Xu Zhen, Wang Robert, Li Ning, et al.. A novel approach to change detection in SAR images with CNN classification[J]. Journal of Radars, 2017, 6(5): 483–491. DOI: 10.12000/JR17075
Citation: WEN Gongjian, MA Conghui, DING Baiyuan, et al. SAR target physics interpretable recognition method based on three dimensional parametric electromagnetic part model[J]. Journal of Radars, 2020, 9(4): 608–621. doi: 10.12000/JR20099

SAR Target Physics Interpretable Recognition Method Based on Three Dimensional Parametric Electromagnetic Part Model

DOI: 10.12000/JR20099
Funds:  The National Minstries Foundation
More Information
  • Corresponding author: WEN Gongjian, wengongjian@sina.com
  • Received Date: 2020-07-08
  • Rev Recd Date: 2020-08-19
  • Available Online: 2020-08-26
  • Publish Date: 2020-08-28
  • In this paper, a target’s electromagnetic scattering phenomenon is characterized by the Three Dimensional Parametric Electromagnetic Part Model (3D-PEPM) and a novel Synthetic Aperture Radar (SAR) target recognition method is proposed based on the model. The proposed method projects the individual scatterers in the 3D-PEPM to the 2D image plane to predict the location and appearance for each scatterer according to the radar parameters firstly. Then based on the prior information provided by the 3D-PEPM, the similarities between the 3D-PEPM and SAR data are evaluated. Finally, a view angle adjusting method is utilized to optimize the whole process to produce the final match score between the model and SAR data, and the recognition decision is made according to the match score. The proposed recognition method identifies clearly the correspondences of the scatterers between SAR data and 3D-PEPM and enjoys the explicit physical interpretability, so it can deal with SAR recognition problems under various extended operating conditions. Experiments on simulated data reveal the effectiveness of the proposed method.

     

  • [1]
    EL-DARYMLI K, GILL E W, MCGUIRE P, et al. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review[J]. IEEE Access, 2016, 4: 6014–6058. doi: 10.1109/ACCESS.2016.2611492
    [2]
    NOVAK L M, OWIRKA G J, BROWER W S, et al. The automatic target-recognition system in SAIP[J]. The Lincoln Laboratory Journal, 1997, 10(2): 187–202.
    [3]
    PARK J I, PARK S H, and KIM K T. New discrimination features for SAR automatic target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 476–480. doi: 10.1109/LGRS.2012.2210385
    [4]
    NICOLI L P and ANAGNOSTOPOULOS G C. Shape-based recognition of targets in synthetic aperture radar images using elliptical Fourier descriptors[C]. SPIE 6967, Automatic Target Recognition XVIII, Orlando, USA, 2008.
    [5]
    MISHRA A K. Validation of PCA and LDA for SAR ATR[C]. The TENCON 2008 - 2008 IEEE Region 10 Conference, Hyderabad, India, 2008: 1–6.
    [6]
    宦若虹, 杨汝良. 基于小波域NMF特征提取的SAR图像目标识别方法[J]. 电子与信息学报, 2009, 31(3): 588–591. doi: 10.3724/SP.J.1146.2007.01808

    HUAN Ruohong and YANG Ruliang. Synthetic aperture radar images target recognition based on wavelet domain NMF feature extraction[J]. Journal of Electronics &Information Technology, 2009, 31(3): 588–591. doi: 10.3724/SP.J.1146.2007.01808
    [7]
    DONG Ganggang and KUANG Gangyao. Classification on the monogenic scale space: Application to target recognition in SAR image[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2527–2539. doi: 10.1109/TIP.2015.2421440
    [8]
    POTTER L C and MOSES R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1): 79–91. doi: 10.1109/83.552098
    [9]
    MOSES P L, POTTER L C, and GUPTA I J. Feature extraction using attributed scattering center models for model-based automatic target recognition (ATR)[R]. AFRL-SN-WP-TR-2006-1004, 2005.
    [10]
    LIU Xian, HUANG Yulin, PEI Jifang, et al. Sample discriminant analysis for SAR ATR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2120–2124. doi: 10.1109/LGRS.2014.2321164
    [11]
    HUANG Yulin, PEI Jifang, YANG Jianyu, et al. Neighborhood geometric center scaling embedding for SAR ATR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 180–192. doi: 10.1109/TAES.2013.110769
    [12]
    DING Jun, CHEN Bo, LIU Hongwei, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364–368.
    [13]
    CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720
    [14]
    ROSS T D, BRADLEY J J, HUDSON L J, et al. SAR ATR: So what’s the problem? An MSTAR perspective[C]. SPIE 3721, Algorithms for Synthetic Aperture Radar Imagery VI, Orlando, USA, 1999: 606–610.
    [15]
    KEYDEL E R, LEE S W, and MOORE J T. MSTAR extended operating conditions: A tutorial[C]. SPIE 2757, Algorithms for Synthetic Aperture Radar Imagery III, Orlando, USA, 1996: 228–242.
    [16]
    JONES III G and BHANU B. Recognition of articulated and occluded objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(7): 603–613. doi: 10.1109/34.777371
    [17]
    DIEMUNSCH J R and WISSINGER J. Moving and stationary target acquisition and recognition (MSTAR) model-based automatic target recognition: Search technology for a robust ATR[C]. SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery V, Orlando, USA, 1998: 481–492.
    [18]
    HUANG Peikang, YIN Hongcheng, and XU Xiaojian. Radar Target Characteristics[M]. Beijing: Publishing House of Electronics Industry, 2006.
    [19]
    CHIANG H C, MOSES R L, and POTTER L C. Model-based Bayesian feature matching with application to synthetic aperture radar target recognition[J]. Pattern Recognition, 2001, 34(8): 1539–1553. doi: 10.1016/S0031-3203(00)00089-3
    [20]
    ZHOU Jianxiong, SHI Zhiguang, XIAO Cheng, et al. Automatic target recognition of SAR images based on global scattering center model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3713–3729. doi: 10.1109/TGRS.2011.2162526
    [21]
    JACKSON J A. Three-dimensional feature models for synthetic aperture radar and experiments in feature extraction[D]. [Ph. D. dissertation], Ohio State University, 2009.
    [22]
    文贡坚, 朱国强, 殷红成, 等. 基于三维电磁散射参数化模型的SAR目标识别方法[J]. 雷达学报, 2017, 6(2): 115–135. doi: 10.12000/JR17034

    WEN Gongjian, ZHU Guoqiang, YIN Hongcheng, et al. SAR ATR based on 3D parametric electromagnetic scattering model[J]. Journal of Radars, 2017, 6(2): 115–135. doi: 10.12000/JR17034
    [23]
    GIUSTI E, MARTORELLA M, and CAPRIA A. Polarimetrically-persistent-scatterer-based automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4588–4599. doi: 10.1109/TGRS.2011.2164804
    [24]
    TANG Tao and SU Yi. Object recognition based on feature matching of scattering centers in SAR imagery[C]. The 5th International Congress on Image and Signal Processing, Chongqing, China, 2012: 1073–1076.
    [25]
    MARTORELLA M, GIUSTI E, DEMI L, et al. Target recognition by means of polarimetric ISAR images[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 225–239. doi: 10.1109/TAES.2011.5705672
    [26]
    SAVILLE M A, SAINI D K, and SMITH J. Commercial vehicle classification from spectrum parted linked image test-attributed synthetic aperture radar imagery[J]. IET Radar, Sonar & Navigation, 2016, 10(3): 569–576.
    [27]
    RICHARDS J A. Target model generation from multiple synthetic aperture radar image[D]. [Ph. D. dissertation], 1996, MIT.
    [28]
    HE Yang, HE Siyuan, ZHANG Yunhua, et al. A forward approach to establish parametric scattering center models for known complex radar targets applied to SAR ATR[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6192–6205. doi: 10.1109/TAP.2014.2360700
    [29]
    ZHOU Jianxiong, SHI Zhiguang, and FU Qiang. Three-dimensional scattering center extraction based on wide aperture data at a single elevation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1638–1655. doi: 10.1109/TGRS.2014.2346509
    [30]
    VOICU L I, PATTON R, and MYLER H R. Multicriterion vehicle pose estimation for SAR ATR[C]. SPIE 3721, Algorithms for Synthetic Aperture Radar Imagery VI, Orlando, USA, 1999: 3721.
    [31]
    CUI Xunxue, ZHANG Jichun, and ZHOU Pucheng. Hypothesis testing for target detection model in sensor networks[C]. The 7th International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, China, 2010.
    [32]
    BOSE R. Lean CLEAN: Deconvolution algorithm for radar imaging of contiguous targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 2190–2199. doi: 10.1109/TAES.2011.5937291
    [33]
    SHAFER G. A Mathematical Theory of Evidence[M]. Princeton: Princeton University Press, 1976.
    [34]
    FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627–1645. doi: 10.1109/TPAMI.2009.167
  • Relative Articles

    [1]WANG Mou, WEI Shunjun, SHEN Rong, ZHOU Zichen, SHI Jun, ZHANG Xiaoling. 3D SAR Imaging Method Based on Learned Sparse Prior[J]. Journal of Radars, 2023, 12(1): 36-52. doi: 10.12000/JR22101
    [2]Hong Wen, Wang Yanping, Lin Yun, Tan Weixian, Wu Yirong. Research Progress on Three-dimensional SAR Imaging Techniques[J]. Journal of Radars, 2018, 7(6): 633-654. doi: 10.12000/JR18109
    [3]Yan Min, Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. LASAR High-resolution 3D Imaging Algorithm Based on Sparse Bayesian Regularization[J]. Journal of Radars, 2018, 7(6): 705-716. doi: 10.12000/JR18067
    [4]Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. Compressed Sensing Linear Array SAR Autofocusing Imaging via Semi-definite Programming[J]. Journal of Radars, 2018, 7(6): 664-675. doi: 10.12000/JR17103
    [5]Liu Qiyong, Zhang Qun, Hong Wen, Su Linghua, Liang Jia. DLSLA 3D SAR Motion Error Compensation and Imaging Method Based on Parameter Estimation[J]. Journal of Radars, 2018, 7(6): 730-739. doi: 10.12000/JR18107
    [6]Tian He, Li Daojing, Qi Chunchao. Millimeter-wave Human Security Imaging Based on Frequency-domain Sparsity and Rapid Imaging Sparse Array Architecture[J]. Journal of Radars, 2018, 7(3): 376-386. doi: 10.12000/JR17082
    [7]Li Hang, Liang Xingdong, Zhang Fubo, Wu Yirong. 3D Imaging for Array InSAR Based on Gaussian Mixture Model Clustering[J]. Journal of Radars, 2017, 6(6): 630-639. doi: 10.12000/JR17020
    [8]Liu Xiangyang, Yang Jungang, Meng Jin, Zhang Xiao, Niu Dezhi. Sparse Three-dimensional Imaging Based on Hough Transform for Forward-looking Array SAR in Low SNR[J]. Journal of Radars, 2017, 6(3): 316-323. doi: 10.12000/JR17011
    [9]Hu Jingqiu, Liu Falin, Zhou Chongbin, Li Bo, Wang Dongjin. CS-SAR Imaging Method Based on Inverse Omega-K Algorithm[J]. Journal of Radars, 2017, 6(1): 25-33. doi: 10.12000/JR16027
    [10]Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107
    [11]Zhang Zenghui, Yu Wenxian. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images[J]. Journal of Radars, 2016, 5(1): 42-56. doi: 10.12000/JR15097
    [12]Li Liechen, Li Daojing, Huang Pingping. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain[J]. Journal of Radars, 2016, 5(1): 109-117. doi: 10.12000/JR14159
    [13]Xiao Peng, Wu Youming, Yu Ze, Li Chunsheng. Azimuth Ambiguity Suppression in SAR Images Based on Compressive Sensing Recovery Algorithm[J]. Journal of Radars, 2016, 5(1): 35-41. doi: 10.12000/JR16004
    [14]Gu Fufei, Zhang Qun, Yang Qiu, Huo Wenjun, Wang Min. Compressed Sensing Imaging Algorithm for High-squint SAR Based on NCS Operator[J]. Journal of Radars, 2016, 5(1): 16-24. doi: 10.12000/JR15035
    [15]Wang Aichun, Xiang Maosheng. SAR Tomography Based on Block Compressive Sensing[J]. Journal of Radars, 2016, 5(1): 57-64. doi: 10.12000/JR16006
    [16]Zhou Hui, Zhao Feng-jun, Yu Wei-dong, Yang Jian. SAR Imaging of Ground Moving Targets with Non-ideal Motion Error Compensation(in English)[J]. Journal of Radars, 2015, 4(3): 265-275. doi: 10.12000/JR15024
    [17]Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock[J]. Journal of Radars, 2015, 4(4): 467-473. doi: 10.12000/JR15016
    [18]Wu Yi-rong, Hong Wen, Zhang Bing-chen, Jiang Cheng-long, Zhang Zhe, Zhao Yao. Current Developments of Sparse Microwave Imaging[J]. Journal of Radars, 2014, 3(4): 383-395. doi: 10.3724/SP.J.1300.2014.14105
    [19]Zhao Yao, Zhang Bing-chen, Hong Wen, Wu Yi-rong. RIPless Based Radar Waveform Analysis in Sparse Microwave Imaging[J]. Journal of Radars, 2013, 2(3): 265-270. doi: 10.3724/SP.J.1300.2013.13032
    [20]Zhong Li-hua, Hu Dong-hui, Ding Chi-biao, Zhang Wen-yi. ISAR Sparse Aperture Imaging Algorithm for Large Size Target[J]. Journal of Radars, 2012, 1(3): 292-300. doi: 10.3724/SP.J.1300.2012.20033
  • Cited by

    Periodical cited type(7)

    1. 黄钟泠,吴冲,姚西文,王立鹏,韩军伟. 基于时频分析的SAR目标微波视觉特性智能感知方法与应用. 雷达学报. 2024(02): 331-344 . 本站查看
    2. 丁柏圆,周春雨. 结合三维电磁散射模型和深度学习的SAR目标识别框架设计. 航天电子对抗. 2024(02): 34-38+64 .
    3. 张旭,徐丰,金亚秋. 典型几何基元的高频散射建模方法梳理. 雷达学报. 2022(01): 126-143 . 本站查看
    4. 顾丹丹,廖意,王晓冰. 雷达目标特性知识引导的智能识别技术进展与思考. 制导与引信. 2022(04): 57-64 .
    5. 邢孟道,谢意远,高悦欣,张金松,刘嘉铭,吴之鑫. 电磁散射特征提取与成像识别算法综述. 雷达学报. 2022(06): 921-942 . 本站查看
    6. 陆金文,闫华,殷红成,张磊,董纯柱. 用于三维散射中心SBR建模的边缘绕射修正. 西安电子科技大学学报. 2021(02): 117-124+189 .
    7. 陆金文,闫华,张磊,殷红成. 基于弹跳射线技术的三维GTD模型构建方法. 系统工程与电子技术. 2021(08): 2028-2036 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.8 %FULLTEXT: 21.8 %META: 68.3 %META: 68.3 %PDF: 9.9 %PDF: 9.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.6 %其他: 10.6 %其他: 0.3 %其他: 0.3 %Cassino: 0.1 %Cassino: 0.1 %China: 1.1 %China: 1.1 %India: 0.0 %India: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %[]: 0.3 %[]: 0.3 %三亚: 0.0 %三亚: 0.0 %上海: 0.8 %上海: 0.8 %上海市: 0.0 %上海市: 0.0 %东营: 0.0 %东营: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %兰州: 0.0 %兰州: 0.0 %内江: 0.1 %内江: 0.1 %内蒙古自治区呼和浩特: 0.0 %内蒙古自治区呼和浩特: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %加利福尼亚: 0.1 %加利福尼亚: 0.1 %包头: 0.0 %包头: 0.0 %北京: 15.8 %北京: 15.8 %北京市: 0.0 %北京市: 0.0 %北海: 0.0 %北海: 0.0 %南京: 1.0 %南京: 1.0 %南昌: 0.4 %南昌: 0.4 %南通: 0.0 %南通: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.3 %呼和浩特: 0.3 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %宁夏回族自治区银川: 0.0 %宁夏回族自治区银川: 0.0 %宁波: 0.0 %宁波: 0.0 %安康: 0.0 %安康: 0.0 %宣城: 0.0 %宣城: 0.0 %宿迁: 0.1 %宿迁: 0.1 %崇左: 0.0 %崇左: 0.0 %巴中: 0.1 %巴中: 0.1 %常州: 0.0 %常州: 0.0 %广州: 0.6 %广州: 0.6 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %张家口: 1.9 %张家口: 1.9 %张家口市: 0.0 %张家口市: 0.0 %惠州: 0.2 %惠州: 0.2 %成都: 1.3 %成都: 1.3 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %杭州: 1.8 %杭州: 1.8 %武汉: 0.2 %武汉: 0.2 %汉中: 0.0 %汉中: 0.0 %汉中市: 0.0 %汉中市: 0.0 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.3 %济南: 0.3 %淮南: 0.0 %淮南: 0.0 %深圳: 0.3 %深圳: 0.3 %深圳市: 0.0 %深圳市: 0.0 %温州: 0.0 %温州: 0.0 %渭南: 0.0 %渭南: 0.0 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.2 %漯河: 0.2 %濮阳: 0.2 %濮阳: 0.2 %烟台: 0.1 %烟台: 0.1 %焦作: 0.0 %焦作: 0.0 %玉林: 0.1 %玉林: 0.1 %盐城: 0.0 %盐城: 0.0 %石家庄: 0.4 %石家庄: 0.4 %石家庄市: 0.1 %石家庄市: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国德克萨斯沃思堡: 0.0 %美国德克萨斯沃思堡: 0.0 %芒廷维尤: 15.4 %芒廷维尤: 15.4 %芜湖: 0.0 %芜湖: 0.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.0 %苏州: 0.0 %莫斯科: 0.0 %莫斯科: 0.0 %衡水: 0.0 %衡水: 0.0 %西宁: 37.2 %西宁: 37.2 %西安: 1.0 %西安: 1.0 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %达州: 0.0 %达州: 0.0 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %郑州: 1.5 %郑州: 1.5 %重庆: 0.1 %重庆: 0.1 %银川: 0.1 %银川: 0.1 %长沙: 0.4 %长沙: 0.4 %阳泉: 0.1 %阳泉: 0.1 %阿什本: 0.1 %阿什本: 0.1 %青岛: 0.1 %青岛: 0.1 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %驻马店: 0.0 %驻马店: 0.0 %齐齐哈尔: 0.3 %齐齐哈尔: 0.3 %其他其他CassinoChinaIndiaTaiwan, China[]三亚上海上海市东营临汾丹东丽水佛山保定兰州内江内蒙古自治区呼和浩特凤凰城加利福尼亚包头北京北京市北海南京南昌南通台北台州合肥呼和浩特哈尔滨嘉兴大连天津宁夏回族自治区银川宁波安康宣城宿迁崇左巴中常州广州库比蒂诺张家口张家口市惠州成都扬州新乡无锡昆明晋城杭州武汉汉中汉中市沈阳济南淮南深圳深圳市温州渭南湖州湘潭漯河濮阳烟台焦作玉林盐城石家庄石家庄市美国伊利诺斯芝加哥美国德克萨斯沃思堡芒廷维尤芜湖芝加哥苏州莫斯科衡水西宁西安贵港贵阳达州运城连云港郑州重庆银川长沙阳泉阿什本青岛香港特别行政区驻马店齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2894) PDF downloads(225) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint