Citation: | WEN Gongjian, MA Conghui, DING Baiyuan, et al. SAR target physics interpretable recognition method based on three dimensional parametric electromagnetic part model[J]. Journal of Radars, 2020, 9(4): 608–621. doi: 10.12000/JR20099 |
[1] |
EL-DARYMLI K, GILL E W, MCGUIRE P, et al. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review[J]. IEEE Access, 2016, 4: 6014–6058. doi: 10.1109/ACCESS.2016.2611492
|
[2] |
NOVAK L M, OWIRKA G J, BROWER W S, et al. The automatic target-recognition system in SAIP[J]. The Lincoln Laboratory Journal, 1997, 10(2): 187–202.
|
[3] |
PARK J I, PARK S H, and KIM K T. New discrimination features for SAR automatic target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 476–480. doi: 10.1109/LGRS.2012.2210385
|
[4] |
NICOLI L P and ANAGNOSTOPOULOS G C. Shape-based recognition of targets in synthetic aperture radar images using elliptical Fourier descriptors[C]. SPIE 6967, Automatic Target Recognition XVIII, Orlando, USA, 2008.
|
[5] |
MISHRA A K. Validation of PCA and LDA for SAR ATR[C]. The TENCON 2008 - 2008 IEEE Region 10 Conference, Hyderabad, India, 2008: 1–6.
|
[6] |
宦若虹, 杨汝良. 基于小波域NMF特征提取的SAR图像目标识别方法[J]. 电子与信息学报, 2009, 31(3): 588–591. doi: 10.3724/SP.J.1146.2007.01808
HUAN Ruohong and YANG Ruliang. Synthetic aperture radar images target recognition based on wavelet domain NMF feature extraction[J]. Journal of Electronics &Information Technology, 2009, 31(3): 588–591. doi: 10.3724/SP.J.1146.2007.01808
|
[7] |
DONG Ganggang and KUANG Gangyao. Classification on the monogenic scale space: Application to target recognition in SAR image[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2527–2539. doi: 10.1109/TIP.2015.2421440
|
[8] |
POTTER L C and MOSES R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1): 79–91. doi: 10.1109/83.552098
|
[9] |
MOSES P L, POTTER L C, and GUPTA I J. Feature extraction using attributed scattering center models for model-based automatic target recognition (ATR)[R]. AFRL-SN-WP-TR-2006-1004, 2005.
|
[10] |
LIU Xian, HUANG Yulin, PEI Jifang, et al. Sample discriminant analysis for SAR ATR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2120–2124. doi: 10.1109/LGRS.2014.2321164
|
[11] |
HUANG Yulin, PEI Jifang, YANG Jianyu, et al. Neighborhood geometric center scaling embedding for SAR ATR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 180–192. doi: 10.1109/TAES.2013.110769
|
[12] |
DING Jun, CHEN Bo, LIU Hongwei, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364–368.
|
[13] |
CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720
|
[14] |
ROSS T D, BRADLEY J J, HUDSON L J, et al. SAR ATR: So what’s the problem? An MSTAR perspective[C]. SPIE 3721, Algorithms for Synthetic Aperture Radar Imagery VI, Orlando, USA, 1999: 606–610.
|
[15] |
KEYDEL E R, LEE S W, and MOORE J T. MSTAR extended operating conditions: A tutorial[C]. SPIE 2757, Algorithms for Synthetic Aperture Radar Imagery III, Orlando, USA, 1996: 228–242.
|
[16] |
JONES III G and BHANU B. Recognition of articulated and occluded objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(7): 603–613. doi: 10.1109/34.777371
|
[17] |
DIEMUNSCH J R and WISSINGER J. Moving and stationary target acquisition and recognition (MSTAR) model-based automatic target recognition: Search technology for a robust ATR[C]. SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery V, Orlando, USA, 1998: 481–492.
|
[18] |
HUANG Peikang, YIN Hongcheng, and XU Xiaojian. Radar Target Characteristics[M]. Beijing: Publishing House of Electronics Industry, 2006.
|
[19] |
CHIANG H C, MOSES R L, and POTTER L C. Model-based Bayesian feature matching with application to synthetic aperture radar target recognition[J]. Pattern Recognition, 2001, 34(8): 1539–1553. doi: 10.1016/S0031-3203(00)00089-3
|
[20] |
ZHOU Jianxiong, SHI Zhiguang, XIAO Cheng, et al. Automatic target recognition of SAR images based on global scattering center model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3713–3729. doi: 10.1109/TGRS.2011.2162526
|
[21] |
JACKSON J A. Three-dimensional feature models for synthetic aperture radar and experiments in feature extraction[D]. [Ph. D. dissertation], Ohio State University, 2009.
|
[22] |
文贡坚, 朱国强, 殷红成, 等. 基于三维电磁散射参数化模型的SAR目标识别方法[J]. 雷达学报, 2017, 6(2): 115–135. doi: 10.12000/JR17034
WEN Gongjian, ZHU Guoqiang, YIN Hongcheng, et al. SAR ATR based on 3D parametric electromagnetic scattering model[J]. Journal of Radars, 2017, 6(2): 115–135. doi: 10.12000/JR17034
|
[23] |
GIUSTI E, MARTORELLA M, and CAPRIA A. Polarimetrically-persistent-scatterer-based automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4588–4599. doi: 10.1109/TGRS.2011.2164804
|
[24] |
TANG Tao and SU Yi. Object recognition based on feature matching of scattering centers in SAR imagery[C]. The 5th International Congress on Image and Signal Processing, Chongqing, China, 2012: 1073–1076.
|
[25] |
MARTORELLA M, GIUSTI E, DEMI L, et al. Target recognition by means of polarimetric ISAR images[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 225–239. doi: 10.1109/TAES.2011.5705672
|
[26] |
SAVILLE M A, SAINI D K, and SMITH J. Commercial vehicle classification from spectrum parted linked image test-attributed synthetic aperture radar imagery[J]. IET Radar, Sonar & Navigation, 2016, 10(3): 569–576.
|
[27] |
RICHARDS J A. Target model generation from multiple synthetic aperture radar image[D]. [Ph. D. dissertation], 1996, MIT.
|
[28] |
HE Yang, HE Siyuan, ZHANG Yunhua, et al. A forward approach to establish parametric scattering center models for known complex radar targets applied to SAR ATR[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6192–6205. doi: 10.1109/TAP.2014.2360700
|
[29] |
ZHOU Jianxiong, SHI Zhiguang, and FU Qiang. Three-dimensional scattering center extraction based on wide aperture data at a single elevation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1638–1655. doi: 10.1109/TGRS.2014.2346509
|
[30] |
VOICU L I, PATTON R, and MYLER H R. Multicriterion vehicle pose estimation for SAR ATR[C]. SPIE 3721, Algorithms for Synthetic Aperture Radar Imagery VI, Orlando, USA, 1999: 3721.
|
[31] |
CUI Xunxue, ZHANG Jichun, and ZHOU Pucheng. Hypothesis testing for target detection model in sensor networks[C]. The 7th International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, China, 2010.
|
[32] |
BOSE R. Lean CLEAN: Deconvolution algorithm for radar imaging of contiguous targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 2190–2199. doi: 10.1109/TAES.2011.5937291
|
[33] |
SHAFER G. A Mathematical Theory of Evidence[M]. Princeton: Princeton University Press, 1976.
|
[34] |
FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627–1645. doi: 10.1109/TPAMI.2009.167
|
[1] | WANG Mou, WEI Shunjun, SHEN Rong, ZHOU Zichen, SHI Jun, ZHANG Xiaoling. 3D SAR Imaging Method Based on Learned Sparse Prior[J]. Journal of Radars, 2023, 12(1): 36-52. doi: 10.12000/JR22101 |
[2] | Hong Wen, Wang Yanping, Lin Yun, Tan Weixian, Wu Yirong. Research Progress on Three-dimensional SAR Imaging Techniques[J]. Journal of Radars, 2018, 7(6): 633-654. doi: 10.12000/JR18109 |
[3] | Yan Min, Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. LASAR High-resolution 3D Imaging Algorithm Based on Sparse Bayesian Regularization[J]. Journal of Radars, 2018, 7(6): 705-716. doi: 10.12000/JR18067 |
[4] | Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. Compressed Sensing Linear Array SAR Autofocusing Imaging via Semi-definite Programming[J]. Journal of Radars, 2018, 7(6): 664-675. doi: 10.12000/JR17103 |
[5] | Liu Qiyong, Zhang Qun, Hong Wen, Su Linghua, Liang Jia. DLSLA 3D SAR Motion Error Compensation and Imaging Method Based on Parameter Estimation[J]. Journal of Radars, 2018, 7(6): 730-739. doi: 10.12000/JR18107 |
[6] | Tian He, Li Daojing, Qi Chunchao. Millimeter-wave Human Security Imaging Based on Frequency-domain Sparsity and Rapid Imaging Sparse Array Architecture[J]. Journal of Radars, 2018, 7(3): 376-386. doi: 10.12000/JR17082 |
[7] | Li Hang, Liang Xingdong, Zhang Fubo, Wu Yirong. 3D Imaging for Array InSAR Based on Gaussian Mixture Model Clustering[J]. Journal of Radars, 2017, 6(6): 630-639. doi: 10.12000/JR17020 |
[8] | Liu Xiangyang, Yang Jungang, Meng Jin, Zhang Xiao, Niu Dezhi. Sparse Three-dimensional Imaging Based on Hough Transform for Forward-looking Array SAR in Low SNR[J]. Journal of Radars, 2017, 6(3): 316-323. doi: 10.12000/JR17011 |
[9] | Hu Jingqiu, Liu Falin, Zhou Chongbin, Li Bo, Wang Dongjin. CS-SAR Imaging Method Based on Inverse Omega-K Algorithm[J]. Journal of Radars, 2017, 6(1): 25-33. doi: 10.12000/JR16027 |
[10] | Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107 |
[11] | Zhang Zenghui, Yu Wenxian. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images[J]. Journal of Radars, 2016, 5(1): 42-56. doi: 10.12000/JR15097 |
[12] | Li Liechen, Li Daojing, Huang Pingping. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain[J]. Journal of Radars, 2016, 5(1): 109-117. doi: 10.12000/JR14159 |
[13] | Xiao Peng, Wu Youming, Yu Ze, Li Chunsheng. Azimuth Ambiguity Suppression in SAR Images Based on Compressive Sensing Recovery Algorithm[J]. Journal of Radars, 2016, 5(1): 35-41. doi: 10.12000/JR16004 |
[14] | Gu Fufei, Zhang Qun, Yang Qiu, Huo Wenjun, Wang Min. Compressed Sensing Imaging Algorithm for High-squint SAR Based on NCS Operator[J]. Journal of Radars, 2016, 5(1): 16-24. doi: 10.12000/JR15035 |
[15] | Wang Aichun, Xiang Maosheng. SAR Tomography Based on Block Compressive Sensing[J]. Journal of Radars, 2016, 5(1): 57-64. doi: 10.12000/JR16006 |
[16] | Zhou Hui, Zhao Feng-jun, Yu Wei-dong, Yang Jian. SAR Imaging of Ground Moving Targets with Non-ideal Motion Error Compensation(in English)[J]. Journal of Radars, 2015, 4(3): 265-275. doi: 10.12000/JR15024 |
[17] | Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock[J]. Journal of Radars, 2015, 4(4): 467-473. doi: 10.12000/JR15016 |
[18] | Wu Yi-rong, Hong Wen, Zhang Bing-chen, Jiang Cheng-long, Zhang Zhe, Zhao Yao. Current Developments of Sparse Microwave Imaging[J]. Journal of Radars, 2014, 3(4): 383-395. doi: 10.3724/SP.J.1300.2014.14105 |
[19] | Zhao Yao, Zhang Bing-chen, Hong Wen, Wu Yi-rong. RIPless Based Radar Waveform Analysis in Sparse Microwave Imaging[J]. Journal of Radars, 2013, 2(3): 265-270. doi: 10.3724/SP.J.1300.2013.13032 |
[20] | Zhong Li-hua, Hu Dong-hui, Ding Chi-biao, Zhang Wen-yi. ISAR Sparse Aperture Imaging Algorithm for Large Size Target[J]. Journal of Radars, 2012, 1(3): 292-300. doi: 10.3724/SP.J.1300.2012.20033 |
1. | 黄钟泠,吴冲,姚西文,王立鹏,韩军伟. 基于时频分析的SAR目标微波视觉特性智能感知方法与应用. 雷达学报. 2024(02): 331-344 . ![]() | |
2. | 丁柏圆,周春雨. 结合三维电磁散射模型和深度学习的SAR目标识别框架设计. 航天电子对抗. 2024(02): 34-38+64 . ![]() | |
3. | 张旭,徐丰,金亚秋. 典型几何基元的高频散射建模方法梳理. 雷达学报. 2022(01): 126-143 . ![]() | |
4. | 顾丹丹,廖意,王晓冰. 雷达目标特性知识引导的智能识别技术进展与思考. 制导与引信. 2022(04): 57-64 . ![]() | |
5. | 邢孟道,谢意远,高悦欣,张金松,刘嘉铭,吴之鑫. 电磁散射特征提取与成像识别算法综述. 雷达学报. 2022(06): 921-942 . ![]() | |
6. | 陆金文,闫华,殷红成,张磊,董纯柱. 用于三维散射中心SBR建模的边缘绕射修正. 西安电子科技大学学报. 2021(02): 117-124+189 . ![]() | |
7. | 陆金文,闫华,张磊,殷红成. 基于弹跳射线技术的三维GTD模型构建方法. 系统工程与电子技术. 2021(08): 2028-2036 . ![]() |