Huang Yong, Chen Xiao-long, Guan Jian. Property Analysis and Suppression Method of Real Measured Sea Spikes[J]. Journal of Radars, 2015, 4(3): 334-342. doi: 10.12000/JR14108
Citation: SONG Xiaocheng, LI Zhi, REN Haiwei, et al. Threat-driven resource allocation algorithm for distributed netted phased array radars[J]. Journal of Radars, 2023, 12(3): 629–641. doi: 10.12000/JR22240

Threat-driven Resource Allocation Algorithm for Distributed Netted Phased Array Radars

DOI: 10.12000/JR22240
Funds:  The National Natural Science Foundation of China (62231008, U19B2017), The Fundamental Research Funds for the Central Universities (ZYGX2020ZB029)
More Information
  • Corresponding author: YI Wei, kussoyi@gmail.com
  • Received Date: 2022-12-22
  • Rev Recd Date: 2023-02-09
  • Available Online: 2023-02-11
  • Publish Date: 2023-02-22
  • For the Multi-Target Tracking (MTT) of distributed netted phased array radars, this paper proposes a joint beam and dwell time allocation algorithm driven by dynamic threats. First, a Bayesian Cramer-Rao Lower Bound (BCRLB), including beam and dwell time allocation, is derived. Then, a comprehensive threat evaluation scale is constructed based on the real-time motion state of the target, and a utility function based on the tracking accuracy reference threshold and contributed weights is designed for targets with different threats to measure the relationship of resource allocation prioritization among multiple targets. Afterward, an optimal distribution model of the joint beam and the dwell time driven by the dynamic threat of the target is established; the utility function is combined with the resources of the netted phased array radar system. Finally, the problem is solved using a reward-based iterative descent search algorithm, and the effectiveness of the algorithm is verified via simulation. The simulation results show that the proposed algorithm can determine the tracking accuracy requirements of different targets and allocate tracking resources based on the multi-target threat assessment results, thereby improving the comprehensive tracking accuracy of networked phased array radars.

     

  • [1]
    张光义. 相控阵雷达系统[M]. 北京: 国防工业出版社, 2009: 1–24.

    ZHANG Guangyi. Principles of Phased Array Radar[M]. Beijing: National Defense Industry Press, 2009: 1–24.
    [2]
    TAN Qianqian, CHENG Ting, and LI Xi. Online adaptive dwell scheduling based on dynamic template for PAR[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1119–1129. doi: 10.23919/JSEE.2021.000096
    [3]
    卢建斌. 相控阵雷达资源优化管理的理论与方法[D]. [博士论文], 国防科学技术大学, 2007.

    LU Jianbin. Theory and method of resource optimization and management for phased array radars[D]. [Ph. D. dissertation], National University of Defense Technology, 2007.
    [4]
    王祥丽, 易伟, 孔令讲. 基于多目标跟踪的相控阵雷达波束和驻留时间联合分配方法[J]. 雷达学报, 2017, 6(6): 602–610. doi: 10.12000/JR17045

    WANG Xiangli, YI Wei, and KONG Lingjiang. Joint beam selection and dwell time allocation for multi-target tracking in phased array radar system[J]. Journal of Radars, 2017, 6(6): 602–610. doi: 10.12000/JR17045
    [5]
    王祥丽. 相控阵雷达跟踪模式下波束和时间资源管理算法研究[D]. [硕士论文], 电子科技大学, 2018.

    WANG Xiangli. Research on beam and time resources management algorithm for target tracking in phased array radar[D]. [Master dissertation], University of Electronic Science and Technology of China, 2018.
    [6]
    花汉兵. 雷达组网的特点及其关键技术研究[J]. 现代电子技术, 2007, 30(23): 33–35. doi: 10.3969/j.issn.1004-373X.2007.23.012

    HUA Hanbing. Study on characteristics and critical technologics of radar networking[J]. Modern Electronics Technique, 2007, 30(23): 33–35. doi: 10.3969/j.issn.1004-373X.2007.23.012
    [7]
    孙俊, 张大琳, 易伟. 多机协同干扰组网雷达的资源调度方法[J]. 雷达科学与技术, 2022, 20(3): 237–244, 254. doi: 10.3969/j.issn.1672-2337.2022.03.001

    SUN Jun, ZHANG Dalin, and YI Wei. Resource allocation for multi-jammer cooperatively jamming netted radar systems[J]. Radar Science and Technology, 2022, 20(3): 237–244, 254. doi: 10.3969/j.issn.1672-2337.2022.03.001
    [8]
    郭冠斌, 方青. 雷达组网技术的现状与发展[J]. 雷达科学与技术, 2005, 3(4): 193–197, 202. doi: 10.3969/j.issn.1672-2337.2005.04.001

    GUO Guanbin and FANG Qing. Current status and development of radar netting technique[J]. Radar Science and Technology, 2005, 3(4): 193–197, 202. doi: 10.3969/j.issn.1672-2337.2005.04.001
    [9]
    刘鹏翔, 韩维, 史玮韦, 等. 复杂作战环境下空中目标威胁程度评估[J]. 海军航空工程学院学报, 2010, 25(4): 462–466. doi: 10.3969/j.issn.1673-1522.2010.04.023

    LIU Pengxiang, HAN Wei, SHI Weiwei, et al. evaluation for the aerial targets’ threat in the complicated environment[J]. Journal of Naval Aeronautical and Astronautical University, 2010, 25(4): 462–466. doi: 10.3969/j.issn.1673-1522.2010.04.023
    [10]
    吕江涛, 高秉亚, 王高飞. 弹道导弹威胁度评估及其在雷达中的应用[J]. 现代雷达, 2017, 39(12): 20–23, 28. doi: 10.16592/j.cnki.1004-7859.2017.12.004

    LÜ Jiangtao, GAO Bingya, and WANG Gaofei. Ballistic missile threat assessment and its application in radar[J]. Modern Radar, 2017, 39(12): 20–23, 28. doi: 10.16592/j.cnki.1004-7859.2017.12.004
    [11]
    YAN Junkun, PU Wenqiang, LIU Hongwei, et al. Cooperative target assignment and dwell allocation for multiple target tracking in phased array radar network[J]. Signal Process, 2017, 141: 74–83. doi: 10.1016/j.sigpro.2017.05.014
    [12]
    ZHANG Weiwei, SHI Chenguang, ZHOU Jianjiang, et al. Joint aperture and transmit resource allocation strategy for multi-target localization in phased array radar network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022: 1–14. doi: 10.1109/TAES.2022.3203688
    [13]
    GODRICH H, PETROPULU A P, and POOR H V. Power allocation strategies for target localization in distributed multiple-radar architectures[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3226–3240. doi: 10.1109/TSP.2011.2144976
    [14]
    YAN Junkun, LIU Hongwei, PU Wenqiang, et al. Joint beam selection and power allocation for multiple target tracking in netted colocated MIMO radar system[J]. IEEE Transactions on Signal Processing, 2016, 64(24): 6417–6427. doi: 10.1109/TSP.2016.2607147
    [15]
    CHENG Ting, LI Xi, TAN Qianqian, et al. Adaptive time-space resource and waveform control for collocated MIMO radar with simultaneous multi-beam[J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 47–59. doi: 10.23919/JSEE.2022.000006
    [16]
    时晨光, 董璟, 周建江. 频谱共存下面向多目标跟踪的组网雷达功率时间联合优化算法[J]. 雷达学报, 2023, 12(3): 590–601. doi: 10.12000/JR22146

    SHI Chenguang, DONG Jing, and ZHOU Jianjiang. Joint transmit power and dwell time allocation for multitarget tracking in radar networks under spectral coexistence[J]. Journal of Radars, 2023, 12(3): 590–601. doi: 10.12000/JR22146
    [17]
    YUAN Ye, YI Wei, HOSEINNEZHAD R, et al. Robust power allocation for resource-aware multi-target tracking with colocated MIMO radars[J]. IEEE Transactions on Signal Processing, 2021, 69: 443–458. doi: 10.1109/TSP.2020.3047519
    [18]
    许稼, 彭应宁, 夏香根, 等. 基于检测前聚焦的临近空间高动态飞行器雷达探测研究[J]. 雷达学报, 2017, 6(3): 229–238. doi: 10.12000/JR16148

