Citation: | Zhao Feixiang, Liu Yongxiang, Huo Kai. Radar Target Recognition Based on Stacked Denoising Sparse Autoencoder[J]. Journal of Radars, 2017, 6(2): 149-156. doi: 10.12000/JR16151 |
[1] |
吴剑旗, 田西兰. 一种基于半监督学习的窄带雷达目标识别系统[J]. 中国电子科学研究院学报, 2015, 10(1): 49–53. http://www.cnki.com.cn/Article/CJFDTOTAL-KJPL201501008.htm
Wu Jian-qi and Tian Xi-lan. A narrow-band radar target recognition system based on semi-supervised learning[J].Journal of CAEIT, 2015, 10(1): 49–53. http://www.cnki.com.cn/Article/CJFDTOTAL-KJPL201501008.htm
|
[2] |
张平定, 孙佳佳, 童创明, 等. 弹道中段目标雷达综合识别研究[J]. 微波学报, 2015, 31(2): 20–23. http://cdmd.cnki.com.cn/Article/CDMD-90002-1012020687.htm
Zhang Ping-ding, Sun Jia-jia, Tong Chuang-ming, et al. Integrated target recognition of ballistic midcourse target[J].Journal of Microwaves, 2015, 31(2): 20–23. http://cdmd.cnki.com.cn/Article/CDMD-90002-1012020687.htm
|
[3] |
曹伟, 周智敏, 周辉, 等. 基于多维特征及BP网络的高分辨雷达目标识别[J]. 计算机工程与应用, 2013, 49(8): 213–216. http://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201308052.htm
Cao Wei, Zhou Zhi-min, Zhou Hui, et al. High resolution radar target recognition based on multi-dimensional feature vector and BP network[J].Computer Engineering and Applications, 2013, 49(8): 213–216. http://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201308052.htm
|
[4] |
Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J].Science, 2006, 313(5786): 504–507. doi: 10.1126/science.1127647
|
[5] |
Lecun Y, Bengio Y, and Hinton G. Deep learning[J].Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
|
[6] |
尹宝才, 王文通, 王立春. 深度学习研究综述[J]. 北京工业大学学报, 2015, 41(1): 48–57. http://youxian.cnki.com.cn/yxdetail.aspx?filename=DSWZ201706161&dbname=CJFDPREN
Yin Bao-cai, Wang Wen-tong, and Wang Li-chun. Review of deep learning[J].Journal of Beijing University of Technology, 2015, 41(1): 48–57. http://youxian.cnki.com.cn/yxdetail.aspx?filename=DSWZ201706161&dbname=CJFDPREN
|
[7] |
丁军, 刘宏伟, 陈渤, 等. 相似性约束的深度置信网络在SAR图像目标识别的应用[J]. 电子与信息学报, 2016, 38(1): 97–103. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201601013.htm
Ding Jun, Liu Hong-wei, Chen Bo, et al. Similarity constrained deep belief networks with application to SAR image target recognition[J].Journal of Electronics &Information Technology, 2016, 38(1): 97–103. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201601013.htm
|
[8] |
田壮壮, 占荣辉, 胡杰民, 等. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3): 320–325. http://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201603012.htm
Tian Zhuang-zhuang, Zhan Rong-hui, Hu Jie-min, et al. SAR ATR based on convolutional neural network[J].Journal of Radars, 2016, 5(3): 320–325. http://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201603012.htm
|
[9] |
Jiang Xiao-juan, Zhang Ying-hua, Zhang Wen-sheng, et al. A novel sparse auto-encoder for deep unsupervised learning[C]. 2013 Sixth International Conference on Advanced Computational Intelligence, Hangzhou, 2013: 256–261.
|
[10] |
Feng Bo, Chen Bo, and Liu Hong-wei. Radar HRRP target recognition with deep networks[J].Pattern Recognition, 2017, 61: 379–393.
|
[11] |
张成刚, 姜静清. 一种稀疏降噪自编码神经网络研究[J]. 内蒙古民族大学学报(自然科学版), 2016, 31(1): 21–25. http://www.cnki.com.cn/Article/CJFDTOTAL-NMMS201601007.htm
Zhang Cheng-gang and Jiang Jing-qing. Study on sparse De-noising Auto-Encoder neural network[J].Journal of Inner Mongolia University for Nationalities, 2016, 31(1): 21–25. http://www.cnki.com.cn/Article/CJFDTOTAL-NMMS201601007.htm
|
[12] |
Meng Ling-heng, Ding Shi-fei, and Xue Yu. Research on denoising sparse autoencoder[J].International Journal of Machine Learning and Cybernetics, 2016. DOI: 10.1007/s13042-016-0550-y.
|
[13] |
Kumar V, Nandi G C, and Kala R. Static hand gesture recognition using stacked denoising sparse autoencoders[C]. 2014 Seventh International Conference on Contemporary Computing, Noida, 2014: 99–104.
|
[14] |
Sankaran A, Pandey P, Vatsa M, et al. On latent fingerprint minutiae extraction using stacked denoising sparse AutoEncoders[C]. IEEE International Joint Conference on Biometrics, Clearwater, FL, 2014: 1–7.
|
[15] |
Jose Dolz, Nacim Betrouni, Mathilde Quidet, et al. Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: A clinical study[J].Computerized Medical Imaging and Graphics, 2016, 52: 8–18. doi: 10.1016/j.compmedimag.2016.03.003
|
[16] |
Michael A Nielsen. Neural Networks and Deep Learning[M]. Determination Press, 2015.
|
[17] |
Sun Wen-jun, Shao Si-yu, Zhao Rui, et al. A sparse auto-encoder-based deep neural network approach for induction motor faults classification[J].Measurement, 2016, 89: 171–178. doi: 10.1016/j.measurement.2016.04.007
|
[18] |
Xing Chen, Ma Li, and Yang Xiao-quan. Stacked denoise autoencoder based feature extraction and classification for hyperspectral images[J].Journal of Sensors, 2016. DOI: 10.1155/2016/3632943.
|