Volume 7 Issue 5
Nov.  2018
Turn off MathJax
Article Contents
Zhang Qun, Hu Jian, Luo Ying, Chen Yijun. Research Progresses in Radar Feature Extraction, Imaging, and Recognition of Target with Micro-motions[J]. Journal of Radars, 2018, 7(5): 531-547. doi: 10.12000/JR18049
Citation: Zhang Qun, Hu Jian, Luo Ying, Chen Yijun. Research Progresses in Radar Feature Extraction, Imaging, and Recognition of Target with Micro-motions[J]. Journal of Radars, 2018, 7(5): 531-547. doi: 10.12000/JR18049

Research Progresses in Radar Feature Extraction, Imaging, and Recognition of Target with Micro-motions

DOI: 10.12000/JR18049
Funds:  The National Natural Science Foundation of China (61631019, 61571457, 61471386)
  • Received Date: 2018-06-25
  • Rev Recd Date: 2018-08-08
  • Publish Date: 2018-10-28
  • The technique of radar feature extraction, imaging, and recognition of target with micro-motions has become one of the most potential research directions in the field of radar target accurate recognition. In this paper, the concept of micro-motion is first introduced briefly. Subsequently, the achievements of echo modeling, feature extraction, imaging, and identification of micro-motion targets are summarized. Several typical frontier applications are then introduced. Finally, the future development trends of the research are discussed.

     

  • loading
  • [1]
    张群, 罗迎. 雷达目标微多普勒效应[M]. 北京: 国防工业出版社, 2013: 1–17.

    Zhang Qun and Luo Ying. Micro-Doppler Effect of Radar Targets[M]. Beijing: National Defense Industry Press, 2013: 1–17.
    [2]
    Zhang Q, Luo Y, and Chen Y A. Micro-Doppler Characteristics of Radar Targets[M]. Amsterdam: Elsevier, 2017: 1–11.
    [3]
    Chen V C. The Micro-Doppler Effect in Radar[M]. Boston, London: Artech House, 2011: 35–78.
    [4]
    Thayaparan T, Stanković L, and Djurović I. Micro-Doppler-based target detection and feature extraction in indoor and outdoor environments[J]. Journal of the Franklin Institute, 2008, 345(6): 700–722. DOI: 10.1016/j.jfranklin.2008.01.003
    [5]
    Chen V C, Li F, Ho S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21.
    [6]
    Liu L H, McLernon D, Ghogho M, et al. Ballistic missile detection via micro-Doppler frequency estimation from radar return[J]. Digital Signal Processing, 2012, 22(1): 87–95. DOI: 10.1016/j.dsp.2011.10.009
    [7]
    Chen V C. Doppler signatures of radar backscattering from objects with micro-motions[J]. IET Signal Processing, 2008, 2(3): 291–300. DOI: 10.1049/iet-spr:20070137
    [8]
    马梁, 刘进, 王涛, 等. 旋转对称目标滑动型散射中心的微Doppler特性[J]. 中国科学: 信息科学, 2011, 41(5): 605–616.

    Ma Liang, Liu Jin, Wang Tao, et al.. Micro-Doppler characteristics of sliding-type scattering center on rotationally symmetric target[J]. SCIENCE CHINA Information Sciences, 2011, 54(9): 1957–1967. DOI: 10.1007/s11432-011-4254-3.
    [9]
    陈小龙, 董云龙, 李秀友, 等. 海面刚体目标微动特征建模及特性分析[J]. 雷达学报, 2015, 4(6): 630–638. DOI: 10.12000/JR15079

    Chen Xiao-long, Dong Yun-long, Li Xiu-you, et al. Modeling of micromotion and analysis of properties of rigid marine targets[J]. Journal of Radars, 2015, 4(6): 630–638. DOI: 10.12000/JR15079
    [10]
    黄健, 李欣, 黄晓涛, 等. 基于微多普勒特征的坦克目标参数估计与身份识别[J]. 电子与信息学报, 2010, 32(5): 1050–1055. DOI: 10.3724/SP.J.1146.2009.00669

    Huang Jian, Li Xin, Huang Xiao-tao, et al. Micro-Doppler features based parameter estimation and identification of tank[J]. Journal of Electronics&Information Technology, 2010, 32(5): 1050–1055. DOI: 10.3724/SP.J.1146.2009.00669
    [11]
    张翼, 程永强, 朱玉鹏, 等. 人体目标雷达回波建模[J]. 系统仿真学报, 2011, 23(3): 438–445. DOI: 10.16182/j.cnki.joss.2011.03.018

    Zhang Yi, Cheng Yong-qiang, Zhu Yu-peng, et al. Human target radar echo modeling[J]. Journal of System Simulation, 2011, 23(3): 438–445. DOI: 10.16182/j.cnki.joss.2011.03.018
    [12]
    Chen V C. Detection and analysis of human motion by radar[C]. Proceedings of 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–4.
    [13]
    Ghaleb A, Vignaud L, and Nicolas J M. Micro-Doppler analysis of wheels and pedestrians in ISAR imaging[J]. IET Signal Processing, 2008, 2(3): 301–311. DOI: 10.1049/iet-spr:20070113
    [14]
    Zhang Q, Zeng Y S, He Y Q, et al.. Avian detection and identification with high-resolution radar[C]. Proceedings of 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–6.
    [15]
    Zhu F, Luo Y, Zhang Q, et al. ISAR imaging for avian species identification with frequency-stepped chirp signals[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(1): 151–155. DOI: 10.1109/LGRS.2009.2028902
    [16]
    Bai X R, Zhou F, and Bao Z. High-resolution 3-D imaging of group rotating targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1066–1077. DOI: 10.1109/TAES.2013.110750
    [17]
    Liu Y X, Chen H Y, Li X, et al.. Radar micro-motion target resolution[C]. Proceedings of 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1411–1414.
    [18]
    Zhao M M, Zhang Q, Luo Y, et al. Micromotion feature extraction and distinguishing of space group targets[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(2): 174–178. DOI: 10.1109/LGRS.2016.2633426
    [19]
    Fioranelli F, Ritchie M, and Griffiths H. Multistatic human micro-Doppler classification of armed/unarmed personnel[J]. IET Radar,Sonar&Navigation, 2015, 9(7): 857–865. DOI: 10.1049/iet-rsn.2014.0360
    [20]
    罗迎, 张群, 朱仁飞, 等. 多载频MIMO雷达中目标旋转部件三维微动特征提取方法[J]. 电子学报, 2011, 39(9): 1975–1981

    Luo Ying, Zhang Qun, Zhu Ren-fei, et al. Three-dimensional micro-motion feature extraction of target with rotating parts in multi-carrier MIMO radar[J]. Acta Electronica Sinica, 2011, 39(9): 1975–1981
    [21]
    Luo Y, Zhang Q, Qiu C W, et al. Three-dimensional micromotion signature extraction of rotating targets in OFDM-LFM MIMO radar[J]. Progress in Electromagnetics Research, 2013, 140: 733–759. DOI: 10.2528/PIER13042202
    [22]
    Luo Y, Zhang Q, Yuan N, et al. Three-dimensional precession feature extraction of space targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1313–1329. DOI: 10.1109/TAES.2014.110545
    [23]
    Zhang Q, Yeo T S, Tan H S, et al. Imaging of a moving target with rotating parts based on the Hough transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 291–299. DOI: 10.1109/TGRS.2007.907105
    [24]
    Xing M, Wu R, and Bao Z. High resolution ISAR imaging of high speed moving targets[J]. IEE Proceedings-Radar,Sonar and Navigation, 2005, 152(2): 58–67. DOI: 10.1049/ip-rsn:20045084
    [25]
    Bai X R, Zhou F, Xing M D, et al. High resolution ISAR imaging of targets with rotating parts[J]. IEEE Transactions on Aerospace and Electronic System, 2011, 47(4): 2530–2543. DOI: 10.1109/TAES.2011.6034649
    [26]
    Peng B, Wei X Z, Deng B, et al. A Sinusoidal frequency modulation Fourier transform for radar-based vehicle vibration estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(9): 2188–2199. DOI: 10.1109/TIM.2014.2308031
    [27]
    He Q F, Zhang Q, Luo Y, et al. Sinusoidal frequency modulation Fourier-Bessel series for multicomponent SFM signal estimation and separation[J]. Mathematical Problems in Engineering, 2017, 2017: 5852171.
    [28]
    Suresh P, Thayaparan T, Obulesu T, et al. Extracting micro-Doppler radar signatures from rotating targets using Fourier-Bessel transform and time-frequency analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3204–3210. DOI: 10.1109/TGRS.2013.2271706
    [29]
    Suresh P, Thayaparan T, and Venkataramaniah K. Fourier-Bessel transform and time-frequency-based approach for detecting manoeuvring air target in sea-clutter[J]. IET Radar,Sonar&Navigation, 2015, 9(5): 481–491.
    [30]
    冯德军, 陈志杰, 王雪松, 等. 基于一维距离像的导弹目标运动特征提取方法[J]. 国防科技大学学报, 2005, 27(6): 43–47. DOI: 10.3969/j.issn.1001-2486.2005.06.010

    Feng De-jun, Chen Zhi-jie, Wang Xue-song, et al. A method for extracting moving feature of ballistic missile targets from high resolution range profiles[J]. Journal of National University of Defense Technology, 2005, 27(6): 43–47. DOI: 10.3969/j.issn.1001-2486.2005.06.010
    [31]
    马梁, 王涛, 冯德军, 等. 旋转目标距离像长度特性及微运动特征提取[J]. 电子学报, 2008, 36(12): 2273–2279. DOI: 10.3321/j.issn:0372-2112.2008.12.001

    Ma Liang, Wang Tao, Feng De-jun, et al. The characteristic of range profile and micro-motion feature extraction for rotary target[J]. Acta Electronica Sinica, 2008, 36(12): 2273–2279. DOI: 10.3321/j.issn:0372-2112.2008.12.001
    [32]
    雷腾, 刘进忙, 余付平, 等. 基于时间-距离像的弹道目标进动特征提取新方法[J]. 信号处理, 2012, 28(1): 73–79. DOI: 10.3969/j.issn.1003-0530.2012.01.011

    Lei Teng, Liu Jin-mang, Yu Fu-ping, et al. A new procession signature extraction method of ballistic target based on range-profile[J]. Signal Processing, 2012, 28(1): 73–79. DOI: 10.3969/j.issn.1003-0530.2012.01.011
    [33]
    毕莉, 赵锋, 高勋章, 等. 基于一维像序列的进动目标尺寸估计研究[J]. 电子与信息学报, 2010, 32(8): 1825–1830. DOI: 10.3724/SP.J.1146.2009.00835

    Bi Li, Zhao Feng, Gao Xun-zhang, et al. Study on precessional target’s dimension estimation based on HRRPs[J]. Journal of Electronics&Information Technology, 2010, 32(8): 1825–1830. DOI: 10.3724/SP.J.1146.2009.00835
    [34]
    Rihaczek A W and Hershkowitz S J. Theory and Practice of Radar Target Identification[M]. Boston, London: Artech House, 2000.
    [35]
    Ai X F, Zou X H, Li Y Z, et al. Bistatic scattering centres of cone-shaped targets and target length estimation[J]. SCIENCE CHINA Information Sciences, 2012, 55(12): 2888–2898. DOI: 10.1007/s11432-012-4749-6
    [36]
    艾小锋, 邹小海, 李浩智, 等. T/R-R双基地雷达进动目标参数估计与ISAR成像[J]. 电子学报, 2012, 40(6): 1148–1153. DOI: 10.3969/j.issn.0372-2112.2012.06.013

    Ai Xiao-feng, Zou Xiao-hai, Li Hao-zhi, et al. Parameter estimation and ISAR imaging of precession targets using T/R-R bistatic radars[J]. Acta Electronica Sinica, 2012, 40(6): 1148–1153. DOI: 10.3969/j.issn.0372-2112.2012.06.013
    [37]
    金光虎, 高勋章, 黎湘, 等. 基于ISAR像序列的弹道目标进动特征提取[J]. 电子学报, 2010, 38(6): 1233–1238

    Jin Guang-hu, Gao Xun-zhang, Li Xiang, et al. Precession feature extraction of ballistic targets based on dynamic ISAR image sequence[J]. Acta Electronica Sinica, 2010, 38(6): 1233–1238
    [38]
    陈蓉, 冯存前, 贺思三, 等. 采用ISAR像估计弹道目标微动特征的方法[J]. 系统工程与电子技术, 2017, 39(7): 1500–1505. DOI: 10.3969/j.issn.1001-506X.2017.07.11

    Chen Rong, Feng Cun-qian, He Si-san, et al. Micro-motion features estimation method using ISAR images for ballistic targets[J]. Systems Engineering and Electronics, 2017, 39(7): 1500–1505. DOI: 10.3969/j.issn.1001-506X.2017.07.11
    [39]
    Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. DOI: 10.1109/TIT.2006.871582
    [40]
    李康乐. 雷达目标微动特征提取与估计技术研究[D]. [博士论文], 国防科学技术大学, 2010.

    Li Kang-le. Research on feature extraction and parameters estimation for radar targets with micro-motions[D]. [Ph.D. dissertation], National University of Defense Technology, 2010.
    [41]
    Whitelonis N and Ling H. Radar signature analysis using a joint time-frequency distribution based on compressed sensing[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 755–763. DOI: 10.1109/TAP.2013.2291893
    [42]
    Deprem Z and Çetín A. Cross-term-free time-frequency distribution reconstruction via lifted projections[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 479–491. DOI: 10.1109/TAES.2014.140080
    [43]
    Liu H C, Jiu B, Liu H W, et al. A novel ISAR imaging algorithm for micromotion targets based on multiple sparse bayesian learning[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1772–1776. DOI: 10.1109/LGRS.2014.2308536
    [44]
    Luo Y, Zhang Q, Qiu C W, et al. Micro-Doppler feature extraction for wideband imaging radar based on complex image orthogonal matching pursuit decomposition[J]. IET Radar,Sonar&Navigation, 2013, 7(8): 914–924.
    [45]
    张栋, 冯存前, 贺思三, 等. 组网雷达弹道目标三维进动特征提取[J]. 西安电子科技大学学报(自然科学版), 2015, 42(2): 146–151. DOI: 10.3969/j.issn.1001-2400.2015.02.024

    Zhang Dong, Feng Cun-qian, He Si-san, et al. Extraction of three-dimensional precession features of ballistic targets in netted radar[J]. Journal of Xidian University, 2015, 42(2): 146–151. DOI: 10.3969/j.issn.1001-2400.2015.02.024
    [46]
    赵双, 鲁卫红, 冯存前, 等. 基于窄带雷达网的弹道目标三维进动特征提取[J]. 雷达学报, 2017, 6(1): 98–105. DOI: 10.12000/JR15129

    Zhao Shuang, Lu Wei-hong, Feng Cun-qian, et al. Three-dimensional precession feature extraction of ballistic targets based on narrowband radar network[J]. Journal of Radars, 2017, 6(1): 98–105. DOI: 10.12000/JR15129
    [47]
    Hu J, Zhang Q, Luo Y, et al. Three-dimensional interferometric imaging and precession feature extraction of space targets in wideband radar[J]. Journal of Applied Remote Sensing, 2018, 12(1): 016029.
    [48]
    黎湘, 高勋章, 刘永祥. 复杂运动目标ISAR成像技术进展与展望[J]. 数据采集与处理, 2014, 29(4): 508–515. DOI: 10.3969/j.issn.1004-9037.2014.04.004

    Li Xiang, Gao Xun-zhang, and Liu Yong-xiang. Research advances in ISAR imagery of complex motion target[J]. Journal of Data Acquisition and Processing, 2014, 29(4): 508–515. DOI: 10.3969/j.issn.1004-9037.2014.04.004
    [49]
    Sato T. Shape estimation of space debris using single-range Doppler interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 1000–1005. DOI: 10.1109/36.752218
    [50]
    Wang Q, Xing M D, Lu G Y, et al. Single range matching filtering for space debris radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4): 576–580. DOI: 10.1109/LGRS.2007.903059
    [51]
    张磊, 李亚超, 刘燕, 等. 基于时频特性的窄带高速自旋目标运动估计及成像算法[J]. 中国科学: 信息科学, 2010, 40(6): 863–875.

    Zhang Lei, Li Ya-chao, Liu Yan, et al.. Time-frequency characteristics based motion estimation and imaging for high speed spinning targets via narrowband waveforms[J]. SCIENTIA SINICA Information Sciences, 2010, 53(8): 1628–1640. DOI: 10.1007/s11432-010-4027-4.
    [52]
    Ding X F, Fan M M, Wei X Z, et al. Narrowband imaging method for spatial precession cone-shaped targets[J]. SCIENCE CHINA Technological Sciences, 2010, 53(4): 942–949. DOI: 10.1007/s11431-010-0112-6
    [53]
    丁小峰, 姚辉伟, 范梅梅, 等. 基于层析投影算法的空间旋转目标窄带雷达成像[J]. 信号处理, 2010, 26(5): 648–653. DOI: 10.3969/j.issn.1003-0530.2010.05.002

    Ding Xiao-feng, Yao Hui-wei, Fan Mei-mei, et al. Narrowband imaging for spatial rotating targets based on tomography algorithm[J]. Signal Processing, 2010, 26(5): 648–653. DOI: 10.3969/j.issn.1003-0530.2010.05.002
    [54]
    雷腾, 刘进忙, 李松, 等. 基于MP稀疏分解的弹道中段目标微动ISAR成像新方法[J]. 系统工程与电子技术, 2011, 33(12): 2649–2654. DOI: 10.3969/j.issn.1001-506X.2011.12.15

    Lei Teng, Liu Jin-mang, Li Song, et al. A novel ISAR imaging method of ballistic midcourse targets based on MP sparse decomposition[J]. Systems Engineering and Electronics, 2011, 33(12): 2649–2654. DOI: 10.3969/j.issn.1001-506X.2011.12.15
    [55]
    Zou F, Fu Y W, and Jiang W D. Micro-motion effect in inverse synthetic aperture radar imaging of ballistic mid-course targets[J]. Journal of Central South University, 2012, 19(6): 1548–1577. DOI: 10.1007/s11771-012-1175-2
    [56]
    Kang W W, Zhang Y H, and Dong X. Micro-Doppler effect removal for ISAR imaging based on bivariate variational mode decomposition[J]. IET Radar,Sonar&Navigation, 2018, 12(1): 74–81. DOI: 10.1049/iet-rsn.2017.0104
    [57]
    Yuan B, Chen Z P, and Xu S Y. Micro-Doppler analysis and separation based on complex local mean decomposition for aircraft with fast-rotating parts in ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1285–1298. DOI: 10.1109/TGRS.2013.2249588
    [58]
    Stanković L, Orović I, Stanković S, et al. Compressive sensing based separation of nonstationary and stationary signals overlapping in time-frequency[J]. IEEE Transactions on Signal Processing, 2013, 61(18): 4562–4572. DOI: 10.1109/TSP.2013.2271752
    [59]
    Wang Q, Xing M D, Lu G Y, et al. High-resolution three-dimensional radar imaging for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 22–30. DOI: 10.1109/TGRS.2007.909086
    [60]
    Xing M D, Wang Q, Wang G Y, et al. A matched-filter-bank-based 3-D imaging algorithm for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2106–2113. DOI: 10.1109/TGRS.2008.2010499
    [61]
    Zhang L, Xing M D, Qiu C W, et al. Two-dimensional spectrum matched filter banks for high-speed spinning-target three-dimensional ISAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 368–372. DOI: 10.1109/LGRS.2009.2013487
    [62]
    Bai X R, Xing M D, Zhou F, et al. High-resolution three-dimensional imaging of spinning space debris[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2352–2362. DOI: 10.1109/TGRS.2008.2010854
    [63]
    Bai X R and Bao Z. Imaging of rotation-symmetric space targets based on electromagnetic modeling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 1680–1689. DOI: 10.1109/TAES.2014.120772
    [64]
    Bai X R and Bao Z. High-resolution 3D imaging of precession cone-shaped targets[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(8): 4209–4219. DOI: 10.1109/TAP.2014.2329004
    [65]
    Bai X R, Zhou F, and Bao Z. High-resolution three-dimensional imaging of space targets in micromotion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3428–3440. DOI: 10.1109/JSTARS.2015.2431119
    [66]
    Ai X F, Huang Y, Zhao F, et al. Imaging of spinning targets via narrow-band T/R-R bistatic radars[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 362–366. DOI: 10.1109/LGRS.2012.2205893
    [67]
    梁必帅, 张群, 娄昊, 等. 基于微动特征关联的空间非对称自旋目标雷达三维成像方法[J]. 电子与信息学报, 2014, 36(6): 1381–1388. DOI: 10.3724/SP.J.1146.2013.01147

    Liang Bi-shuai, Zhang Qun, Lou Hao, et al. A method of three-dimensional imaging based on micro-motion feature association for spatial asymmetrical spinning targets[J]. Journal of Electronics&Information Technology, 2014, 36(6): 1381–1388. DOI: 10.3724/SP.J.1146.2013.01147
    [68]
    梁必帅, 张群, 娄昊, 等. 基于微动特征关联的空间自旋目标宽带雷达三维成像[J]. 电子与信息学报, 2013, 35(9): 2133–2140. DOI: 10.3724/SP.J.1146.2012.01537

    Liang Bi-shuai, Zhang Qun, Lou Hao, et al. Three-dimensional broadband radar imaging of space spinning targets based on micro-motion parameter correlation[J]. Journal of Electronics&Information Technology, 2013, 35(9): 2133–2140. DOI: 10.3724/SP.J.1146.2012.01537
    [69]
    Sun Y X, Luo Y, Zhang Q, et al. Time-varying three-dimensional interferometric imaging for space rotating targets with stepped-frequency chirp signal[J]. IET Radar,Sonar&Navigation, 2017, 11(9): 1397–1405. DOI: 10.1049/iet-rsn.2017.0009
    [70]
    Gschwendtner A B and Keicher W E. Development of coherent laser radar at Lincoln Laboratory[J]. Lincoln Laboratory Journal, 2000, 12(2): 383–396.
    [71]
    Lei J J and Lu C. Target classification based on micro-Doppler signatures[C]. Proceedings of 2005 IEEE International Radar Conference, Arlington, VA, USA, 2005: 179–183.
    [72]
    Nanzer J A and Rogers R L. Bayesian classification of humans and vehicles using micro-Doppler signals from a Scanning-beam radar[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(5): 338–340. DOI: 10.1109/LMWC.2009.2017620
    [73]
    Lin Y and Le Kernec J. Performance analysis of classification algorithms for activity recognition using micro-Doppler feature[C]. Proceedings of the 13th International Conference on Computational Intelligence and Security, Hong Kong, China, 2017: 480–483.
    [74]
    Smith G E, Woodbridge K, and Baker C J. Template based micro-Doppler signature classification[C]. 2006 European Radar Conference, Manchester, UK, 2006: 158–161.
    [75]
    李开明, 张群, 罗迎, 等. 地面车辆目标识别研究综述[J]. 电子学报, 2014, 42(3): 538–546. DOI: 10.3969/j.issn.0372-2112.2014.03.018

    Li Kai-ming, Zhang Qun, Luo Ying, et al. Review of ground vehicles recognition[J]. Acta Electronica Sinica, 2014, 42(3): 538–546. DOI: 10.3969/j.issn.0372-2112.2014.03.018
    [76]
    王晓丹, 王积勤. 雷达目标识别技术综述[J]. 现代雷达, 2003, 25(5): 22–26. DOI: 10.3969/j.issn.1004-7859.2003.05.007

    Wang Xiao-dan and Wang Ji-qin. A survey of radar target recognition technique[J]. Modern Radar, 2003, 25(5): 22–26. DOI: 10.3969/j.issn.1004-7859.2003.05.007
    [77]
    Van Eeden W D, De Villiers J P, Berndt R J, et al. Micro-Doppler radar classification of humans and animals in an operational environment[J]. Expert Systems with Applications, 2018, 102: 1–11. DOI: 10.1016/j.eswa.2018.02.019
    [78]
    Bilik I and Khomchuk P. Minimum divergence approaches for robust classification of ground moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 581–603. DOI: 10.1109/TAES.2012.6129657
    [79]
    Graley J, Murray T S, Mendat D R, et al.. Action recognition using micro-Doppler signatures and a recurrent neural network[C]. Proceedings of the 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 2017: 1–5.
    [80]
    Lan J H, Zhang Z H, and Xiong S. Acoustic detection for vehicle targets and recognition by data fusion[C]. Proceedings of 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings, Ottawa, Canada, 2005: 551–553.
    [81]
    Yang L, Li G, Ritchie M, et al.. Gait classification based on micro-Doppler features[C]. Proceedings of 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–4.
    [82]
    Zabalza J, Clemente C, Di Caterina G, et al. Robust PCA micro-Doppler classification using SVM on embedded systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 2304–2310. DOI: 10.1109/TAES.2014.130082
    [83]
    Vishwakarma S and Ram S S. Dictionary learning for classification of indoor micro-Doppler signatures across multiple carriers[C]. Proceedings of 2017 IEEE Radar Conference, Seattle, WA, USA, 2017: 0992–0997. DOI: 10.1109/RADAR.2017.7944348.
    [84]
    方菲菲, 余稳. 基于PCA-LDA-SVM的多普勒雷达车型识别算法[J]. 数据采集与处理, 2012, 27(1): 111–116. DOI: 10.3969/j.issn.1004-9037.2012.01.019

    Fang Fei-fei and Yu Wen. Vehicle recognition algorithm with doppler radar based on PCA-LDA-SVM[J]. Journal of Data Acquisition&Processing, 2012, 27(1): 111–116. DOI: 10.3969/j.issn.1004-9037.2012.01.019
    [85]
    Javier R J and Kim Y. Application of linear predictive coding for human activity classification based on micro-Doppler signatures[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1831–1834. DOI: 10.1109/LGRS.2014.2311819
    [86]
    Smith G E, Woodbridge K, and Baker C J. Radar micro-Doppler signature classification using dynamic time warping[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1078–1096. DOI: 10.1109/TAES.2010.5545175
    [87]
    冯存前, 李靖卿, 贺思三, 等. 组网雷达中弹道目标微动特征提取与识别综述[J]. 雷达学报, 2015, 4(6): 609–620. DOI: 10.12000/JR15084

    Feng Cun-qian, Li Jing-qing, He Si-san, et al. Micro-Doppler feature extraction and recognition based on netted radar for ballistic targets[J]. Journal of Radars, 2015, 4(6): 609–620. DOI: 10.12000/JR15084
    [88]
    Chen X L, Guan J, Li X Y, et al. Effective coherent integration method for marine target with micromotion via phase differentiation and radon-Lv’s distribution[J]. IET Radar,Sonar&Navigation, 2015, 9(9): 1284–1295. DOI: 10.1049/iet-rsn.2015.0100
    [89]
    Chen X L, Guan J, Bao Z H, et al. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1002–1018. DOI: 10.1109/TGRS.2013.2246574
    [90]
    孙挺, 程旭. 一种基于全极化回波的微多普勒增强算法[J]. 电子学报, 2017, 45(9): 2071–2076. DOI: 10.3969/j.issn.0372-2112.2017.09.003

    Sun Ting and Cheng Xu. A novel method of micro-Doppler signature enhancement based on full polarization echoes[J]. Acta Electronica Sinica, 2017, 45(9): 2071–2076. DOI: 10.3969/j.issn.0372-2112.2017.09.003
    [91]
    Damarla T, Bradley M, Mehmood A, et al. Classification of animals and people ultrasonic signatures[J]. IEEE Sensors Journal, 2013, 13(5): 1464–1472. DOI: 10.1109/JSEN.2012.2236550
    [92]
    Shi X R, Zhou F, Liu L, et al. Textural feature extraction based on time-frequency spectrograms of humans and vehicles[J]. IET Radar,Sonar&Navigation, 2015, 9(9): 1251–1259. DOI: 10.1049/iet-rsn.2014.0432
    [93]
    Amin M G, Ahmad F, Zhang Y D, et al. Human gait recognition with cane assistive device using quadratic time-frequency distributions[J]. IET Radar,Sonar&Navigation, 2015, 9(9): 1224–1230. DOI: 10.1049/iet-rsn.2015.0119
    [94]
    Saho K, Fujimoto M, Masugi M, et al. Gait classification of young adults, elderly non-fallers, and elderly fallers using micro-Doppler radar signals: Simulation study[J]. IEEE Sensors Journal, 2017, 17(8): 2320–2321. DOI: 10.1109/JSEN.2017.2678484
    [95]
    Mikhelson I V, Bakhtiari S, Elmer II T W, et al. Remote sensing of heart rate and patterns of respiration on a stationary subject using 94-GHz millimeter-wave interferometry[J].IEEE Transactions on Biomedical Engineering, 2011, 58(6): 1671–1677. DOI: 10.1109/TBME.2011.2111371
    [96]
    Xu Z W, Wu Y J, and Lu X Q. Time-frequency analysis of terahertz radar signal for vital signs sensing based on radar sensor[J]. International Journal of Sensor Networks, 2013, 13(4): 241–253. DOI: 10.1504/IJSNET.2013.055587
    [97]
    Chen V C. Radar micro-Doppler signatures-principle and applications[J]. Radar Science and Technology, 2012, 10(3): 231–240.
    [98]
    王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119–131. DOI: 10.12000/JR16039

    Wang Xuesong. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2): 119–131. DOI: 10.12000/JR16039
    [99]
    Petkie D T, Bryan E, Benton C, et al.. Remote respiration and heart rate monitoring with millimeter-wave/terahertz radars[C]. Proceedings of SPIE 7117, Millimetre Wave and Terahertz Sensors and Technology, Cardiff, Wales, United Kingdom, 2008, 7117: 71170I. DOI: 10.1117/12.800356.
    [100]
    杨琪, 邓彬, 王宏强, 等. 太赫兹雷达目标微动特征提取研究进展[J]. 雷达学报, 2018, 7(1): 22–45. DOI: 10.12000/JR17087

    Yang Qi, Deng Bin, Wang Hongqiang, et al. Advancements in research on micro-motion feature extraction in the terahertz region[J]. Journal of Radars, 2018, 7(1): 22–45. DOI: 10.12000/JR17087
    [101]
    Mehmood A, Sabatier J M, Bradley M, et al. Extraction of the velocity of walking human’s body segments using ultrasonic Doppler[J]. The Journal of the Acoustical Society of America, 2010, 128(5): EL316. DOI: 10.1121/1.3501115
    [102]
    Lecun Y, Bengio Y, and Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. DOI: 10.1038/nature14539
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(9876) PDF downloads(1340) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint