Volume 13 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
LI Yi, DU Lan, ZHOU Ke’er, et al. Deep network for SAR target recognition based on attribute scattering center convolutional kernel modulation[J]. Journal of Radars, 2024, 13(2): 443–456. doi: 10.12000/JR24001
Citation: LI Yi, DU Lan, ZHOU Ke’er, et al. Deep network for SAR target recognition based on attribute scattering center convolutional kernel modulation[J]. Journal of Radars, 2024, 13(2): 443–456. doi: 10.12000/JR24001

Deep Network for SAR Target Recognition Based on Attribute Scattering Center Convolutional Kernel Modulation

DOI: 10.12000/JR24001
Funds:  The National Natural Science Foundation of China (U21B2039)
More Information
  • Corresponding author: DU Lan, dulan@mail.xidian.edu.cn
  • Received Date: 2024-01-04
  • Rev Recd Date: 2024-03-13
  • Available Online: 2024-03-19
  • Publish Date: 2024-03-27
  • The feature extraction capability of Convolutional Neural Networks (CNNs) is related to the number of their parameters. Generally, using a large number of parameters leads to improved feature extraction capability of CNNs. However, a considerable amount of training data is required to effectively learn these parameters. In practical applications, Synthetic Aperture Radar (SAR) images available for model training are often limited. Reducing the number of parameters in a CNN can decrease the demand for training samples, but the feature expression ability of the CNN is simultaneously diminished, which affects its target recognition performance. To solve this problem, this paper proposes a deep network for SAR target recognition based on Attribute Scattering Center (ASC) convolutional kernel modulation. Given the electromagnetic scattering characteristics of SAR images, the proposed network extracts scattering structures and edge features that are more consistent with the characteristics of SAR targets by modulating a small number of CNN convolutional kernels using predefined ASC kernels with different orientations and lengths. This approach generates additional convolutional kernels, which can reduce the network parameters while ensuring feature extraction capability. In addition, the designed network uses ASC-modulated convolutional kernels at shallow layers to extract scattering structures and edge features that are more consistent with the characteristics of SAR images while utilizing CNN convolutional kernels at deeper layers to extract semantic features of SAR images. The proposed network focuses on the electromagnetic scattering characteristics of SAR targets and shows the feature extraction advantages of CNNs due to the simultaneous use of ASC-modulated and CNN convolutional kernels. Experiments based on the studied SAR images demonstrate that the proposed network can ensure excellent SAR target recognition performance while reducing the demand for training samples.

     

  • loading
  • [1]
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1006–1114.
    [2]
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1–14. doi: 10.48550/arXiv.1409.1556.
    [3]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [4]
    TAN Mingxing and LE Q. EfficientNet: Rethinking model scaling for convolutional neural networks[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 6105–6114.
    [5]
    LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
    [6]
    DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]. 9th International Conference on Learning Representations, 2021: 1−22. https://iclr.cc/virtual/2021/index.html.
    [7]
    CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720.
    [8]
    喻玲娟, 王亚东, 谢晓春, 等. 基于FCNN和ICAE的SAR图像目标识别方法[J]. 雷达学报, 2018, 7(5): 622–631. doi: 10.12000/JR18066.

    YU Lingjuan, WANG Yadong, XIE Xiaochun, et al. SAR ATR based on FCNN and ICAE[J]. Journal of Radars, 2018, 7(5): 622–631. doi: 10.12000/JR18066.
    [9]
    赵鹏菲, 黄丽佳. 一种基于EfficientNet与BiGRU的多角度SAR图像目标识别方法[J]. 雷达学报, 2021, 10(6): 895–904. doi: 10.12000/JR20133.

    ZHAO Pengfei and HUANG Lijia. Target recognition method for multi-aspect synthetic aperture radar images based on EfficientNet and BiGRU[J]. Journal of Radars, 2021, 10(6): 895–904. doi: 10.12000/JR20133.
    [10]
    HUANG Xiayuan, YANG Qiao, and QIAO Hong. Lightweight two-stream convolutional neural network for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 667–671. doi: 10.1109/LGRS.2020.2983718.
    [11]
    LIU Jiaming, XING Mengdao, YU Hanwen, et al. EFTL: Complex convolutional networks with electromagnetic feature transfer learning for SAR target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5209811. doi: 10.1109/TGRS.2021.3083261.
    [12]
    ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. HOG-ShipCLSNet: A novel deep learning network with HOG feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210322. doi: 10.1109/TGRS.2021.3082759.
    [13]
    QOSJA D, WAGNER S, and BRÜGGENWIRTH S. Benchmarking convolutional neural network backbones for target classification in SAR[C]. 2023 IEEE Radar Conference, San Antonio, USA, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149802.
    [14]
    LIU Zhuang, MAO Hanzi, WU Chaoyuan, et al. A ConvNet for the 2020s[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 11966–11976. doi: 10.1109/CVPR52688.2022.01167.
    [15]
    张翼鹏, 卢东东, 仇晓兰, 等. 基于散射点拓扑和双分支卷积神经网络的SAR图像小样本舰船分类[J]. 雷达学报, 2024, 13(2): 411–427. doi: 10.12000/JR23172.

    ZHANG Yipeng, LU Dongdong, QIU Xiaolan, et al. Few-shot ship classification of SAR images via scattering point topology and dual-branch convolutional neural network[J]. Journal of Radars, 2024, 13(2): 411–427. doi: 10.12000/JR23172.
    [16]
    LUAN Shangzhen, CHEN Chen, ZHANG Baochang, et al. Gabor convolutional networks[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4357–4366. doi: 10.1109/TIP.2018.2835143.
    [17]
    徐丰, 金亚秋. 微波视觉与SAR图像智能解译[J]. 雷达学报, 2024, 13(2): 285–306. doi: 10.12000/JR23225.

    XU Feng and JIN Yaqiu. Microwave vision and intelligent perception of radar imagery[J]. Journal of Radars, 2024, 13(2): 285–306. doi: 10.12000/JR23225.
    [18]
    GERRY M J, POTTER L C, GUPTA I J, et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179–1188. doi: 10.1109/8.785750.
    [19]
    POTTER L C and MOSES R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1): 79–91. doi: 10.1109/83.552098.
    [20]
    李飞. 雷达图像目标特征提取方法研究[D]. [博士论文], 西安电子科技大学, 2014.

    LI Fei. Study on target feature extraction based on radar image[D]. [Ph.D. dissertation], Xidian University, 2014.
    [21]
    ROSS T D, WORRELL S W, VELTEN V J, et al. Standard SAR ATR evaluation experiments using the MSTAR public release data set[C]. SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery V, Orlando, USA, 1998: 566–573. doi: 10.1117/12.321859.
    [22]
    HUANG Lanqing, LIU Bin, LI Boying, et al. OpenSARShip: A dataset dedicated to sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195–208. doi: 10.1109/JSTARS.2017.2755672.
    [23]
    SUN Yongguang, DU Lan, WANG Yan, et al. SAR automatic target recognition based on dictionary learning and joint dynamic sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1777–1781. doi: 10.1109/LGRS.2016.2608578.
    [24]
    DENG Sheng, DU Lan, LI Chen, et al. SAR automatic target recognition based on Euclidean distance restricted autoencoder[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(7): 3323–3333. doi: 10.1109/JSTARS.2017.2670083.
    [25]
    NI Jiacheng and XU Yuelei. SAR automatic target recognition based on a visual cortical system[C]. 2013 6th International Congress on Image and Signal Processing, Hangzhou, China, 2013: 778–782. doi: 10.1109/CISP.2013.6745270.
    [26]
    LI Yi, DU Lan, and WEI Di. Multiscale CNN based on component analysis for SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5211212. doi: 10.1109/TGRS.2021.3100137.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(700) PDF downloads(194) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint