Citation: | CHAI Jiahui, LI Minglei, LI Min, et al. ResCalib: joint lidar and camera calibration based on geometrically supervised deep neural networks[J]. Journal of Radars, in press. doi: 10.12000/JR24233 |
[1] |
AZIMIRAD E, HADDADNIA J, and IZADIPOUR A. A comprehensive review of the multi-sensor data fusion architectures[J]. Journal of Theoretical and Applied Information Technology, 2015, 71(1): 33–42.
|
[2] |
王世强, 孟召宗, 高楠, 等. 激光雷达与相机融合标定技术研究进展[J]. 红外与激光工程, 2023, 52(8): 20230427. doi: 10.3788/IRLA20230427.
WANG Shiqiang, MENG Zhaozong, GAO Nan, et al. Advancements in fusion calibration technology of lidar and camera[J]. Infrared and Laser Engineering, 2023, 52(8): 20230427. doi: 10.3788/IRLA20230427.
|
[3] |
熊超, 乌萌, 刘宗毅, 等. 激光雷达与相机联合标定进展研究[J]. 导航定位学报, 2024, 12(2): 155–166. doi: 10.16547/j.cnki.10-1096.20240218.
XIONG Chao, WU Meng, LIU Zongyi, et al. Review of joint calibration of LiDAR and camera[J]. Journal of Navigation and Positioning, 2024, 12(2): 155–166. doi: 10.16547/j.cnki.10-1096.20240218.
|
[4] |
PANDEY G, MCBRIDE J, SAVARESE S, et al. Extrinsic calibration of a 3D laser scanner and an omnidirectional camera[J]. IFAC Proceedings Volumes, 2010, 43(16): 336–341. doi: 10.3182/20100906-3-IT-2019.00059.
|
[5] |
WANG Weimin, SAKURADA K, and KAWAGUCHI N. Reflectance intensity assisted automatic and accurate extrinsic calibration of 3D LiDAR and panoramic camera using a printed chessboard[J]. Remote Sensing, 2017, 9(8): 851. doi: 10.3390/rs9080851.
|
[6] |
GONG Xiaojin, LIN Ying, and LIU Jilin. 3D LiDAR-camera extrinsic calibration using an arbitrary trihedron[J]. Sensors, 2013, 13(2): 1902–1918. doi: 10.3390/s130201902.
|
[7] |
PARK Y, YUN S, WON C S, et al. Calibration between color camera and 3D LiDAR instruments with a polygonal planar board[J]. Sensors, 2014, 14(3): 5333–5353. doi: 10.3390/s140305333.
|
[8] |
PUSZTAI Z and HAJDER L. Accurate calibration of LiDAR-camera systems using ordinary boxes[C]. 2017 IEEE International Conference on Computer Vision Workshops, Venice, Italy, 2017: 394–402. doi: 10.1109/ICCVW.2017.53.
|
[9] |
DHALL A, CHELANI K, RADHAKRISHNAN V, et al. LiDAR-camera calibration using 3D-3D point correspondences[OL]. https://arxiv.org/abs/1705.09785. 2017. doi: 10.48550/arXiv.1705.09785.
|
[10] |
ZHANG Juyong, YAO Yuxin, and DENG Bailin. Fast and robust iterative closest point[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3450–3466. doi: 10.1109/TPAMI.2021.3054619.
|
[11] |
徐思雨, 祝继华, 田智强, 等. 逐步求精的多视角点云配准方法[J]. 自动化学报, 2019, 45(8): 1486–1494. doi: 10.16383/j.aas.c170556.
XU Siyu, ZHU Jihua, TIAN Zhiqiang, et al. Stepwise refinement approach for registration of multi-view point sets[J]. Acta Automatica Sinica, 2019, 45(8): 1486–1494. doi: 10.16383/j.aas.c170556.
|
[12] |
谢婧婷, 蔺小虎, 王甫红, 等. 一种点线面约束的激光雷达和相机标定方法[J]. 武汉大学学报(信息科学版), 2021, 46(12): 1916–1923. doi: 10.13203/j.whugis20210313.
XIE Jingting, LIN Xiaohu, WANG Fuhong, et al. Extrinsic calibration method for LiDAR and camera with joint point-line-plane constraints[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1916–1923. doi: 10.13203/j.whugis20210313.
|
[13] |
BELTRÁN J, GUINDEL C, DE LA ESCALERA A, et al. Automatic extrinsic calibration method for LiDAR and camera sensor setups[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17677–17689. doi: 10.1109/TITS.2022.3155228.
|
[14] |
PEREIRA M, SILVA D, SANTOS V, et al. Self calibration of multiple LiDARs and cameras on autonomous vehicles[J]. Robotics and Autonomous Systems, 2016, 83: 326–337. doi: 10.1016/j.robot.2016.05.010.
|
[15] |
TÓTH T, PUSZTAI Z, and HAJDER L. Automatic LiDAR-camera calibration of extrinsic parameters using a spherical target[C]. 2020 IEEE International Conference on Robotics and Automation, Paris, France, 2020: 8580–8586. doi: 10.1109/ICRA40945.2020.9197316.
|
[16] |
LEVINSON J and THRUN S. Automatic online calibration of cameras and lasers[C]. Robotics: Science and Systems IX, Berlin, Germany, 2013: 1-8. doi: 10.15607/RSS.2013.IX.029.
|
[17] |
PANDEY G, MCBRIDE J R, SAVARESE S, et al. Automatic targetless extrinsic calibration of a 3D LiDAR and camera by maximizing mutual information[C]. 26th AAAI Conference on Artificial Intelligence, Toronto, Ontario, Canada, 2012: 2053–2059.
|
[18] |
KANG J and DOH N L. Automatic targetless camera–LiDAR calibration by aligning edge with Gaussian mixture model[J]. Journal of Field Robotics, 2020, 37(1): 158–179. doi: 10.1002/rob.21893.
|
[19] |
CASTORENA J, KAMILOV U S, and BOUFOUNOS P T. Autocalibration of LiDAR and optical cameras via edge alignment[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 2862–2866. doi: 10.1109/ICASSP.2016.7472200.
|
[20] |
ISHIKAWA R, OISHI T, and IKEUCHI K. LiDAR and camera calibration using motions estimated by sensor fusion odometry[C]. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Spain, 2018: 7342–7349. doi: 10.1109/IROS.2018.8593360.
|
[21] |
HUANG Kaihong and STACHNISS C. Extrinsic multi-sensor calibration for mobile robots using the Gauss-Helmert model[C]. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 2017: 1490–1496. doi: 10.1109/IROS.2017.8205952.
|
[22] |
QIU Kejie, QIN Tong, PAN Jie, et al. Real-time temporal and rotational calibration of heterogeneous sensors using motion correlation analysis[J]. IEEE Transactions on Robotics, 2021, 37(2): 587–602. doi: 10.1109/TRO.2020.3033698.
|
[23] |
赵亮, 胡杰, 刘汉, 等. 基于语义分割的深度学习激光点云三维目标检测[J]. 中国激光, 2021, 48(17): 1710004. doi: 10.3788/CJL202148.1710004.
ZHAO Liang, HU Jie, LIU Han, et al. Deep learning based on semantic segmentation for three-dimensional object detection from point clouds[J]. Chinese Journal of Lasers, 2021, 48(17): 1710004. doi: 10.3788/CJL202148.1710004.
|
[24] |
LI Shengyu, LI Xingxing, CHEN Shuolong, et al. Two-step LiDAR/camera/IMU spatial and temporal calibration based on continuous-time trajectory estimation[J]. IEEE Transactions on Industrial Electronics, 2024, 71(3): 3182–3191. doi: 10.1109/TIE.2023.3270506.
|
[25] |
仲训杲, 徐敏, 仲训昱, 等. 基于多模特征深度学习的机器人抓取判别方法[J]. 自动化学报, 2016, 42(7): 1022–1029. doi: 10.16383/j.aas.2016.c150661.
