Citation: | HU Xueyao, LIANG Can, LU Shanshan, et al. Matrix completion-based range-Doppler spectrum estimation for random stepped-frequency radars[J]. Journal of Radars, 2024, 13(1): 200–214. doi: 10.12000/JR23176 |
[1] |
PANDA S S S, PANIGRAHI T, PARNE S R, et al. Recent advances and future directions of microwave photonic radars: A review[J]. IEEE Sensors Journal, 2021, 21(19): 21144–21158. doi: 10.1109/JSEN.2021.3099533.
|
[2] |
向寅, 张凯, 胡程. 基于NUFFT的调频步进频高分辨成像与目标识别算法[J]. 雷达学报, 2015, 4(6): 639–647. doi: 10.12000/JR15083.
XIANG Yin, ZHANG Kai, and HU Cheng. A NUFFT based step-frequency Chirp signal high resolution imaging algorithm and target recognition algorithm[J]. Journal of Radars, 2015, 4(6): 639–647. doi: 10.12000/JR15083.
|
[3] |
AL-HOURANI A, EVANS R J, MORAN B, et al. Efficient range-Doppler processing for random stepped frequency radar in automotive applications[C]. IEEE 85th Vehicular Technology Conference, Sydney, Australia, 2017: 1–7. doi: 10.1109/VTCSpring.2017.8108414.
|
[4] |
SAPONARA S, GRECO M S, and GINI F. Radar-on-chip/in-package in autonomous driving vehicles and intelligent transport systems: Opportunities and challenges[J]. IEEE Signal Processing Magazine, 2019, 36(5): 71–84. doi: 10.1109/MSP.2019.2909074.
|
[5] |
JIANG Yuan, WANG Yanhua, LI Yang, et al. Eigenvalue-based ground target detection in high-resolution range profiles[J]. IET Radar, Sonar & Navigation, 2020, 14(11): 1747–1756. doi: 10.1049/iet-rsn.2020.0002.
|
[6] |
AXELSSON S R J. Analysis of random step frequency radar and comparison with experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4): 890–904. doi: 10.1109/TGRS.2006.888865.
|
[7] |
HUANG Tianyao, LIU Yimin, LI Gang, et al. Randomized stepped frequency ISAR imaging[C]. IEEE International Radar Conference, Atlanta, USA, 2012: 553–557. doi: 10.1109/RADAR.2012.6212202.
|
[8] |
WEHNER D R. High Resolution Radar[M]. Norwood, MA, Artech House, 1987.
|
[9] |
LIU Yimin, MENG Huadong, LI Gang, et al. Range-velocity estimation of multiple targets in randomised stepped-frequency radar[J]. Electronics Letters, 2008, 44(17): 1032–1034. doi: 10.1049/el:20081608.
|
[10] |
ACKROYD M H and GHANI F. Optimum mismatched filters for sidelobe suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, AES-9(2): 214–218. doi: 10.1109/TAES.1973.309769.
|
[11] |
DAVIS R M, FANTE R L, and PERRY R P. Phase-coded waveforms for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 401–408. doi: 10.1109/TAES.2007.357142.
|
[12] |
KAJENSKI P J. Mismatch filter design via convex optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1587–1591. doi: 10.1109/TAES.2016.140556.
|
[13] |
LIU Shuai, CAO Yunhe, YEO T S, et al. Range sidelobe suppression for randomized stepped-frequency chirp radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3874–3885. doi: 10.1109/TAES.2021.3082670.
|
[14] |
LIAO Zhikun, HU Jiemin, LU Dawei, et al. Motion analysis and compensation method for random stepped frequency radar using the pseudorandom code[J]. IEEE Access, 2018, 6: 57643–57654. doi: 10.1109/ACCESS.2018.2873784.
|
[15] |
LIAO Zhikun, LU Dawei, HU Jiemin, et al. Waveform design for random stepped frequency radar to estimate object velocity[J]. Electronics Letters, 2018, 54(14): 894–896. doi: 10.1049/el.2018.1033.
|
[16] |
QUAN Yinghui, LI Yachao, HU Wen, et al. FM sequence optimisation of chaotic-based random stepped frequency signal in through-the-wall radar[J]. IET Signal Processing, 2017, 11(7): 830–837. doi: 10.1049/iet-spr.2015.0565.
|
[17] |
HUANG Tianyao, LIU Yimin, XU Xingyu, et al. Analysis of frequency agile radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2018, 66(23): 6228–6240. doi: 10.1109/TSP.2018.2876301.
|
[18] |
YOON Y S, HONG Yunseog, and KIM S. Simple strategies to build random compressive sensing matrices in step-frequency radars[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(9): 1357–1361. doi: 10.1109/LGRS.2018.2841189.
|
[19] |
HUANG Tianyao, LIU Yimin, MENG Huadong, et al. Cognitive random stepped frequency radar with sparse recovery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 858–870. doi: 10.1109/TAES.2013.120443.
|
[20] |
QUAN Yinghui, LI Yachao, WU Yaojun, et al. Moving target detection for frequency agility radar by sparse reconstruction[J]. Review of Scientific Instruments, 2016, 87(9): 094703. doi: 10.1063/1.4962700.
|
[21] |
CHI Yuejie, SCHARF L L, PEZESHKI A, et al. Sensitivity to basis mismatch in compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2182–2195. doi: 10.1109/TSP.2011.2112650.
|
[22] |
WANG Mou, WEI Shunjun, SHI Jun, et al. CSR-Net: A novel complex-valued network for fast and precise 3-D microwave sparse reconstruction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4476–4492. doi: 10.1109/JSTARS.2020.3014696.
|
[23] |
CANDES E J and TAO T. The power of convex relaxation: Near-optimal matrix completion[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2053–2080. doi: 10.1109/TIT.2010.2044061.
|
[24] |
马宇欣, 海宇, 李中余, 等. 稀疏轨迹毫米波雷达三维高分辨成像算法[J]. 雷达学报, 2023, 12(5): 1000–1013. doi: 10.12000/JR23001.
MA Yuxin, HAI Yu, LI Zhongyu, et al. 3D high-resolution imaging algorithm with sparse trajectory for millimeter-wave radar[J]. Journal of Radars, 2023, 12(5): 1000–1013. doi: 10.12000/JR23001.
|
[25] |
SUN Shunqiao and ZHANG Y D. 4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 879–891. doi: 10.1109/JSTSP.2021.3079626.
|
[26] |
SUN Shunqiao, BAJWA W U, and PETROPULU A P. MIMO-MC radar: A MIMO radar approach based on matrix completion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1839–1852. doi: 10.1109/TAES.2015.140452.
|
[27] |
HU Xiaowei, TONG Ningning, WANG Jianye, et al. Matrix completion-based MIMO radar imaging with sparse planar array[J]. Signal Processing, 2017, 131: 49–57. doi: 10.1016/j.sigpro.2016.07.034.
|
[28] |
ZHANG Yilong, LI Yuehua, CHEN Jianfei, et al. Sparse millimeter-wave InSAR imaging approach based on MC[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 714–718. doi: 10.1109/LGRS.2018.2810234.
|
[29] |
HU Xueyao, LI Yang, LU Man, et al. A multi-carrier-frequency random-transmission Chirp sequence for TDM MIMO automotive radar[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3672–3685. doi: 10.1109/TVT.2019.2900357.
|
[30] |
LIANG Can, LI Yang, HU Xueyao, et al. Coherent-on-Receive synthesis using dominant scatterer in millimeter-wave distributed coherent aperture radar[J]. Remote Sensing, 2023, 15(6): 1505. doi: 10.3390/rs15061505.
|
[31] |
STRANG G. Introduction to Linear Algebra[M]. 6th ed. Wellesley, USA: Wellesley-Cambridge Press, 2022.
|
[32] |
HORN R A and JOHNSON C R. Matrix Analysis[M]. Cambridge, UK: Cambridge University Press, 1985. doi: 10.1017/CBO9780511810817.
|
[33] |
YE Hailiang, LI Hong, CAO Feilong, et al. A hybrid truncated norm regularization method for matrix completion[J]. IEEE Transactions on Image Processing, 2019, 28(10): 5171–5186. doi: 10.1109/TIP.2019.2918733.
|
[34] |
HU Yao, ZHANG Debing, YE Jieping, et al. Fast and accurate matrix completion via truncated nuclear norm regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9): 2117–2130. doi: 10.1109/TPAMI.2012.271.
|
[35] |
CAI Jianfeng, CANDÈS E J, and SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956–1982. doi: 10.1137/080738970.
|
[36] |
邓理康, 张双辉, 张弛, 等. 一种基于多维交替方向乘子法的多输入多输出逆合成孔径雷达成像方法[J]. 雷达学报, 2021, 10(3): 416–431. doi: 10.12000/JR20132.
DENG Likang, ZHANG Shuanghui, ZHANG Chi, et al. A multiple-input multiple-output inverse synthetic aperture radar imaging method based on multidimensional alternating direction method of multipliers[J]. Journal of Radars, 2021, 10(3): 416–431. doi: 10.12000/JR20132.
|
[37] |
范文, 蔚保国, 陈镜, 等. 基于波形优化和天线位置选择的MIMO雷达波束扫描算法研究[J]. 雷达学报, 2022, 11(4): 530–542. doi: 10.12000/JR22135.
FAN Wen, YU Baoguo, CHEN Jing, et al. Joint waveform optimization and antenna position selection for MIMO radar beam scanning[J]. Journal of Radars, 2022, 11(4): 530–542. doi: 10.12000/JR22135.
|
[38] |
OH T H, MATSUSHITA Y, TAI Y W, et al. Fast randomized singular value thresholding for low-rank optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(2): 376–391. doi: 10.1109/TPAMI.2017.2677440.
|
[39] |
CHEN Yuxin and CHI Yuejie. Robust spectral compressed sensing via structured matrix completion[J]. IEEE Transactions on Information Theory, 2014, 60(10): 6576–6601. doi: 10.1109/TIT.2014.2343623.
|
[40] |
GRANT M, BOYD S, and YE Yinyu. MATLAB software for disciplined convex programming[EB/OL]. https://web.stanford.edu/~boyd/papers/disc_cvx_prog.html, 2006.
|
[1] | CAO Jingyi, ZHANG Yang, YOU Ya’nan, WANG Yamin, YANG Feng, REN Weijia, LIU Jun. Target Recognition Method Based on Graph Structure Perception of Invariant Features for SAR Images[J]. Journal of Radars, 2025, 14(2): 366-388. doi: 10.12000/JR24125 |
[2] | LI Yi, DU Lan, ZHOU Ke’er, DU Yuang. Deep Network for SAR Target Recognition Based on Attribute Scattering Center Convolutional Kernel Modulation[J]. Journal of Radars, 2024, 13(2): 443-456. doi: 10.12000/JR24001 |
[3] | WAQI Riti, LI Gang, ZHAO Zhichun, ZE Zhenghua. Feature Selection Method of Radar-based Road Target Recognition via Histogram Analysis and Adaptive Genetics[J]. Journal of Radars, 2023, 12(5): 1014-1030. doi: 10.12000/JR22245 |
[4] | DING Jinshan, ZHONG Chao, WEN Liwu, XU Zhong. Joint Detection of Moving Target in Video Synthetic Aperture Radar[J]. Journal of Radars, 2022, 11(3): 313-323. doi: 10.12000/JR22036 |
[5] | XING Mengdao, XIE Yiyuan, GAO Yuexin, ZHANG Jinsong, LIU Jiaming, WU Zhixin. Electromagnetic Scattering Characteristic Extraction and Imaging Recognition Algorithm: A Review[J]. Journal of Radars, 2022, 11(6): 921-942. doi: 10.12000/JR22232 |
[6] | ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004 |
[7] | CHEN Xiaolong, CHEN Weishi, RAO Yunhua, HUANG Yong, GUAN Jian, DONG Yunlong. Progress and Prospects of Radar Target Detection and Recognition Technology for Flying Birds and Unmanned Aerial Vehicles (in English)[J]. Journal of Radars, 2020, 9(5): 803-827. doi: 10.12000/JR20068 |
[8] | LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087 |
[9] | HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113 |
[10] | WEN Gongjian, MA Conghui, DING Baiyuan, SONG Haibo. SAR Target Physics Interpretable Recognition Method Based on Three Dimensional Parametric Electromagnetic Part Model[J]. Journal of Radars, 2020, 9(4): 608-621. doi: 10.12000/JR20099 |
[11] | WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077 |
[12] | LI Weijie, YANG Wei, LI Xiang, LIU Yongxiang. Robust High Resolution Range Profile Recognition Method for Radar Targets in Noisy Environments[J]. Journal of Radars, 2020, 9(4): 622-631. doi: 10.12000/JR19093 |
[13] | XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102 |
[14] | Zhang Qun, Hu Jian, Luo Ying, Chen Yijun. Research Progresses in Radar Feature Extraction, Imaging, and Recognition of Target with Micro-motions[J]. Journal of Radars, 2018, 7(5): 531-547. doi: 10.12000/JR18049 |
[15] | Zhang Pengfei, Li Gang, Huo Chaoying, Yin Hongcheng. Classification of Drones Based on Micro-Doppler Radar Signatures Using Dual Radar Sensors[J]. Journal of Radars, 2018, 7(5): 557-564. doi: 10.12000/JR18061 |
[16] | Kang Miao, Ji Kefeng, Leng Xiangguang, Xing Xiangwei, Zou Huanxin. SAR Target Recognition with Feature Fusion Based on Stacked Autoencoder[J]. Journal of Radars, 2017, 6(2): 167-176. doi: 10.12000/JR16112 |
[17] | Zhao Feixiang, Liu Yongxiang, Huo Kai. Radar Target Recognition Based on Stacked Denoising Sparse Autoencoder[J]. Journal of Radars, 2017, 6(2): 149-156. doi: 10.12000/JR16151 |
[18] | Ding Baiyuan, Wen Gongjian, Yu Liansheng, Ma Conghui. Matching of Attributed Scattering Center and Its Application to Synthetic Aperture Radar Automatic Target Recognition[J]. Journal of Radars, 2017, 6(2): 157-166. doi: 10.12000/JR16104 |
[19] | Zhang Xinzheng, Tan Zhiying, Wang Yijian. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion[J]. Journal of Radars, 2017, 6(5): 492-502. doi: 10.12000/JR17078 |
[20] | Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114 |
1. | 阮航,崔家豪,毛秀华,任建迎,罗镔延,曹航,李海峰. SAR目标识别对抗攻击综述:从数字域迈向物理域. 雷达学报. 2024(06): 1298-1326 . ![]() |