Volume 7 Issue 3
Jul.  2018
Turn off MathJax
Article Contents
Tian He, Li Daojing, Qi Chunchao. Millimeter-wave Human Security Imaging Based on Frequency-domain Sparsity and Rapid Imaging Sparse Array Architecture[J]. Journal of Radars, 2018, 7(3): 376-386. doi: 10.12000/JR17082
Citation: Tian He, Li Daojing, Qi Chunchao. Millimeter-wave Human Security Imaging Based on Frequency-domain Sparsity and Rapid Imaging Sparse Array Architecture[J]. Journal of Radars, 2018, 7(3): 376-386. doi: 10.12000/JR17082

Millimeter-wave Human Security Imaging Based on Frequency-domain Sparsity and Rapid Imaging Sparse Array Architecture

DOI: 10.12000/JR17082
Funds:  The National Natural Science Foundation of China (61271422)
  • Received Date: 2017-09-08
  • Rev Recd Date: 2017-11-17
  • Publish Date: 2018-06-28
  • This paper examines the processing of millimeter-wave imaging data based on sparse sampling and sparse array design for the rapid imaging of human security data. First, based on the cylindrical scanning imaging model, the Barker code-based randomly sparse sampling method is employed to reduce the scanning time. Then, a three-dimensional imaging algorithm based on interferometry and compressed sensing in the frequency domain is proposed, with sparse representation of the image in the frequency domain after interferometry and Compressed Sensing measurement model, to recover the image frequency spectrum, thereby implementing human security image reconstruction via sparse sampling. Real data processing results indicated that the proposed method could obtain image resolution and performance similar to those of complete samples and that the image correlation coefficients before and after sparse sampling were better than 0.9, with 50% time/data reduction. Furthermore, based on the Barker codes and multistatic work mode, a sparse array architecture for rapid imaging was designed with a sparse rate of 94.6% and the guarantee of imaging quality. The proposed method was found to considerably increase the passage rate and reduce the amount of radiation unit and system complexity, marking its application significance and market prospect in security clearance.

     

  • loading
  • [1]
    McMillan R W, Currie N C, Ferris D D, et al.. Concealed weapon detection using microwave and millimeter wave sensors[C]. Proceedings of 1998 International Conference on Microwave and Millimeter Wave Technology Proceedings, Beijing, 1998: 1–4. DOI: 10.1109/ICMMT.1998.768213.
    [2]
    温鑫, 黄培康, 年丰, 等. 主动式毫米波近距离圆柱扫描三维成像系统[J]. 系统工程与电子技术, 2014, 36(6): 1044–1049. DOI: 10.3969/j.issn.1001-506X.2014.06.05

    Wen Xin, Huang Pei-kang, Nian Feng, et al. Active millimeter-wave near-field cylindrical scanning three-dimensional imaging system[J]. Systems Engineering and Electronics, 2014, 36(6): 1044–1049. DOI: 10.3969/j.issn.1001-506X.2014.06.05
    [3]
    Farhat N H and Guard W R. Millimeter wave holographic imaging of concealed weapons[J]. Proceedings of the IEEE, 1971, 59(9): 1383–1384. DOI: 10.1109/PROC.1971.8441
    [4]
    Gomez-Maqueda I, Almorox-Gonzalez P, Callejero-Andres C, et al. A millimeter-wave imager using an illuminating source[J]. IEEE Microwave Magazine, 2013, 14(4): 132–138. DOI: 10.1109/MMM.2013.2248652
    [5]
    Ahmed S S, Genghammer A, Schiessl A, et al. Fully electronic E-band personnel imager of 2 m2 aperture based on a multistatic architecture[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1): 651–657. DOI: 10.1109/TMTT.2012.2228221
    [6]
    Ahmed S S, Genghammer A, Schiessl A, et al.. Fully electronic active E-band personnel imager with 2 m2 aperture[C]. Proceedings of 2012 IEEE MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 2012: 1–3. DOI: 10.1109/MWSYM.2012.6259549.
    [7]
    Li L C, Li D J, and Pan Z H. Compressed sensing application in interferometric synthetic aperture radar[J]. Science China Information Sciences, 2017, 60(10): 102305. DOI: 10.1007/s11432-016-9017-6
    [8]
    Tian H, Li D J, and Li L C. Simulation of signal reconstruction based sparse flight downward-looking 3D imaging SAR[C]. Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015: 3762–3765. DOI: 10.1109/IGARSS.2015.7326642.
    [9]
    Holubnychyi A. Generalized binary barker sequences and their application to radar technology[C]. Proceedings of 2013 Signal Processing Symposium (SPS), Serock, 2013: 1–9. DOI: 10.1109/SPS.2013.6623610.
    [10]
    Detlefsen J, Dallinger A, and Schelkshorn S. Approaches to millimeter-wave imaging of humans[C]. Proceedings of the First European Radar Conference, Amsterdam, the Netherlands, 2004: 279–282.
    [11]
    Rosen P A, Hensley S, Joughin I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333–382. DOI: 10.1109/5.838084
    [12]
    Tian H and Li D J. Sparse flight array SAR downward-looking 3-D imaging based on compressed sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1395–1399. DOI: 10.1109/LGRS.2016.2560238
    [13]
    张清娟, 李道京, 李烈辰. 连续场景的稀疏阵列SAR侧视三维成像研究[J]. 电子与信息学报, 2013, 35(5): 1097–1102. DOI: 10.3724/SP.J.1146.2012.01136

    Zhang Qing-juan, Li Dao-jing, and Li Lie-chen. Research on continuous scene side-looking 3D imaging based on sparse array[J]. Journal of Electronics&Information Technology, 2013, 35(5): 1097–1102. DOI: 10.3724/SP.J.1146.2012.01136
    [14]
    田鹤, 李道京, 潘洁, 等. 基于修正均匀冗余阵列正反编码的稀疏阵列SAR下视三维成像处理[J]. 电子与信息学报, 2017, 39(9): 2203–2211. DOI: 10.11999/JEIT161209

    Tian He, Li Dao-jing, Pan Jie, et al. Downward-looking 3D imaging processing of sparse array SAR based on modified uniformly redundant arrays positive and negative coding[J]. Journal of Electronics&Information Technology, 2017, 39(9): 2203–2211. DOI: 10.11999/JEIT161209
    [15]
    李烈辰, 李道京. 基于压缩感知的连续场景稀疏阵列SAR三维成像[J]. 电子与信息学报, 2014, 36(9): 2166–2172. DOI: 10.3724/SP.J.1146.2013.01645

    Li Lie-chen and Li Dao-jing. Sparse array SAR 3D imaging for continuous scene based on compressed sensing[J]. Journal of Electronics&Information Technology, 2014, 36(9): 2166–2172. DOI: 10.3724/SP.J.1146.2013.01645
    [16]
    Candès E and Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2007, 23(3): 969–985. DOI: 10.1088/0266-5611/23/3/008
    [17]
    Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. DOI: 10.1109/TIT.2006.871582
    [18]
    Baraniuk R and Steeghs P. Compressive radar imaging[C]. Proceedings of 2007 IEEE Radar Conference, Boston, Mass, USA, 2007: 128–133. DOI: 10.1109/RADAR.2007.374203.
    [19]
    Patel V M, Easley G R, Healy jr D M, et al. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244–254. DOI: 10.1109/JSTSP.2009.2039181
    [20]
    Tian H and Li D J. Sparse sampling-based microwave 3D imaging using interferometry and frequency-domain principal component analysis[J]. IET Radar,Sonar&Navigation, 2017, 11(12): 1886–1891. DOI: 10.1049/iet-rsn.2017.0087
    [21]
    Schiessl A, Ahmed S S, Genghammer A, et al.. A technology demonstrator for a 0.5 m x 0.5 m fully electronic digital beamforming mm-Wave imaging system[C]. Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, 2011: 2606–2609.
    [22]
    Tian H, Li D J, and Hu X. Microwave three-dimensional imaging under sparse sampling based on MURA code[C]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016: 7411–7414. DOI: 10.1109/IGARSS.2016.7730933.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4800) PDF downloads(649) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint