Citation: | WANG Mingyang, LIU Xuxu, LI Yulin, et al. Dynamic adversarial risk estimation based on labeled multi-Bernoulli tracker[J]. Journal of Radars, 2024, 13(1): 270–282. doi: 10.12000/JR23207 |
[1] |
刘宝旭, 徐菁, 许榕生. 黑客入侵防护体系研究与设计[J]. 计算机工程与应用, 2001, 37(8): 1–3, 29. doi: 10.3321/j.issn:1002-8331.2001.08.001
LIU Baoxu, XU Jing, and XU Rongsheng. The study and design of the defence system of the hacker attacks[J]. Computer Engineering and Applications, 2001, 37(8): 1–3, 29. doi: 10.3321/j.issn:1002-8331.2001.08.001
|
[2] |
王福军, 梅卫, 王春平, 等. 基于敌我对抗信息的目标机动态势估计[J]. 火力与指挥控制, 2010, 35(9): 152–155. doi: 10.3969/j.issn.1002-0640.2010.09.040
WANG Fujun, MEI Wei, WANG Chunping, et al. Prediction of target maneuvering situation based on confrontation information between the enemy and ourselves[J]. Fire Control & Command Control, 2010, 35(9): 152–155. doi: 10.3969/j.issn.1002-0640.2010.09.040
|
[3] |
LIGGINS II M, HALL D, and LLINAS J. Handbook of Multisensor Data fusion: Theory and Practice[M]. 2nd ed. Boca Raton, USA: CRC Press, 2009: 1–870.
|
[4] |
GONG Hua, YU Xiaoye, ZHANG Yong, et al. Dynamic threat assessment of air multi-target based on DBN-TOPSIS method[C]. 2021 China Automation Congress, Beijing, China, 2021: 6902–6907.
|
[5] |
ROY J, PARADIS S, and ALLOUCHE M. Threat evaluation for impact assessment in situation analysis systems[C]. Signal Processing, Sensor Fusion, and Target Recognition XI, Orlando, USA, 2002: 329–341.
|
[6] |
ERLANDSSON T and NIKLASSON L. Automatic evaluation of air mission routes with respect to combat survival[J]. Information Fusion, 2014, 20: 88–98. doi: 10.1016/j.inffus.2013.12.001
|
[7] |
TUZLUKOV V. Signal Processing in Radar Systems[M]. Boca Raton, USA: CRC Press, 2013: 1–632.
|
[8] |
BOLDERHEIJ F. Mission-driven sensor management: Analysis, design, implementation and simulation[D]. [Ph.D. dissertation], Delft University of Technology, 2007.
|
[9] |
JOHANSSON F. Evaluating the performance of TEWA systems[D]. [Ph.D. dissertation], Örebro University, 2010: 1–177.
|
[10] |
NARYKOV A, DELANDE E, and CLARK D E. A Formulation of the adversarial risk for multiobject filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2082–2092. doi: 10.1109/TAES.2021.3098130
|
[11] |
LUCAS T W. Damage functions and estimates of fratricide and collateral damage[J]. Naval Research Logistics (NRL), 2003, 50(4): 306–321. doi: 10.1002/nav.10057
|
[12] |
HOFFMAN J R, SORENSEN E, STELZIG C A, et al. Scientific performance estimation of robustness and threat[C]. Signal Processing, Sensor Fusion, and Target Recognition XI, Orlando, USA, 2002: 248–258.
|
[13] |
CLARK D E. Stochastic multi-object guidance laws for interception and rendezvous problems[J]. IEEE Transactions on Automatic Control, 2022, 67(3): 1482–1489. doi: 10.1109/TAC.2021.3062559
|
[14] |
MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Boston, USA: Artech House, 2007: 1–888.
|
[15] |
周雪芹, 廖力, 高峰. 伯努利滤波在单站无源跟踪中的应用[J]. 电讯技术, 2019, 59(4): 419–425. doi: 10.3969/j.issn.1001-893x.2019.04.009
ZHOU Xueqin, LIAO Li, and GAO Feng. Application of Bernoulli filter in single-station passive tracking[J]. Telecommunication Engineering, 2019, 59(4): 419–425. doi: 10.3969/j.issn.1001-893x.2019.04.009
|
[16] |
MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119
|
[17] |
VO B T, VO B N, and CANTONI A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553–3567. doi: 10.1109/TSP.2007.894241
|
[18] |
王佰录, 易伟, 李溯琪, 等. 分布式多目标伯努利滤波器的网络共识技术[J]. 信号处理, 2018, 34(1): 1–12. doi: 10.16798/j.issn.1003-0530.2018.01.001
WANG Bailu, YI Wei, LI Suqi, et al. Consensus for distributed multi-Bernoulli filter[J]. Journal of Signal Processing, 2018, 34(1): 1–12. doi: 10.16798/j.issn.1003-0530.2018.01.001
|
[19] |
VO B T, VO B N, and CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924
|
[20] |
VO B T and VO B N. Labeled random finite sets and multi-object conjugate priors[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3460–3475. doi: 10.1109/TSP.2013.2259822
|
[21] |
VO B N, VO B T, and PHUNG D. Labeled random finite sets and the Bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6554–6567. doi: 10.1109/TSP.2014.2364014
|
[22] |
SHIM C, VO B T, VO B N, et al. Linear complexity Gibbs sampling for generalized labeled multi-Bernoulli filtering[J]. IEEE Transactions on Signal Processing, 2023, 71: 1981–1994. doi: 10.1109/TSP.2023.3277220
|
[23] |
REUTER S, VO B T, VO B N, et al. The labeled multi-Bernoulli filter[J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3246–3260. doi: 10.1109/TSP.2014.2323064
|
[24] |
LI Suqi, YI Wei, HOSEINNEZHAD R, et al. Multiobject tracking for generic observation model using labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 368–383. doi: 10.1109/TSP.2017.2764864
|
[25] |
LI Suqi, BATTISTELLI G, CHISCI L, et al. Computationally efficient multi-agent multi-object tracking with labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2019, 67(1): 260–275. doi: 10.1109/TSP.2018.2880704
|
[26] |
LI Suqi, YI Wei, HOSEINNEZHAD R, et al. Robust distributed fusion with labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 278–293. doi: 10.1109/TSP.2017.2760286
|
[27] |
李溯琪. 基于标号随机集的传感器网络分布式融合技术研究[D]. [博士论文], 电子科技大学, 2018: 1–142.
LI Suqi. Labeled random finite set based distributed fusion over sensor network[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2018: 1–142.
|
[28] |
NGUYEN T T D, VO B N, VO B T, et al. Tracking cells and their lineages via labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2021, 69: 5611–5626. doi: 10.1109/TSP.2021.3111705
|
[29] |
徐开明, 王佰录, 李溯琪, 等. 低空监视雷达“走-停-走”目标跟踪技术[J]. 雷达学报, 2022, 11(3): 443–458. doi: 10.12000/JR21211
XU Kaiming, WANG Bailu, LI Suqi, et al. Move-stop-move target tracking with low-altitude surveillance radars[J]. Journal of Radars, 2022, 11(3): 443–458. doi: 10.12000/JR21211
|
[30] |
WANG Bailu, LI Suqi, YI Wei, et al. Performance analysis for parallel grouping-based labeled multi-Bernoulli filter[J]. Signal Processing, 2023, 202: 108779. doi: 10.1016/j.sigpro.2022.108779
|
[31] |
WITKOWSKI M, WHITE G, LOUVIERIS P, et al. High-level information fusion and mission planning in highly anisotropic threat spaces[C]. IEEE 11th International Conference on Information Fusion, Cologne, Germany, 2008: 1–8.
|
[32] |
NARYKOV A, DELANDE E, CLARK D, et al. Second-order statistics for threat assessment with the PHD filter[C]. Sensor Signal Processing for Defence Conference (SSPD), London, UK, 2017: 1–5.
|
[33] |
HORREY W J, WICKENS C D, STRAUSS R, et al. Supporting situation assessment through attention guidance and diagnostic aiding: The benefits and costs of display enhancement on judgment skill[J]. Adaptive Perspectives on Human-Technology Interaction: Methods and Models for Cognitive Engineering and Human-Computer Interaction, 2006: 55–70.
|
[34] |
FANG Fang, HE Jiafan, LI Qingwei, et al. Weapon-target assignment based on improved particle swarm optimization for different allocation criteria[C]. 2021 China Automation Congress (CAC), Beijing, China, 2021: 6628–6633.
|
[35] |
JOHANSSON F and FALKMAN G. A Bayesian network approach to threat evaluation with application to an air defense scenario[C]. IEEE 11th International Conference on Information Fusion, Cologne, Germany, 2008: 1–7.
|
[36] |
LITTLE E G and ROGOVA G L. An ontological analysis of threat and vulnerability[C]. IEEE 9th International Conference on Information Fusion, Florence, Italy, 2006: 1–8.
|
[37] |
GUERRIERO M, SVENSSON L, SVENSSON D, et al. Shooting two birds with two bullets: How to find minimum mean OSPA estimates[C]. IEEE 13th International Conference on Information Fusion, Edinburgh, UK, 2010: 1–8.
|
[38] |
PAPAGEORGIOU D and RAYKIN M. A risk-based approach to sensor resource management[C]. Advances in Cooperative Control and Optimization. Berlin, Germany: Springer, 2007: 129–144.
|
[39] |
ANGLEY D, RISTIC B, MORAN W, et al. Search for targets in a risky environment using multi-objective optimisation[J]. IET Radar, Sonar & Navigation, 2019, 13(1): 123–127. doi: 10.1049/iet-rsn.2018.5184
|
[40] |
DITZEL M, KESTER L, VAN DEN BROEK S, et al. Cross-layer utility-based system optimization[C]. The IEEE 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 507–514.
|
[41] |
KATSILIERIS F, DRIESSEN H, and YAROVOY A. Threat-based sensor management for target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2772–2785. doi: 10.1109/TAES.2015.140052
|
[42] |
BENAVOLI A, RISTIC B, FARINA A, et al. An application of evidential networks to threat assessment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 620–639. doi: 10.1109/TAES.2009.5089545
|