    XU Jia, PENG Yingning, XIA Xianggen, et al. Focus-before-detection methods for radar detection of near space high-maneuvering aircrafts[J]. Journal of Radars, 2017, 6(3): 229–238. doi: 10.12000/JR16148
    [19]
    XIE Mingchi, YI Wei, KIRUBARAJAN T, et al. Joint node selection and power allocation strategy for multitarget tracking in decentralized radar networks[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 729–743. doi: 10.1109/TSP.2017.2777394
    [20]
    YI Wei, YUAN Ye, HOSEINNEZHAD R, et al. Resource scheduling for distributed multi-target tracking in netted colocated MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2020, 68: 1602–1617. doi: 10.1109/TSP.2020.2976587
    [21]
    SHI Chenguang, WANG Yijie, SALOUS S, et al. Joint transmit resource management and waveform selection strategy for target tracking in distributed phased array radar network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2762–2778. doi: 10.1109/TAES.2021.3138869
    [22]
    ZHANG Haowei, LIU Weijian, ZONG Binfeng, et al. An efficient power allocation strategy for maneuvering target tracking in cognitive MIMO radar[J]. IEEE Transactions on Signal Processing, 2021, 69: 1591–1602. doi: 10.1109/TSP.2020.3047227
    [23]
    YAN Junkun, LIU Hongwei, JIU Bo, et al. Power allocation algorithm for target tracking in unmodulated continuous wave radar network[J]. IEEE Sensors Journal, 2015, 15(2): 1098–1108. doi: 10.1109/JSEN.2014.2360039
    [24]
    何友, 修建娟, 关欣. 雷达数据处理及应用[M]. 3版. 北京: 电子工业出版社, 2013: 36–38.

    HE You, XIU Jianjuan, and GUAN Xin. Radar Data Processing with Applications[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2013: 36–38.
    [25]
    DONG Jing, SHI Chenguang, ZHOU Jianjiang, et al. Joint radar selection and resource allocation for multi-target tracking in radar network under communication interference[C]. 2021 International Conference on Control, Automation and Information Sciences (ICCAIS), Xi’an, China, 2021: 73–77.
    [26]
    VAN TREES H L. Detection, Estimation, and Modulation Theory: Radar-Sonar Processing and Gaussian Signals in Noise[M]. New York: John Wiley & Sons, 2001: 275–351.
    [27]
    VAN TREES H L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory[M]. New York: John Wiley & Sons, 2004: 917–1317.
    [28]
    张浩为, 谢军伟, 盛川. 综合优先级规划下的相控阵雷达自适应调度方法[J]. 兵工学报, 2016, 37(11): 2163–2169. doi: 10.3969/j.issn.1000-1093.2016.11.026

    ZHANG Haowei, XIE Junwei, and SHENG Chuan. Adaptive scheduling algorithm over comprehensive priority for phased array radar[J]. Acta Armamentarii, 2016, 37(11): 2163–2169. doi: 10.3969/j.issn.1000-1093.2016.11.026
    [29]
    张恺桐, 闫涛, 韩崇昭, 等. 基于威胁程度的目标跟踪传感器管理方法[J]. 指挥信息系统与技术, 2022, 13(1): 39–44. doi: 10.15908/j.cnki.cist.2022.01.007

    ZHANG Kaitong, YAN Tao, HAN Chongzhao, et al. Target tracking sensor management method based on threat degree[J]. Command Information System and Technology, 2022, 13(1): 39–44. doi: 10.15908/j.cnki.cist.2022.01.007
    [30]
    KATSILIERIS F, DRIESSEN H, and YAROVOY A. Threat-based sensor management for target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2772–2785. doi: 10.1109/TAES.2015.140052
    [31]
    EL-FALLAH A, ZATEZALO A, MAHLER R, et al. Unified Bayesian situation assessment sensor management[C]. SPIE 5809, Signal Processing, Sensor Fusion, and Target Recognition XIV, Orlando, United States, 2005: 253–264.
    [32]
    RIBEIRO M I. Kalman and extended Kalman filters: Concept, derivation and properties[J]. Institute for Systems and Robotics, 2004,, 43(46): 3736–3741.
    [33]
    JULIER S J and UHLMANN J K. A non-divergent estimation algorithm in the presence of unknown correlations[C]. 1997 American Control Conference, Albuquerque, USA, 1997: 2369–2373.
    [34]
    YAN Junkun, JIAO Hao, PU Wenqiang, et al. Radar sensor network resource allocation for fused target tracking: A brief review[J]. Information Fusion, 2022, 86/87: 104–115. doi: 10.1016/j.inffus.2022.06.009
    [35]
    陈辉, 贺忠良, 连峰, 等. 多目标跟踪中基于目标威胁度评估的传感器控制方法[J]. 电子与信息学报, 2018, 40(12): 2861–2867. doi: 10.11999/JEIT180212

    CHEN Hui, HE Zhongliang, LIAN Feng, et al. Threat assessment based sensor control for multi-target tracking[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2861–2867. doi: 10.11999/JEIT180212
    [36]
    TICHAVSKY P, MURAVCHIK C H, and NEHORAI A. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering[J]. IEEE Transactions on Signal Processing, 1998, 46(5): 1386–1396. doi: 10.1109/78.668800
    [37]
    BURER S and LETCHFORD A N. Non-convex mixed-integer nonlinear programming: A survey[J]. Surveys in Operations Research and Management Science, 2012, 17(2): 97–106. doi: 10.1016/j.sorms.2012.08.001
  • Relative Articles

    [1]LIU Kangsheng, LING Qing, YAN Wenjun, ZHANG Limin, YU Keyuan, LIU Hengyan. Weak Labeling-specific Emitter Identification Algorithm Based on the Weakly Supervised Wav-KAN Network[J]. Journal of Radars, 2025, 14(2): 338-352. doi: 10.12000/JR24248
    [2]SHI Chenguang, TANG Zhicheng, ZHOU Jianjiang, YAN Junkun, WANG Ziwei. Joint Collaborative Radar Selection and Transmit Resource Allocation in Multiple Distributed Radar Networks with Imperfect Detection Performance[J]. Journal of Radars, 2024, 13(3): 565-583. doi: 10.12000/JR23081
    [3]ZHAO Yurui, HUANG Zhitao, WANG Xiang. A Review of Specific Emitter Identification Based on Phase Space Reconstruction[J]. Journal of Radars, 2023, 12(4): 713-737. doi: 10.12000/JR23057
    [4]HAN Zhaoyun, CEN Xi, CUI Jiahe, LI Yachao, ZHANG Peng. Self-supervised Learning Method for SAR Interference Suppression Based on Abnormal Texture Perception[J]. Journal of Radars, 2023, 12(1): 154-172. doi: 10.12000/JR22168
    [5]CHEN Xiang, WANG Liandong, XU Xiong, SHEN Xujian, FENG Yuntian. A Review of Radio Frequency Fingerprinting Methods Based on Raw I/Q and Deep Learning[J]. Journal of Radars, 2023, 12(1): 214-234. doi: 10.12000/JR22140
    [6]KANG Jian, WANG Zhirui, ZHU Ruoxin, SUN Xian. Supervised Contrastive Learning Regularized High-resolution Synthetic Aperture Radar Building Footprint Generation[J]. Journal of Radars, 2022, 11(1): 157-167. doi: 10.12000/JR21124
    [7]SUI Jinping, LIU Zhen, LIU Li, LI Xiang. Progress in Radar Emitter Signal Deinterleaving[J]. Journal of Radars, 2022, 11(3): 418-433. doi: 10.12000/JR21147
    [8]SUN Hao, CHEN Jin, LEI Lin, JI Kefeng, KUANG Gangyao. Adversarial Robustness of Deep Convolutional Neural Network-based Image Recognition Models: A Review[J]. Journal of Radars, 2021, 10(4): 571-594. doi: 10.12000/JR21048
    [9]WANG Ruichuan, WANG Yanfei. Terrain Classification of Polarimetric SAR Images Using Semi-supervised Spatial-channel Selective Kernel Network[J]. Journal of Radars, 2021, 10(4): 516-530. doi: 10.12000/JR21080
    [10]WANG Yuqi, SUN Guangcai, YANG Jun, XING Mengdao, YANG Xiaoniu, BAO Zheng. Passive Localization Algorithm for Radiation Source Based on Long Synthetic Aperture[J]. Journal of Radars, 2020, 9(1): 185-194. doi: 10.12000/JR19080
    [11]SUN Liting, HUANG Zhitao, WANG Xiang, WANG Fenghua, LI Baoguo. Overview of Radio Frequency Fingerprint Extraction in Specific Emitter Identification(in English)[J]. Journal of Radars, 2020, 9(6): 1014-1031. doi: 10.12000/JR19115
    [12]YUAN Ba, YAO Ping, ZHENG Tianyao. Radar Emitter Signal Identification Based on Weighted Normalized Singular-value Decomposition[J]. Journal of Radars, 2019, 8(1): 44-53. doi: 10.12000/JR18053
    [13]HUA Wenqiang, WANG Shuang, GUO Yanhe, XIE Wen. Semi-supervised PolSAR Image Classification Based on the Neighborhood Minimum Spanning Tree[J]. Journal of Radars, 2019, 8(4): 458-470. doi: 10.12000/JR18104
    [14]Wang Benjing, Yi Jianxin, Wan Xianrong, Dan Yangpeng. Inter-frame Ambiguity Analysis and Suppression of LTE Signal for Passive Radar[J]. Journal of Radars, 2018, 7(4): 514-522. doi: 10.12000/JR18025
    [15]Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. Journal of Radars, 2017, 6(2): 136-148. doi: 10.12000/JR16130
    [16]Wan Xianrong, Sun Xuwang, Yi Jianxin, Lü Min, Rao Yunhua. Synchronous Design and Test of Distributed Passive Radar Systems Based on Digital Broadcasting and Television[J]. Journal of Radars, 2017, 6(1): 65-72. doi: 10.12000/JR16134
    [17]Hua Wen-qiang, Wang Shuang, Hou Biao. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart[J]. Journal of Radars, 2015, 4(1): 93-98. doi: 10.12000/JR14138
    [18]Zhao Hong-li, Xi Jian-bo. A Method of Unknown Illuminator Location Based on Matched Multi-illuminators[J]. Journal of Radars, 2014, 3(6): 727-731. doi: 10.12000/JR14128
    [19]Wan Xian-rong, Yi Jian-xin, Cheng Feng, Rao Yun-hua, Gong Zi-ping, Ke Heng-yu. Single Frequency Network Based Distributed Passive Radar Technology[J]. Journal of Radars, 2014, 3(6): 623-631. doi: 10.12000/JR14156
    [20]RAO Yun-Hua, ZHU Feng-Yuan, ZHANG Xiu-Zhi, WAN Xian-Rong, GONG Zi-Ping. Ambiguity Function Analysis and Side Peaks Suppression of WiFi Signal for Passive Radar[J]. Journal of Radars, 2012, 1(3): 225-231. doi: 10.3724/SP.J.1300.2012.20061
  • Cited by

    Periodical cited type(5)

    1. 杨志雄,汪静丽,孙文俊,尹亮,董先超,万洪丹,陈鹤鸣,钟凯. 多频点多波束可调的全空间太赫兹编码超表面. 光学学报. 2024(04): 308-317 .
    2. 黄若彤,李九生. 太赫兹多波束调控反射编码超表面. 物理学报. 2023(05): 231-239 .
    3. 汪静丽,杨志雄,董先超,尹亮,万洪丹,陈鹤鸣,钟凯. 基于VO_2的太赫兹各向异性编码超表面. 物理学报. 2023(12): 136-144 .
    4. 朱瑛,段坤,杨维旭,罗歆瑶,赵俊明,陈克,冯一军. 基于超构表面的低散射天线阵列. 空军工程大学学报(自然科学版). 2022(01): 30-36 .
    5. 王俊杰,冯德军,王志凇,邢世其,李永祯,王雪松. 电控时变电磁材料的SAR成像特性研究. 雷达学报. 2021(06): 865-873 . 本站查看

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 35.4 %FULLTEXT: 35.4 %META: 58.1 %META: 58.1 %PDF: 6.5 %PDF: 6.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %其他: 0.3 %其他: 0.3 %Central District: 0.0 %Central District: 0.0 %China: 0.5 %China: 0.5 %Finland: 0.0 %Finland: 0.0 %Japan: 0.1 %Japan: 0.1 %Seattle: 0.0 %Seattle: 0.0 %[]: 0.7 %[]: 0.7 %三明: 0.1 %三明: 0.1 %上海: 1.6 %上海: 1.6 %东京: 0.0 %东京: 0.0 %东京都: 0.0 %东京都: 0.0 %东莞: 0.1 %东莞: 0.1 %中卫: 0.2 %中卫: 0.2 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %丹东: 0.0 %丹东: 0.0 %伦敦: 0.0 %伦敦: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %克尔谢希尔: 0.0 %克尔谢希尔: 0.0 %兰州: 0.0 %兰州: 0.0 %兰辛: 0.0 %兰辛: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %北京: 7.8 %北京: 7.8 %十堰: 0.0 %十堰: 0.0 %南京: 3.7 %南京: 3.7 %南充: 0.5 %南充: 0.5 %南宁: 0.1 %南宁: 0.1 %南昌: 0.2 %南昌: 0.2 %南通: 0.1 %南通: 0.1 %卡拉奇: 0.0 %卡拉奇: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.7 %合肥: 0.7 %周口: 0.0 %周口: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天水: 0.0 %天水: 0.0 %天津: 0.8 %天津: 0.8 %太原: 0.1 %太原: 0.1 %威海: 0.4 %威海: 0.4 %孟买: 0.1 %孟买: 0.1 %宁波: 0.0 %宁波: 0.0 %安康: 0.1 %安康: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.5 %宣城: 0.5 %巴黎: 0.1 %巴黎: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.3 %常德: 0.3 %平顶山: 0.0 %平顶山: 0.0 %广元: 0.2 %广元: 0.2 %广州: 0.8 %广州: 0.8 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %开封: 0.0 %开封: 0.0 %弗吉尼亚州: 0.1 %弗吉尼亚州: 0.1 %张家口: 1.5 %张家口: 1.5 %张家界: 0.1 %张家界: 0.1 %徐州: 0.0 %徐州: 0.0 %德里: 0.1 %德里: 0.1 %成都: 2.8 %成都: 2.8 %扬州: 0.4 %扬州: 0.4 %拉萨: 0.1 %拉萨: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.9 %昆明: 0.9 %昌吉: 0.0 %昌吉: 0.0 %晋城: 0.0 %晋城: 0.0 %杭州: 1.6 %杭州: 1.6 %松原: 0.1 %松原: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 0.9 %武汉: 0.9 %汕头: 0.1 %汕头: 0.1 %沈阳: 0.3 %沈阳: 0.3 %法兰克福: 0.1 %法兰克福: 0.1 %泰州: 0.1 %泰州: 0.1 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.3 %济南: 0.3 %海口: 0.4 %海口: 0.4 %淄博: 0.1 %淄博: 0.1 %淮南: 0.0 %淮南: 0.0 %深圳: 1.0 %深圳: 1.0 %温州: 0.3 %温州: 0.3 %湘潭: 0.1 %湘潭: 0.1 %湛江: 0.1 %湛江: 0.1 %漯河: 0.8 %漯河: 0.8 %漳州: 0.0 %漳州: 0.0 %潍坊: 0.2 %潍坊: 0.2 %濮阳: 0.0 %濮阳: 0.0 %烟台: 0.2 %烟台: 0.2 %珠海: 0.0 %珠海: 0.0 %盘锦: 0.3 %盘锦: 0.3 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.0 %秦皇岛: 0.0 %纽约: 0.3 %纽约: 0.3 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 27.1 %芒廷维尤: 27.1 %芜湖: 0.0 %芜湖: 0.0 %芝加哥: 1.6 %芝加哥: 1.6 %苏州: 0.4 %苏州: 0.4 %莫斯科: 0.1 %莫斯科: 0.1 %菏泽: 0.1 %菏泽: 0.1 %葫芦岛: 0.0 %葫芦岛: 0.0 %衡水: 0.1 %衡水: 0.1 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.0 %襄阳: 0.0 %西宁: 17.6 %西宁: 17.6 %西安: 2.6 %西安: 2.6 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.2 %赣州: 0.2 %赤峰: 0.1 %赤峰: 0.1 %达州: 0.2 %达州: 0.2 %运城: 0.6 %运城: 0.6 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.7 %郑州: 1.7 %重庆: 0.3 %重庆: 0.3 %镇江: 0.1 %镇江: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 1.8 %长沙: 1.8 %长治: 0.0 %长治: 0.0 %阳泉: 0.1 %阳泉: 0.1 %阿什本: 0.2 %阿什本: 0.2 %青岛: 1.8 %青岛: 1.8 %鞍山: 0.0 %鞍山: 0.0 %首尔: 0.1 %首尔: 0.1 %香港: 0.0 %香港: 0.0 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %马鞍山: 0.0 %马鞍山: 0.0 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他Central DistrictChinaFinlandJapanSeattle[]三明上海东京东京都东莞中卫临汾临沂丹东伦敦佛山保定克尔谢希尔兰州兰辛凤凰城北京十堰南京南充南宁南昌南通卡拉奇厦门台北台州合肥周口哈尔滨哥伦布嘉兴大连天水天津太原威海孟买宁波安康宜春宣城巴黎常州常德平顶山广元广州库比蒂诺开封弗吉尼亚州张家口张家界徐州德里成都扬州拉萨无锡昆明昌吉晋城杭州松原桂林武汉汕头沈阳法兰克福泰州泰米尔纳德洛阳济南海口淄博淮南深圳温州湘潭湛江漯河漳州潍坊濮阳烟台珠海盘锦石家庄福州秦皇岛纽约舟山芒廷维尤芜湖芝加哥苏州莫斯科菏泽葫芦岛衡水衢州襄阳西宁西安诺沃克贵阳赣州赤峰达州运城连云港邯郸郑州重庆镇江长春长沙长治阳泉阿什本青岛鞍山首尔香港香港特别行政区马鞍山齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1535) PDF downloads(259) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint