型参数解算结果
      Table  2.  Model parameter results of single baseline PolInSAR inversion
      模型参数BL1BL2BL3
      Sscene0.690.780.78
      Cscene9.8810.0811.14
      下载: 导出CSV 
      | 显示表格
    • 表  3  3个干涉对的相干特性P值以及森林高度值
      Table  3.  Coherence characteristic P-value and forest heights for three interferometric pairs
      林分样地编号BL1 P值 / 森林高度(m)BL2 P值 / 森林高度(m)BL3 P值 / 森林高度(m)多基线融合结果(m)实测森林高度(m)
      10.130 / 17.820.113 / 17.020.081 / 16.8917.8214.43
      20.116 / 14.380.104 / 15.300.091 / 16.5214.3814.20
      30.092 / 12.460.075 / 15.830.135 / 11.3411.349.80
      40.103 / 15.210.111 / 15.340.119 / 14.1914.1916.00
      50.106 / 6.860.106 / 7.240.131 / 8.318.3110.70
      60.110 / 12.980.083 / 14.670.118 / 11.8911.8913.50
      70.114 / 13.350.096 / 15.300.101 / 16.1013.3513.43
      80.079 / 14.290.106 / 16.150.117 / 16.2216.2216.95
      90.069 / 12.120.090 / 17.630.060 / 12.3017.6320.10
      100.104 / 12.330.089 / 13.670.102 / 11.7212.3315.60
      110.075 / 18.340.103 / 16.750.154 / 10.1610.1613.30
      120.113 / 9.080.134 / 9.460.106 / 12.699.4611.00
      130.086 / 13.760.096 / 9.070.109 / 16.0016.0016.40
      140.197 / 10.170.230 / 8.710.186 / 9.518.716.00
      150.103 / 14.590.064 / 19.170.128 / 15.4015.4014.70
      下载: 导出CSV 
      | 显示表格