ZHONG Xungao, XU Min, ZHONG Xunyu, et al. Multimodal features deep learning for robotic potential grasp recognition[J] Acta Automatica Sinica, 2016, 42(7): 1022–1029. doi: 10.16383/j.aas.2016.c150661.
|
[26] |
KENDALL A, GRIMES M, and CIPOLLA R. PoseNet: A convolutional network for real-time 6-Dof camera relocalization[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 2938–2946. doi: 10.1109/ICCV.2015.336.
|
[27] |
QI C R, SU Hao, MO Kaichun, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 77–85. doi: 10.1109/CVPR.2017.16.
|
[28] |
QI C R, YI Li, SU Hao, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 2017: 5105–5114.
|
[29] |
SCHNEIDER N, PIEWAK F, STILLER C, et al. RegNet: Multimodal sensor registration using deep neural networks[C]. 2017 IEEE Intelligent Vehicles Symposium, Los Angeles, CA, USA, 2017: 1803–1810. doi: 10.1109/IVS.2017.7995968.
|
[30] |
WU Shan, HADACHI A, VIVET D, et al. NetCalib: A novel approach for LiDAR-camera auto-calibration based on deep learning[C]. The 25th International Conference on Pattern Recognition, Milan, Italy, 2021: 6648–6655. doi: 10.13140/RG.2.2.13266.79048.
|
[31] |
IYER G, RAM R K, MURTHY J K, et al. CalibNet: Geometrically supervised extrinsic calibration using 3D spatial transformer networks[C]. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Spain, 2018: 1110–1117. doi: 10.1109/IROS.2018.8593693.
|
[32] |
LV Xudong, WANG Shuo, and YE Dong. CFNet: LiDAR-camera registration using calibration flow network[J]. Sensors, 2021, 21(23): 8112. doi: 10.3390/s21238112.
|
[33] |
LV Xudong, WANG Boya, DOU Ziwen, et al. LCCNet: LiDAR and camera self-calibration using cost volume network[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Nashville, TN, USA, 2021: 2888–2895. doi: 10.1109/CVPRW53098.2021.00324.
|
[34] |
JING Xin, DING Xiaqing, XIONG Rong, et al. DXQ-Net: Differentiable LiDAR-camera extrinsic calibration using quality-aware flow[J]. arXiv: 2203.09385, 2022. doi: 10.48550/arXiv.2203.09385.
|
[35] |
ZHOU Tinghui, BROWN M, SNAVELY N, et al. Unsupervised learning of depth and ego-motion from video[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 6612–6619. doi: 10.1109/CVPR.2017.700.
|
[36] |
LI Ruihao, WANG Sen, LONG Zhiqiang, et al. UnDeepVO: Monocular visual odometry through unsupervised deep learning[C]. 2018 IEEE International Conference on Robotics and Automation, Brisbane, QLD, Australia, 2018: 7286–7291. doi: 10.1109/ICRA.2018.8461251.
|
[37] |
张重生, 陈杰, 李岐龙, 等. 深度对比学习综述[J]. 自动化学报, 2023, 49(1): 15–39. doi: 10.16383/j.aas.c220421.
ZHANG Chongsheng, CHEN Jie, LI Qilong, et al. Deep contrastive learning: A survey[J]. Acta Automatica Sinica, 2023, 49(1): 15–39. doi: 10.16383/j.aas.c220421.
|
[38] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[39] |
WU T, PAN L, ZHANG J, et al. Density-aware chamfer distance as a comprehensive metric for point cloud completion[OL]. https://arxiv.org/abs/2111.12702. 2021. doi: 10.48550/arXiv.2111.12702.
|
[40] |
GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: The KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231–1237. doi: 10.1177/0278364913491297.
|
[41] |
KINGMA D P and BA J. Adam: A method for stochastic optimization[OL]. https://arxiv.org/abs/1412.6980. 2014. doi: 10.48550/arXiv.1412.6980.
|
[42] |
YE Chao, PAN Huihui, and GAO Huijun. Keypoint-Based LiDAR-camera online calibration with robust geometric network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2503011. doi: 10.1109/TIM.2021.3129882.
|
[43] |
刘辉, 蒙丽雯, 段一戬, 等. 基于4D相关性金字塔的激光雷达-视觉传感器外参在线标定方法[J]. 中国激光, 2024, 51(17): 1704003. doi: 10.3788/CJL231290.
LIU Hui, MENG Liwen, DUAN Yijian, et al. Online calibration method of lidar-visual sensor external parameters based on 4D correlation pyramid[J]. Chinese Journal of Lasers, 2024, 51(17): 1704003. doi: 10.3788/CJL231290.
|