WANG Junjie, FENG Dejun, WANG Zhisong, et al. Synthetic aperture rader imaging characteristics of electronically controlled time-varying electromagnetic materials[J]. Journal of Radars, 2021, 10(6): 865–873. doi: 10.12000/JR21104
Citation: DANG Xiangwei, QIN Fei, BU Xiangxi, et al. A robust perception algorithm based on a radar and LiDAR for intelligent driving[J]. Journal of Radars, 2021, 10(4): 622–631. doi: 10.12000/JR21036

A Robust Perception Algorithm Based on a Radar and LiDAR for Intelligent Driving

DOI: 10.12000/JR21036
Funds:  The National Ministries Foundation
More Information
  • Corresponding author: LIANG Xingdong, xdliang@mail.ie.ac.cn
  • Received Date: 2021-03-19
  • Rev Recd Date: 2021-04-28
  • Available Online: 2021-05-20
  • Publish Date: 2021-08-28
  • Multi-sensor fusion perception is one of the key technologies to realize intelligent automobile driving, and it has become a hot issue in the field of intelligent driving. However, because of the limited resolution of millimeter-wave radars, the interference of noise, clutter, and multipath, and the influence of weather on LiDAR, the existing fusion algorithm cannot easily achieve accurate fusion of the data of two sensors and obtain robust results. To address the problem of accurate and robust perception in intelligent driving, this study proposes a robust perception algorithm that combines millimeter-wave radar and LiDAR. Using a new method of spatial correction based on feature-based two-step registration, the precise spatial synchronization of the 3D LiDAR and 2D radar point clouds is realized. The improved millimeter-wave radar filtering algorithm is used to reduce the influence of noise and multipath on the radar point cloud. Then, according to the novel fusion method proposed in this study, the data of the two sensors are fused to obtain accurate and robust sensing results, which solves the problem of the influence of smoke on LiDAR performance. Finally, we conducted multiple sets of experiments in a real environment to verify the effectiveness and robustness of our method. Even in extreme environments such as smoke, we can still achieve accurate positioning and robust mapping. The environment map established by the fusion method proposed in this study is more accurate than that established by a single sensor. Moreover, the location error obtained can be reduced by at least 50%.

     

  • [1]
    李鑫. 面向汽车智能驾驶的毫米波雷达建模与仿真研究[D]. [博士论文], 吉林大学, 2020.

    LI Xin. Research on modeling and simulation of millimeter wave radar for vehicle intelligent driving[D]. [Ph. D. dissertation], Jilin University, 2020.
    [2]
    马兴. 无人驾驶汽车中的几种重要传感器应用研究[J]. 数字技术与应用, 2020, 38(5): 107, 109. doi: 10.19695/j.cnki.cn12-1369.2020.05.62

    MA Xing. Application of several important sensors research on driver-less vehicles[J]. Digital Technology &Application, 2020, 38(5): 107, 109. doi: 10.19695/j.cnki.cn12-1369.2020.05.62
    [3]
    崔巍杰. 毫米波和激光雷达数据融合的SLAM算法研究[D]. [硕士论文], 电子科技大学, 2019.

    CUI Weijie. SLAM algorithm based on millimeter wave radar and lidar data fusion[D]. [Master dissertation], University of Electronic Science and Technology of China, 2019.
    [4]
    YAMAUCHI B. Fusing ultra-wideband radar and lidar for small UGV navigation in all-weather conditions[C]. SPIE 7692, Unmanned Systems Technology XII, Orlando, United States, 2010: 76920O. doi: 10.1117/12.850386.
    [5]
    FRITSCHE P, KUEPPERS S, BRIESE G, et al. Radar and LiDAR sensorfusion in low visibility environments[C]. The 13th International Conference on Informatics in Control, Automation and Robotics, Lisbon, Portugal, 2016: 30–36. doi: 10.5220/0005960200300036.
    [6]
    FRITSCHE P, KUEPPERS S, BRIESE G, et al. Fusing LiDAR and radar data to perform SLAM in harsh environments[M]. MADANI K, PEAUCELLE D, and GUSIKHIN O. Informatics in Control, Automation and Robotics. Cham: Springer, 2018: 177–189. doi: 10.1007/978-3-319-55011-4_9.
    [7]
    FRITSCHE P and WAGNER B. Modeling structure and aerosol concentration with fused radar and LiDAR data in environments with changing visibility[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017: 2685–2690. doi: 10.1109/IROS.2017.8206093.
    [8]
    PRITSCHE P, ZEISE B, HEMME P, et al. Fusion of radar, LiDAR and thermal information for hazard detection in low visibility environments[C]. 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Shanghai, China, 2017: 96–101. doi: 10.1109/SSRR.2017.8088146.
    [9]
    MARCK J W, MOHAMOUD A, HOUWEN E V, et al. Indoor radar SLAM a radar application for vision and GPS denied environments[C]. 2013 European Radar Conference, Nuremberg, Germany, 2013: 471–474.
    [10]
    PARK Y S, KIM J, and KIM A. Radar localization and mapping for indoor disaster environments via multi-modal registration to prior LiDAR map[C]. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 2019: 1307–1314. doi: 10.1109/IROS40897.2019.8967633.
    [11]
    WANG Xiao, XU Linhai, SUN Hongbin, et al. Bionic vision inspired on-road obstacle detection and tracking using radar and visual information[C]. 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 2014: 39–44. doi: 10.1109/ITSC.2014.6957663.
    [12]
    ALENCAR F A R, ROSERO L A, FILHO C M, et al. Fast metric tracking by detection system: Radar blob and camera fusion[C]. 2015 12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR), Uberlandia, Brazil, 2015: 120–125. doi: 10.1109/LARS-SBR.2015.59.
    [13]
    HAN Siyang, WANG Xiao, XU Linhai, et al. Frontal object perception for Intelligent Vehicles based on radar and camera fusion[C]. 2016 35th Chinese Control Conference (CCC), Chengdu, China, 2016: 4003–4008. doi: 10.1109/ChiCC.2016.7553978.
    [14]
    KIM J, HAN D S, and SENOUCI B. Radar and vision sensor fusion for object detection in autonomous vehicle surroundings[C]. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 2018: 76–78. doi: 10.1109/ICUFN.2018.8436959.
    [15]
    HENG L. Automatic targetless extrinsic calibration of multiple 3D LiDARs and radars[C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, 2020: 10669–10675. doi: 10.1109/IROS45743.2020.9340866.
    [16]
    QIN Fei, LIU Yunlong, and LIANG Xingdong. A novel GOSD-CFAR for millimeter wave radar detection[C]. 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2020), Waikoloa, USA, 2020: 1782–1785. doi: 10.1109/IGARSS39084.2020.9324693.
    [17]
    CRISTIANINI N, SHAWE-TAYLO J, 李国正, 王猛, 曾华军, 译. 支持向量机导论[M]. 北京: 电子工业出版社, 2004: 82–85.

    CRISTIANINI N and SHAWE-TAYLO J, LI Guozheng, WANG Meng, and ZENG Huajun. translation. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M]. Beijing: Publishing House of Electronics Industry, 2004: 82–85.
    [18]
    DANG Xiangwei, RONG Zheng, and LIANG Xingdong. Sensor fusion-based approach to eliminating moving objects for SLAM in dynamic environments[J]. Sensors, 2021, 21(1): 230. doi: 10.3390/s21010230
    [19]
    DANG Xiangwei, LIANG Xingdong, LI Yanlei, et al. Moving objects elimination towards enhanced dynamic SLAM fusing LiDAR and mmW-radar[C]. 2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Linz, Austria, 2020: 1–4. doi: 10.1109/ICMIM48759.2020.9298986.
    [20]
    ZHANG Ji and SINGH S. Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots, 2017, 41(2): 401–416. doi: 10.1007/s10514-016-9548-2
  • Relative Articles

    [1]LIAO Zhipeng, DUAN Keqing, HE Jinjun, QIU Zizhou, WANG Yongliang. Interpretable STAP Algorithm Based on Deep Convolutional Neural Network[J]. Journal of Radars, 2024, 13(4): 917-928. doi: 10.12000/JR24024
    [2]LI Zhongyu, PI Haozhuo, LI Jun’ao, YANG Qing, WU Junjie, YANG Jianyu. Clutter Suppression Technology Based Space-time Adaptive ANM-ADMM-Net for Bistatic SAR[J]. Journal of Radars. doi: 10.12000/JR24032
    [3]QUAN Yinghui, WU Yaojun, DUAN Lining, XU Gang, XUE Min, LIU Zhixing, XING Mengdao. A Review of Radar Signal Processing Based on Sparse Recovery[J]. Journal of Radars, 2024, 13(1): 46-67. doi: 10.12000/JR23211
    [4]HU Xueyao, LIANG Can, LU Shanshan, WANG Zaiyang, ZHENG Le, LI Yang. Matrix Completion-based Range-Doppler Spectrum Estimation for Random Stepped-frequency Radars[J]. Journal of Radars, 2024, 13(1): 200-214. doi: 10.12000/JR23176
    [5]MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001
    [6]LIN Yun, ZHANG Lin, WEI Lideng, ZHANG Hanqing, FENG Shanshan, WANG Yanping, HONG Wen. Research on Full-aspect Three-dimensional SAR Imaging Method for Complex Structural Facilities without Prior Model[J]. Journal of Radars, 2022, 11(5): 909-919. doi: 10.12000/JR22148
    [7]DUAN Keqing, LI Xiang, XING Kun, WANG Yongliang. Clutter Mitigation in Space-based Early Warning Radar Using a Convolutional Neural Network[J]. Journal of Radars, 2022, 11(3): 386-398. doi: 10.12000/JR21161
    [8]CUI Guolong, FAN Tao, KONG Yukai, YU Xianxiang, SHA Minghui, KONG Lingjiang. Pseudo-random Agility Technology for Interpulse Waveform Parameters in Airborne Radar[J]. Journal of Radars, 2022, 11(2): 213-226. doi: 10.12000/JR21189
    [9]LI Wenna, ZHANG Shunsheng, WANG Wenqin. Multitarget-tracking Method for Airborne Radar Based on a Transformer Network[J]. Journal of Radars, 2022, 11(3): 469-478. doi: 10.12000/JR22009
    [10]ZHU Hangui, FENG Weike, FENG Cunqian, ZOU Bo, LU Fuyu. Deep Unfolding Based Space-Time Adaptive Processing Method for Airborne Radar[J]. Journal of Radars, 2022, 11(4): 676-691. doi: 10.12000/JR22051
    [11]QU Haiyou, CHENG Di, CHEN Chang, CHEN Weidong. High-resolution Sparse Self-calibration Imaging for Vortex Radar with Phase Error[J]. Journal of Radars, 2021, 10(5): 699-717. doi: 10.12000/JR21094
    [12]Wang Yuzhuo, Zhu Shengqi, Xu Jingwei. A Range-ambiguous Clutter Suppression Method for MIMO Bistatic Airborne Radar[J]. Journal of Radars, 2018, 7(2): 202-211. doi: 10.12000/JR18016
    [13]Wang Yong, Chen Xuefei. Three-dimensional Geometry Reconstruction of Ship Targets with Complex Motion for Interferometric ISAR with Sparse Aperture[J]. Journal of Radars, 2018, 7(3): 320-334. doi: 10.12000/JR18019
    [14]Xie Wenchong, Duan Keqing, Wang Yongliang. Space Time Adaptive Processing Technique for Airborne Radar: An Overview of Its Development and Prospects[J]. Journal of Radars, 2017, 6(6): 575-586. doi: 10.12000/JR17073
    [15]Xu Jing-wei, Liao Gui-sheng. Range-ambiguous Clutter Suppression for Forward-looking Frequency Diverse Array Space-time Adaptive Processing Radar[J]. Journal of Radars, 2015, 4(4): 386-392. doi: 10.12000/JR15101
    [16]Wang Ting, Zhao Yong-jun, Hu Tao. Overview of Space-Time Adaptive Processing for Airborne Multiple-Input Multiple-Output Radar[J]. Journal of Radars, 2015, 4(2): 136-148. doi: 10.12000/JR14091
    [17]Wang Yong-liang, Liu Wei-jian, Xie Wen-chong, Duan Ke-qing, Gao Fei, Wang Ze-tao. Research Progress of Space-Time Adaptive Detection for Airborne Radar[J]. Journal of Radars, 2014, 3(2): 201-207. doi: 10.3724/SP.J.1300.2014.13081
    [18]Wang Fu-you, Luo Ding, Liu Hong-wei. Low-resolution Airborne Radar Aircraft Target Classification[J]. Journal of Radars, 2014, 3(4): 444-449. doi: 10.3724/SP.J.1300.2014.14075
    [19]Duan Ke-qing, Wang Ze-tao, Xie Wen-chong, Gao Fei, Wang Yong-liang. A Space-time Adaptive Processing Algorithm Based on Joint Sparse Recovery[J]. Journal of Radars, 2014, 3(2): 229-234. doi: 10.3724/SP.J.1300.2014.13149
    [20]Ma Ze-qiang, Wang Xi-qin, Liu Yi-min, Meng Hua-dong. An Overview on Sparse Recovery-based STAP[J]. Journal of Radars, 2014, 3(2): 217-228. doi: 10.3724/SP.J.1300.2014.14002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 34.5 %FULLTEXT: 34.5 %META: 58.2 %META: 58.2 %PDF: 7.3 %PDF: 7.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.7 %其他: 4.7 %其他: 1.0 %其他: 1.0 %Algeria: 0.1 %Algeria: 0.1 %Australia: 0.0 %Australia: 0.0 %Canton: 0.0 %Canton: 0.0 %China: 1.8 %China: 1.8 %Germany: 0.0 %Germany: 0.0 %India: 0.0 %India: 0.0 %Kennedy Town: 0.0 %Kennedy Town: 0.0 %Malvern: 0.1 %Malvern: 0.1 %Nahant: 0.1 %Nahant: 0.1 %Rochester: 0.1 %Rochester: 0.1 %Seattle: 0.0 %Seattle: 0.0 %Singapore: 0.1 %Singapore: 0.1 %Taichung: 0.0 %Taichung: 0.0 %Turkey: 0.1 %Turkey: 0.1 %United Kingdom: 0.4 %United Kingdom: 0.4 %United States: 0.3 %United States: 0.3 %Viet Nam: 0.1 %Viet Nam: 0.1 %[]: 1.1 %[]: 1.1 %三明: 0.0 %三明: 0.0 %上海: 1.3 %上海: 1.3 %上饶: 0.0 %上饶: 0.0 %东京都: 0.2 %东京都: 0.2 %东莞: 0.3 %东莞: 0.3 %中卫: 0.2 %中卫: 0.2 %临汾: 0.0 %临汾: 0.0 %丹东: 0.1 %丹东: 0.1 %乌海: 0.0 %乌海: 0.0 %乐山: 0.1 %乐山: 0.1 %伊春: 0.0 %伊春: 0.0 %伊犁: 0.0 %伊犁: 0.0 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.0 %佛山: 0.0 %信阳: 0.0 %信阳: 0.0 %六安: 0.1 %六安: 0.1 %兰州: 0.0 %兰州: 0.0 %兰辛: 0.0 %兰辛: 0.0 %内江: 0.1 %内江: 0.1 %凉山: 0.1 %凉山: 0.1 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %北京: 6.3 %北京: 6.3 %南京: 2.2 %南京: 2.2 %南宁: 0.1 %南宁: 0.1 %南平: 0.0 %南平: 0.0 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %卡拉奇: 0.0 %卡拉奇: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %台湾省: 0.0 %台湾省: 0.0 %合肥: 0.8 %合肥: 0.8 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.0 %咸阳: 0.0 %哈尔滨: 0.3 %哈尔滨: 0.3 %商丘: 0.1 %商丘: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大同: 0.1 %大同: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.3 %大连: 0.3 %天津: 0.8 %天津: 0.8 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.0 %宁波: 0.0 %安卡拉: 0.1 %安卡拉: 0.1 %安康: 0.1 %安康: 0.1 %安顺: 0.0 %安顺: 0.0 %宜春: 0.0 %宜春: 0.0 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.2 %宣城: 0.2 %巴中: 0.2 %巴中: 0.2 %巴音郭楞蒙古自治州: 0.0 %巴音郭楞蒙古自治州: 0.0 %巴黎: 0.1 %巴黎: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 1.1 %广州: 1.1 %库比蒂诺: 0.4 %库比蒂诺: 0.4 %廊坊: 0.0 %廊坊: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 2.8 %张家口: 2.8 %张家界: 0.0 %张家界: 0.0 %徐州: 0.1 %徐州: 0.1 %德里: 0.1 %德里: 0.1 %德黑兰: 0.1 %德黑兰: 0.1 %怀化: 0.1 %怀化: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 3.5 %成都: 3.5 %扬州: 0.3 %扬州: 0.3 %新加坡: 0.3 %新加坡: 0.3 %新泽西: 0.0 %新泽西: 0.0 %无锡: 0.2 %无锡: 0.2 %日喀则: 0.1 %日喀则: 0.1 %日照: 0.0 %日照: 0.0 %昆明: 0.8 %昆明: 0.8 %晋中: 0.1 %晋中: 0.1 %晋城: 0.1 %晋城: 0.1 %朔州: 0.0 %朔州: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 0.6 %杭州: 0.6 %桂林: 0.1 %桂林: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 0.6 %武汉: 0.6 %汉中: 0.1 %汉中: 0.1 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.2 %沈阳: 0.2 %河源: 0.0 %河源: 0.0 %泉州: 0.1 %泉州: 0.1 %泰安: 0.0 %泰安: 0.0 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.2 %济南: 0.2 %海口: 0.1 %海口: 0.1 %海得拉巴: 0.0 %海得拉巴: 0.0 %淄博: 0.0 %淄博: 0.0 %淮北: 0.1 %淮北: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 0.8 %深圳: 0.8 %清远: 0.1 %清远: 0.1 %温州: 0.1 %温州: 0.1 %渭南: 0.2 %渭南: 0.2 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %滁州: 0.1 %滁州: 0.1 %漯河: 0.7 %漯河: 0.7 %濮阳: 0.0 %濮阳: 0.0 %烟台: 0.1 %烟台: 0.1 %玉林: 0.1 %玉林: 0.1 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.1 %绵阳: 0.1 %罗奥尔凯埃: 0.3 %罗奥尔凯埃: 0.3 %罗马: 0.2 %罗马: 0.2 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 1.0 %苏州: 1.0 %莆田: 0.1 %莆田: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 33.8 %西宁: 33.8 %西安: 1.5 %西安: 1.5 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %运城: 0.5 %运城: 0.5 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.5 %郑州: 0.5 %酒泉: 0.1 %酒泉: 0.1 %里奇兰: 0.1 %里奇兰: 0.1 %重庆: 0.2 %重庆: 0.2 %金华: 0.0 %金华: 0.0 %镇江: 0.0 %镇江: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.9 %长沙: 0.9 %长治: 0.2 %长治: 0.2 %阳泉: 0.1 %阳泉: 0.1 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %隆德: 0.0 %隆德: 0.0 %隆格伊: 0.1 %隆格伊: 0.1 %青岛: 0.4 %青岛: 0.4 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他AlgeriaAustraliaCantonChinaGermanyIndiaKennedy TownMalvernNahantRochesterSeattleSingaporeTaichungTurkeyUnited KingdomUnited StatesViet Nam[]三明上海上饶东京都东莞中卫临汾丹东乌海乐山伊春伊犁伦敦佛山信阳六安兰州兰辛内江凉山加利福尼亚州北京南京南宁南平南昌南通卡拉奇厦门台北台州台湾省合肥呼和浩特咸阳哈尔滨商丘嘉兴大同大庆大连天津太原威海娄底宁波安卡拉安康安顺宜春宝鸡宣城巴中巴音郭楞蒙古自治州巴黎常州常德广州库比蒂诺廊坊开封张家口张家界徐州德里德黑兰怀化惠州成都扬州新加坡新泽西无锡日喀则日照昆明晋中晋城朔州朝阳杭州桂林榆林武汉汉中汕头沈阳河源泉州泰安泰米尔纳德洛杉矶洛阳济南海口海得拉巴淄博淮北淮南深圳清远温州渭南湖州湘潭滁州漯河濮阳烟台玉林石家庄福州秦皇岛纽约绍兴绵阳罗奥尔凯埃罗马芒廷维尤芝加哥苏州莆田莫斯科葫芦岛衡水衡阳衢州西宁西安诺沃克贵阳赣州运城邢台邯郸郑州酒泉里奇兰重庆金华镇江长春长沙长治阳泉阿姆斯特丹隆德隆格伊青岛香港特别行政区马鞍山黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4526) PDF downloads(508) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint