Volume 13 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
WANG Mingyang, LIU Xuxu, LI Yulin, et al. Dynamic adversarial risk estimation based on labeled multi-Bernoulli tracker[J]. Journal of Radars, 2024, 13(1): 270–282. doi: 10.12000/JR23207
Citation: WANG Mingyang, LIU Xuxu, LI Yulin, et al. Dynamic adversarial risk estimation based on labeled multi-Bernoulli tracker[J]. Journal of Radars, 2024, 13(1): 270–282. doi: 10.12000/JR23207

Dynamic Adversarial Risk Estimation Based on Labeled Multi-Bernoulli Tracker

DOI: 10.12000/JR23207
Funds:  The National Natural Science Foundation of China (62301091, 62371078), China Postdoctoral Science Foundation Funded Project (2022M710533, 2022M710535)
More Information
  • Corresponding author: LI Suqi, lisuqi@cqu.edu.cn
  • Received Date: 2023-10-25
  • Rev Recd Date: 2023-12-25
  • Available Online: 2023-12-27
  • Publish Date: 2024-01-09
  • In many military and civilian areas, there exists a scenario in which multiple intruders from an adversary attempt to enter important region of our own to carry out intentional malign activity. Adversarial Risk (AR) estimation is used to assess and predict the expected damage to our valuable assets from the actions of online adversaries based on measurements performed by sensors. To evaluate random and time-varying AR, this study proposes a stochastic AR estimation approach based on a Labeled Multi-Bernoulli (LMB) tracker. First, in the formulation of LMB filtering, expressions of the minimum mean squared error estimation of the stochastic AR are derived for the additive and multiplying model. Second, by combining the Gaussian mixture and sampling approximations, we devise a numerical calculation approach for the proposed AR estimations. Third, we achieve an online evaluation of the expected damage to our valuable assets from the adversary by embedding the proposed AR estimation and LMB filtering. The effectiveness and performance advantage of the proposed estimation algorithms are verified using measurements from radars, considering a simulated scenario wherein multiple lethal targets hit the radar positions.

     

  • loading
  • [1]
    刘宝旭, 徐菁, 许榕生. 黑客入侵防护体系研究与设计[J]. 计算机工程与应用, 2001, 37(8): 1–3, 29. doi: 10.3321/j.issn:1002-8331.2001.08.001

    LIU Baoxu, XU Jing, and XU Rongsheng. The study and design of the defence system of the hacker attacks[J]. Computer Engineering and Applications, 2001, 37(8): 1–3, 29. doi: 10.3321/j.issn:1002-8331.2001.08.001
    [2]
    王福军, 梅卫, 王春平, 等. 基于敌我对抗信息的目标机动态势估计[J]. 火力与指挥控制, 2010, 35(9): 152–155. doi: 10.3969/j.issn.1002-0640.2010.09.040

    WANG Fujun, MEI Wei, WANG Chunping, et al. Prediction of target maneuvering situation based on confrontation information between the enemy and ourselves[J]. Fire Control & Command Control, 2010, 35(9): 152–155. doi: 10.3969/j.issn.1002-0640.2010.09.040
    [3]
    LIGGINS II M, HALL D, and LLINAS J. Handbook of Multisensor Data fusion: Theory and Practice[M]. 2nd ed. Boca Raton, USA: CRC Press, 2009: 1–870.
    [4]
    GONG Hua, YU Xiaoye, ZHANG Yong, et al. Dynamic threat assessment of air multi-target based on DBN-TOPSIS method[C]. 2021 China Automation Congress, Beijing, China, 2021: 6902–6907.
    [5]
    ROY J, PARADIS S, and ALLOUCHE M. Threat evaluation for impact assessment in situation analysis systems[C]. Signal Processing, Sensor Fusion, and Target Recognition XI, Orlando, USA, 2002: 329–341.
    [6]
    ERLANDSSON T and NIKLASSON L. Automatic evaluation of air mission routes with respect to combat survival[J]. Information Fusion, 2014, 20: 88–98. doi: 10.1016/j.inffus.2013.12.001
    [7]
    TUZLUKOV V. Signal Processing in Radar Systems[M]. Boca Raton, USA: CRC Press, 2013: 1–632.
    [8]
    BOLDERHEIJ F. Mission-driven sensor management: Analysis, design, implementation and simulation[D]. [Ph.D. dissertation], Delft University of Technology, 2007.
    [9]
    JOHANSSON F. Evaluating the performance of TEWA systems[D]. [Ph.D. dissertation], Örebro University, 2010: 1–177.
    [10]
    NARYKOV A, DELANDE E, and CLARK D E. A Formulation of the adversarial risk for multiobject filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2082–2092. doi: 10.1109/TAES.2021.3098130
    [11]
    LUCAS T W. Damage functions and estimates of fratricide and collateral damage[J]. Naval Research Logistics (NRL), 2003, 50(4): 306–321. doi: 10.1002/nav.10057
    [12]
    HOFFMAN J R, SORENSEN E, STELZIG C A, et al. Scientific performance estimation of robustness and threat[C]. Signal Processing, Sensor Fusion, and Target Recognition XI, Orlando, USA, 2002: 248–258.
    [13]
    CLARK D E. Stochastic multi-object guidance laws for interception and rendezvous problems[J]. IEEE Transactions on Automatic Control, 2022, 67(3): 1482–1489. doi: 10.1109/TAC.2021.3062559
    [14]
    MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Boston, USA: Artech House, 2007: 1–888.
    [15]
    周雪芹, 廖力, 高峰. 伯努利滤波在单站无源跟踪中的应用[J]. 电讯技术, 2019, 59(4): 419–425. doi: 10.3969/j.issn.1001-893x.2019.04.009

    ZHOU Xueqin, LIAO Li, and GAO Feng. Application of Bernoulli filter in single-station passive tracking[J]. Telecommunication Engineering, 2019, 59(4): 419–425. doi: 10.3969/j.issn.1001-893x.2019.04.009
    [16]
    MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119
    [17]
    VO B T, VO B N, and CANTONI A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553–3567. doi: 10.1109/TSP.2007.894241
    [18]
    王佰录, 易伟, 李溯琪, 等. 分布式多目标伯努利滤波器的网络共识技术[J]. 信号处理, 2018, 34(1): 1–12. doi: 10.16798/j.issn.1003-0530.2018.01.001

    WANG Bailu, YI Wei, LI Suqi, et al. Consensus for distributed multi-Bernoulli filter[J]. Journal of Signal Processing, 2018, 34(1): 1–12. doi: 10.16798/j.issn.1003-0530.2018.01.001
    [19]
    VO B T, VO B N, and CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924
    [20]
    VO B T and VO B N. Labeled random finite sets and multi-object conjugate priors[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3460–3475. doi: 10.1109/TSP.2013.2259822
    [21]
    VO B N, VO B T, and PHUNG D. Labeled random finite sets and the Bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6554–6567. doi: 10.1109/TSP.2014.2364014
    [22]
    SHIM C, VO B T, VO B N, et al. Linear complexity Gibbs sampling for generalized labeled multi-Bernoulli filtering[J]. IEEE Transactions on Signal Processing, 2023, 71: 1981–1994. doi: 10.1109/TSP.2023.3277220
    [23]
    REUTER S, VO B T, VO B N, et al. The labeled multi-Bernoulli filter[J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3246–3260. doi: 10.1109/TSP.2014.2323064
    [24]
    LI Suqi, YI Wei, HOSEINNEZHAD R, et al. Multiobject tracking for generic observation model using labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 368–383. doi: 10.1109/TSP.2017.2764864
    [25]
    LI Suqi, BATTISTELLI G, CHISCI L, et al. Computationally efficient multi-agent multi-object tracking with labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2019, 67(1): 260–275. doi: 10.1109/TSP.2018.2880704
    [26]
    LI Suqi, YI Wei, HOSEINNEZHAD R, et al. Robust distributed fusion with labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 278–293. doi: 10.1109/TSP.2017.2760286
    [27]
    李溯琪. 基于标号随机集的传感器网络分布式融合技术研究[D]. [博士论文], 电子科技大学, 2018: 1–142.

    LI Suqi. Labeled random finite set based distributed fusion over sensor network[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2018: 1–142.
    [28]
    NGUYEN T T D, VO B N, VO B T, et al. Tracking cells and their lineages via labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2021, 69: 5611–5626. doi: 10.1109/TSP.2021.3111705
    [29]
    徐开明, 王佰录, 李溯琪, 等. 低空监视雷达“走-停-走”目标跟踪技术[J]. 雷达学报, 2022, 11(3): 443–458. doi: 10.12000/JR21211

    XU Kaiming, WANG Bailu, LI Suqi, et al. Move-stop-move target tracking with low-altitude surveillance radars[J]. Journal of Radars, 2022, 11(3): 443–458. doi: 10.12000/JR21211
    [30]
    WANG Bailu, LI Suqi, YI Wei, et al. Performance analysis for parallel grouping-based labeled multi-Bernoulli filter[J]. Signal Processing, 2023, 202: 108779. doi: 10.1016/j.sigpro.2022.108779
    [31]
    WITKOWSKI M, WHITE G, LOUVIERIS P, et al. High-level information fusion and mission planning in highly anisotropic threat spaces[C]. IEEE 11th International Conference on Information Fusion, Cologne, Germany, 2008: 1–8.
    [32]
    NARYKOV A, DELANDE E, CLARK D, et al. Second-order statistics for threat assessment with the PHD filter[C]. Sensor Signal Processing for Defence Conference (SSPD), London, UK, 2017: 1–5.
    [33]
    HORREY W J, WICKENS C D, STRAUSS R, et al. Supporting situation assessment through attention guidance and diagnostic aiding: The benefits and costs of display enhancement on judgment skill[J]. Adaptive Perspectives on Human-Technology Interaction: Methods and Models for Cognitive Engineering and Human-Computer Interaction, 2006: 55–70.
    [34]
    FANG Fang, HE Jiafan, LI Qingwei, et al. Weapon-target assignment based on improved particle swarm optimization for different allocation criteria[C]. 2021 China Automation Congress (CAC), Beijing, China, 2021: 6628–6633.
    [35]
    JOHANSSON F and FALKMAN G. A Bayesian network approach to threat evaluation with application to an air defense scenario[C]. IEEE 11th International Conference on Information Fusion, Cologne, Germany, 2008: 1–7.
    [36]
    LITTLE E G and ROGOVA G L. An ontological analysis of threat and vulnerability[C]. IEEE 9th International Conference on Information Fusion, Florence, Italy, 2006: 1–8.
    [37]
    GUERRIERO M, SVENSSON L, SVENSSON D, et al. Shooting two birds with two bullets: How to find minimum mean OSPA estimates[C]. IEEE 13th International Conference on Information Fusion, Edinburgh, UK, 2010: 1–8.
    [38]
    PAPAGEORGIOU D and RAYKIN M. A risk-based approach to sensor resource management[C]. Advances in Cooperative Control and Optimization. Berlin, Germany: Springer, 2007: 129–144.
    [39]
    ANGLEY D, RISTIC B, MORAN W, et al. Search for targets in a risky environment using multi-objective optimisation[J]. IET Radar, Sonar & Navigation, 2019, 13(1): 123–127. doi: 10.1049/iet-rsn.2018.5184
    [40]
    DITZEL M, KESTER L, VAN DEN BROEK S, et al. Cross-layer utility-based system optimization[C]. The IEEE 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 507–514.
    [41]
    KATSILIERIS F, DRIESSEN H, and YAROVOY A. Threat-based sensor management for target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2772–2785. doi: 10.1109/TAES.2015.140052
    [42]
    BENAVOLI A, RISTIC B, FARINA A, et al. An application of evidential networks to threat assessment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 620–639. doi: 10.1109/TAES.2009.5089545
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(485) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint