Citation: | Tian He, Li Daojing, Qi Chunchao. Millimeter-wave Human Security Imaging Based on Frequency-domain Sparsity and Rapid Imaging Sparse Array Architecture[J]. Journal of Radars, 2018, 7(3): 376-386. doi: 10.12000/JR17082 |
[1] |
McMillan R W, Currie N C, Ferris D D, et al.. Concealed weapon detection using microwave and millimeter wave sensors[C]. Proceedings of 1998 International Conference on Microwave and Millimeter Wave Technology Proceedings, Beijing, 1998: 1–4. DOI: 10.1109/ICMMT.1998.768213.
|
[2] |
温鑫, 黄培康, 年丰, 等. 主动式毫米波近距离圆柱扫描三维成像系统[J]. 系统工程与电子技术, 2014, 36(6): 1044–1049. DOI: 10.3969/j.issn.1001-506X.2014.06.05
Wen Xin, Huang Pei-kang, Nian Feng, et al. Active millimeter-wave near-field cylindrical scanning three-dimensional imaging system[J]. Systems Engineering and Electronics, 2014, 36(6): 1044–1049. DOI: 10.3969/j.issn.1001-506X.2014.06.05
|
[3] |
Farhat N H and Guard W R. Millimeter wave holographic imaging of concealed weapons[J]. Proceedings of the IEEE, 1971, 59(9): 1383–1384. DOI: 10.1109/PROC.1971.8441
|
[4] |
Gomez-Maqueda I, Almorox-Gonzalez P, Callejero-Andres C, et al. A millimeter-wave imager using an illuminating source[J]. IEEE Microwave Magazine, 2013, 14(4): 132–138. DOI: 10.1109/MMM.2013.2248652
|
[5] |
Ahmed S S, Genghammer A, Schiessl A, et al. Fully electronic E-band personnel imager of 2 m2 aperture based on a multistatic architecture[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1): 651–657. DOI: 10.1109/TMTT.2012.2228221
|
[6] |
Ahmed S S, Genghammer A, Schiessl A, et al.. Fully electronic active E-band personnel imager with 2 m2 aperture[C]. Proceedings of 2012 IEEE MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 2012: 1–3. DOI: 10.1109/MWSYM.2012.6259549.
|
[7] |
Li L C, Li D J, and Pan Z H. Compressed sensing application in interferometric synthetic aperture radar[J]. Science China Information Sciences, 2017, 60(10): 102305. DOI: 10.1007/s11432-016-9017-6
|
[8] |
Tian H, Li D J, and Li L C. Simulation of signal reconstruction based sparse flight downward-looking 3D imaging SAR[C]. Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015: 3762–3765. DOI: 10.1109/IGARSS.2015.7326642.
|
[9] |
Holubnychyi A. Generalized binary barker sequences and their application to radar technology[C]. Proceedings of 2013 Signal Processing Symposium (SPS), Serock, 2013: 1–9. DOI: 10.1109/SPS.2013.6623610.
|
[10] |
Detlefsen J, Dallinger A, and Schelkshorn S. Approaches to millimeter-wave imaging of humans[C]. Proceedings of the First European Radar Conference, Amsterdam, the Netherlands, 2004: 279–282.
|
[11] |
Rosen P A, Hensley S, Joughin I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333–382. DOI: 10.1109/5.838084
|
[12] |
Tian H and Li D J. Sparse flight array SAR downward-looking 3-D imaging based on compressed sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1395–1399. DOI: 10.1109/LGRS.2016.2560238
|
[13] |
张清娟, 李道京, 李烈辰. 连续场景的稀疏阵列SAR侧视三维成像研究[J]. 电子与信息学报, 2013, 35(5): 1097–1102. DOI: 10.3724/SP.J.1146.2012.01136
Zhang Qing-juan, Li Dao-jing, and Li Lie-chen. Research on continuous scene side-looking 3D imaging based on sparse array[J]. Journal of Electronics&Information Technology, 2013, 35(5): 1097–1102. DOI: 10.3724/SP.J.1146.2012.01136
|
[14] |
田鹤, 李道京, 潘洁, 等. 基于修正均匀冗余阵列正反编码的稀疏阵列SAR下视三维成像处理[J]. 电子与信息学报, 2017, 39(9): 2203–2211. DOI: 10.11999/JEIT161209
Tian He, Li Dao-jing, Pan Jie, et al. Downward-looking 3D imaging processing of sparse array SAR based on modified uniformly redundant arrays positive and negative coding[J]. Journal of Electronics&Information Technology, 2017, 39(9): 2203–2211. DOI: 10.11999/JEIT161209
|
[15] |
李烈辰, 李道京. 基于压缩感知的连续场景稀疏阵列SAR三维成像[J]. 电子与信息学报, 2014, 36(9): 2166–2172. DOI: 10.3724/SP.J.1146.2013.01645
Li Lie-chen and Li Dao-jing. Sparse array SAR 3D imaging for continuous scene based on compressed sensing[J]. Journal of Electronics&Information Technology, 2014, 36(9): 2166–2172. DOI: 10.3724/SP.J.1146.2013.01645
|
[16] |
Candès E and Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2007, 23(3): 969–985. DOI: 10.1088/0266-5611/23/3/008
|
[17] |
Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. DOI: 10.1109/TIT.2006.871582
|
[18] |
Baraniuk R and Steeghs P. Compressive radar imaging[C]. Proceedings of 2007 IEEE Radar Conference, Boston, Mass, USA, 2007: 128–133. DOI: 10.1109/RADAR.2007.374203.
|
[19] |
Patel V M, Easley G R, Healy jr D M, et al. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244–254. DOI: 10.1109/JSTSP.2009.2039181
|
[20] |
Tian H and Li D J. Sparse sampling-based microwave 3D imaging using interferometry and frequency-domain principal component analysis[J]. IET Radar,Sonar&Navigation, 2017, 11(12): 1886–1891. DOI: 10.1049/iet-rsn.2017.0087
|
[21] |
Schiessl A, Ahmed S S, Genghammer A, et al.. A technology demonstrator for a 0.5 m x 0.5 m fully electronic digital beamforming mm-Wave imaging system[C]. Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, 2011: 2606–2609.
|
[22] |
Tian H, Li D J, and Hu X. Microwave three-dimensional imaging under sparse sampling based on MURA code[C]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016: 7411–7414. DOI: 10.1109/IGARSS.2016.7730933.
|
[1] | WANG Zhirui, ZHAO Liangjin, WANG Yuelei, ZENG Xuan, KANG Jian, YANG Jian, SUN Xian. AIR-PolSAR-Seg-2.0: Polarimetric SAR Ground Terrain Classification Dataset for Large-scale Complex Scenes[J]. Journal of Radars, 2025, 14(2): 353-365. doi: 10.12000/JR24237 |
[2] | YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198 |
[3] | HU Zhanyi. A Note on Visual Semantics in SAR 3D Imaging[J]. Journal of Radars, 2022, 11(1): 20-26. doi: 10.12000/JR21149 |
[4] | DENG Likang, ZHANG Shuanghui, ZHANG Chi, LIU Yongxiang. A Multiple-Input Multiple-Output Inverse Synthetic Aperture Radar Imaging Method Based on Multidimensional Alternating Direction Method of Multipliers[J]. Journal of Radars, 2021, 10(3): 416-431. doi: 10.12000/JR20132 |
[5] | CUI Xingchao, SU Yi, CHEN Siwei. Polarimetric SAR Ship Detection Based on Polarimetric Rotation Domain Features and Superpixel Technique[J]. Journal of Radars, 2021, 10(1): 35-48. doi: 10.12000/JR20147 |
[6] | LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087 |
[7] | ZENG Zheng, ZHANG Fubo, CHEN Longyong, BU Xiangxi, ZHOU Siyan. A Two-dimensional Mixed Baseline Method Based on MIMO-SAR for Countering Deceptive Jamming[J]. Journal of Radars, 2019, 8(1): 90-99. doi: 10.12000/JR18118 |
[8] | HU Cheng, DENG Yunkai, TIAN Weiming, ZENG Tao. A Compensation Method of Nonlinear Atmospheric Phase Applied for GB-InSAR Images[J]. Journal of Radars, 2019, 8(6): 831-840. doi: 10.12000/JR19073 |
[9] | XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102 |
[10] | Chen Siwei, Li Yongzhen, Wang Xuesong, Xiao Shunping. Polarimetric SAR Target Scattering Interpretation in Rotation Domain: Theory and Application[J]. Journal of Radars, 2017, 6(5): 442-455. doi: 10.12000/JR17033 |
[11] | Tao Chensong, Chen Siwei, Li Yongzhen, Xiao Shunping. Polarimetric SAR Terrain Classification Using Polarimetric Features Derived from Rotation Domain[J]. Journal of Radars, 2017, 6(5): 524-532. doi: 10.12000/JR16131 |
[12] | Zhong Neng, Yang Wen, Yang Xiangli, Guo Wei. Unsupervised Classification for Polarimetric Synthetic Aperture Radar Images Based on Wishart Mixture Models[J]. Journal of Radars, 2017, 6(5): 533-540. doi: 10.12000/JR16133 |
[13] | Xing Yanxiao, Zhang Yi, Li Ning, Wang Yu, Hu Guixiang. Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues[J]. Journal of Radars, 2016, 5(2): 217-227. doi: 10.12000/JR16019 |
[14] | Huang Xiaojing, Yang Xiangli, Huang Pingping, Yang Wen. Prototype Theory Based Feature Representation for PolSAR Images[J]. Journal of Radars, 2016, 5(2): 208-216. doi: 10.12000/JR15071 |
[15] | Sun Xun, Huang Pingping, Tu Shangtan, Yang Xiangli. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. Journal of Radars, 2016, 5(6): 692-700. doi: 10.12000/JR15132 |
[16] | Yang Ruliang, Dai Bowei, Li Haiying. Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar[J]. Journal of Radars, 2016, 5(2): 132-142. doi: 10.12000/JR16013 |
[17] | Zhan Xue-li, Wang Yan-fei, Wang Chao, Li He-ping. A Digital Dechirp Approach for Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(4): 474-480. doi: 10.12000/JR14117 |
[18] | Hua Wen-qiang, Wang Shuang, Hou Biao. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart[J]. Journal of Radars, 2015, 4(1): 93-98. doi: 10.12000/JR14138 |
[19] | Zhang Wen-bin, Deng Yun-kai, Wang Yu. A Fast Back Projection Algorithm for Spotlight Mode Bi-SAR Imaging[J]. Journal of Radars, 2013, 2(3): 357-366. doi: 10.3724/SP.J.1300.2013.13031 |
[20] | Llin Shi-bin, Li Yue-li, Yan Shao-shi, Zhou Zhi-min. Study of Effects of Flat Surface Assumption to Synthetic Aperture Radar Time-domain Algorithms Imaging Quality[J]. Journal of Radars, 2012, 1(3): 309-313. doi: 10.3724/SP.J.1300.2012.20035 |
1. | 肜瑶,张洋洋. 重构目标和多层次BVMD特征融合的SAR图像目标识别方法. 探测与控制学报. 2025(01): 94-101 . ![]() | |
2. | 杨慧娉,赖小龙,刘丹. 一种基于区域特征的SAR图像目标识别方法. 电光与控制. 2025(03): 76-81 . ![]() | |
3. | 吕虎. 基于属性散射中心目标重构加权决策融合的SAR目标识别方法. 电光与控制. 2024(02): 112-117+124 . ![]() | |
4. | 李振汕,丁柏圆. 联合核稀疏表示和增强字典的SAR目标识别方法. 电光与控制. 2024(08): 44-49 . ![]() | |
5. | 罗曼,李新. 改进卷积神经网络的SAR图像识别方法. 空天预警研究学报. 2024(03): 162-166+172 . ![]() | |
6. | 赵琰,赵凌君,张思乾,计科峰,匡纲要. 自监督解耦动态分类器的小样本类增量SAR图像目标识别. 电子与信息学报. 2024(10): 3936-3948 . ![]() | |
7. | 何洁,李文娟,陈欣. NCIE在多特征选择及SAR目标识别中的应用. 太赫兹科学与电子信息学报. 2023(02): 183-188 . ![]() | |
8. | 王源源. 联合变分模态分解和卷积神经网络的SAR图像目标分类方法. 电光与控制. 2023(06): 41-46 . ![]() | |
9. | 陈婕,潘洁,杨小英. 结合非采样剪切波和MCCA的SAR目标识别方法. 探测与控制学报. 2023(03): 89-94 . ![]() | |
10. | 李鹏,冯存前,胡晓伟. 一种改进的可解释SAR图像识别网络. 空军工程大学学报. 2023(04): 49-55 . ![]() | |
11. | 王源源. 基于改进稀疏表示的SAR图像目标识别方法. 电光与控制. 2023(09): 42-46 . ![]() | |
12. | 许延龙,潘昊,丁柏圆. 基于深度信念网络的属性散射中心匹配及在SAR图像目标识别中的应用. 液晶与显示. 2023(11): 1511-1520 . ![]() | |
13. | 李昆,赵鹏,张帝,尹广举. 基于结构相似性的多模态筛选及在SAR目标识别中的应用研究. 中国电子科学研究院学报. 2023(11): 996-1002+1028 . ![]() | |
14. | 陆建华. 融合CNN和SRC决策的SAR图像目标识别方法. 红外与激光工程. 2022(03): 520-526 . ![]() | |
15. | 游丽. 基于块稀疏贝叶斯学习的SAR图像目标方位角估计方法. 红外与激光工程. 2022(04): 399-404 . ![]() | |
16. | 赵高丽,宋军平. 联合多特征的MSTAR数据集SAR目标识别方法. 武汉大学学报(工学版). 2022(07): 732-739 . ![]() | |
17. | 周志洪,陈秀真,马进,夏正敏. 烟花算法在SAR图像属性散射中心参数估计中的应用. 红外与激光工程. 2022(08): 481-487 . ![]() | |
18. | 李正伟,黄孝斌,胡尧. 基于二维随机投影特征典型相关分析融合的SAR ATR方法. 红外与激光工程. 2022(10): 366-373 . ![]() | |
19. | 王源源,王小芳. 结合多特征联合表征和自适应加权的SAR图像目标识别方法. 电光与控制. 2022(11): 97-101+117 . ![]() | |
20. | 莫海宁,钟友坤. 基于BVMD特征决策融合的SAR目标识别方法. 电子信息对抗技术. 2022(05): 40-44+50 . ![]() | |
21. | 邢孟道,谢意远,高悦欣,张金松,刘嘉铭,吴之鑫. 电磁散射特征提取与成像识别算法综述. 雷达学报. 2022(06): 921-942 . ![]() | |
22. | 来雨. 基于属性散射中心的SAR图像重构及在目标识别中的应用. 火力与指挥控制. 2021(02): 46-52 . ![]() | |
23. | 刘飞,高红艳,卫泽刚,刘亚军,钱郁. 基于Res-Net深度特征的SAR图像目标识别方法. 液晶与显示. 2021(04): 624-631 . ![]() | |
24. | 伍友龙. 多元经验模态分解及在SAR图像目标识别中的应用. 红外与激光工程. 2021(04): 251-257 . ![]() | |
25. | 陈丛. 基于狼群算法的SAR图像属性散射中心参数估计. 红外与激光工程. 2021(04): 258-264 . ![]() | |
26. | 辛海燕,童有为. 结合多源特征与高斯过程模型的SAR图像目标识别. 电讯技术. 2021(04): 454-460 . ![]() | |
27. | 毛舒宇,岳凤英. 二维变分模态分解在SAR图像特征提取及目标识别中的应用. 电光与控制. 2021(03): 98-101+106 . ![]() | |
28. | 唐吉深,覃少华. 稀疏表示系数下局部最优重构的SAR图像目标识别算法. 探测与控制学报. 2021(02): 69-75+80 . ![]() | |
29. | 张楚笛,唐涛,计科峰. SAR图像车辆目标多模态联合协同表示分类方法. 信号处理. 2021(05): 681-689 . ![]() | |
30. | 刘志超,屈百达. 复数二维经验模态分解在SAR目标识别中的应用. 红外与激光工程. 2021(05): 245-252 . ![]() | |
31. | 刘志超,屈百达. 结合BM3D去噪与极限学习机的SAR目标分类方法. 电光与控制. 2021(06): 29-32 . ![]() | |
32. | 吴剑波,陆正武,关玉蓉,王庆东,姜国松. 二维压缩感知多投影矩阵特征融合的SAR目标识别方法. 红外与激光工程. 2021(06): 314-320 . ![]() | |
33. | 尚珊珊,余子开,范涛,金利民. 高斯过程模型在SAR图像目标识别中的应用. 红外与激光工程. 2021(07): 151-157 . ![]() | |
34. | 胡媛媛,韩彦龙. 快速自适应二维经验模态分解在SAR目标识别中的应用研究. 电光与控制. 2021(08): 40-43+87 . ![]() | |
35. | 张振中. 基于更新分类器的合成孔径雷达图像目标识别. 激光与光电子学进展. 2021(14): 234-241 . ![]() | |
36. | 李亚娟. 结合多决策准则稀疏表示的SAR图像目标识别方法. 红外与激光工程. 2021(08): 353-360 . ![]() | |
37. | 唐波,刘钢,谢黄海,黄力,代朝阳,李枫航. 基于多视角属性散射中心的风电机动态叶片雷达回波模拟. 中国电机工程学报. 2021(18): 6449-6461 . ![]() | |
38. | 马丹丹. 图像分块匹配的SAR目标识别方法. 红外与激光工程. 2021(10): 290-297 . ![]() | |
39. | 陈禾,张心怡,李灿,庄胤. 基于多尺度注意力CNN的SAR遥感目标识别. 雷达科学与技术. 2021(05): 517-525+533 . ![]() | |
40. | 李笑雪,黄煜峰,李忠智. 嵌入特征预提取和注意力机制的SAR图像目标检测. 江西科学. 2021(06): 1103-1109 . ![]() | |
41. | 陈婕,潘洁,杨小英,陈海媚,廖志平. 一种多视角SAR图像目标识别方法. 电讯技术. 2021(12): 1547-1553 . ![]() | |
42. | 李宁,王军敏,司文杰,耿则勋. 基于最大熵准则的多视角SAR目标分类方法. 红外与激光工程. 2021(12): 572-578 . ![]() | |
43. | 陈欣,陈明逊. 基于增强数据集卷积神经网络的SAR目标识别方法. 重庆理工大学学报(自然科学). 2020(01): 86-93 . ![]() | |
44. | 张婷,蔡德饶. 联合多层次深度特征的SAR图像目标识别方法. 火力与指挥控制. 2020(02): 135-140 . ![]() | |
45. | 陈婕. 考察独立性和相关性的多视角SAR图像目标识别方法. 电光与控制. 2020(03): 89-93+114 . ![]() | |
46. | 丁慧洁. 基于非下采样剪切波特征提取的SAR图像目标识别方法. 探测与控制学报. 2020(01): 75-80 . ![]() | |
47. | 柳小文,雷军程,伍雁鹏. 基于二维经验模态分解的合成孔径雷达目标识别方法. 激光与光电子学进展. 2020(04): 76-83 . ![]() | |
48. | 张宏武,康凯. 结合二维内蕴模函数和贝叶斯多任务学习的SAR目标识别. 电讯技术. 2020(04): 372-377 . ![]() | |
49. | 李亚娟. 结合全局和局部稀疏表示的SAR图像目标识别方法. 电子测量与仪器学报. 2020(02): 165-171 . ![]() | |
50. | 兰文宝,车畅,陶成云. 基于斯皮尔曼等级相关的单演谱成分选择及其在SAR目标识别中的应用. 电波科学学报. 2020(03): 414-421 . ![]() | |
51. | 周光宇,刘邦权,张亶. 基于变分模态分解的SAR图像目标识别方法. 国土资源遥感. 2020(02): 33-39 . ![]() | |
52. | 郭炜炜,张增辉,郁文贤,孙效华. SAR图像目标识别的可解释性问题探讨. 雷达学报. 2020(03): 462-476 . ![]() | |
53. | 陈婕,廖志平. 基于增强字典稀疏表示分类的SAR目标识别方法. 探测与控制学报. 2020(03): 75-81 . ![]() | |
54. | 吴天宝,夏靖波,黄玉燕. 基于SVM和SRC级联决策融合的SAR图像目标识别方法. 河南理工大学学报(自然科学版). 2020(04): 118-124 . ![]() | |
55. | 丛培贤,赵永彬,邸卓,刘雪松,徐静. 基于内蕴判别分析的SAR目标识别方法. 自动化技术与应用. 2020(09): 103-107 . ![]() | |
56. | 张伟昌,王文政,代作松. 结合NSCT和TPCA的SAR图像目标识别. 火力与指挥控制. 2020(09): 41-46 . ![]() | |
57. | 王源源. 一种基于多分辨率表示的SAR图像识别方法. 电光与控制. 2020(10): 31-36 . ![]() | |
58. | 申伟,石平. 单演信号随机加权融合的SAR图像目标识别方法. 电子测量与仪器学报. 2020(09): 181-187 . ![]() | |
59. | 陈潜,刘金清. 结合属性散射中心模型和空间变迹法的SAR图像旁瓣抑制方法. 电子测量与仪器学报. 2020(10): 57-64 . ![]() | |
60. | 张虹,左鑫兰,黄瑶. 基于稀疏表示系数相关性的特征选择及SAR目标识别方法. 激光与光电子学进展. 2020(14): 271-278 . ![]() | |
61. | 徐永士,贲可荣,王天雨,刘斯杰. DCGAN模型改进与SAR图像生成研究. 计算机科学. 2020(12): 93-99 . ![]() | |
62. | 涂豫. 基于贝叶斯卷积神经网络与数据增强的SAR图像目标分类方法. 探测与控制学报. 2020(06): 43-48 . ![]() | |
63. | 马梓元,龚华军,王新华,刘禹. 典型多特征决策融合方法及在无人机SAR图像目标识别中的应用. 舰船电子工程. 2020(12): 96-99 . ![]() | |
64. | 何洁,陈欣. 基于非线性相关信息熵的SAR图像多分辨率选择及目标识别. 激光与光电子学进展. 2020(22): 215-222 . ![]() | |
65. | 王骏,陈艳平,江立辉. 结合稀疏表示和协同表示的SAR图像目标方位角估计. 电子测量与仪器学报. 2020(12): 165-171 . ![]() | |
66. | 乔良才. 结合多分辨率表示和复数域CNN的SAR图像目标识别方法. 激光与光电子学进展. 2020(24): 98-106 . ![]() | |
67. | 王旭,蒋书波,张秀梅. SAR目标轮廓匹配及其在目标识别中的运用. 计算机工程与设计. 2019(01): 184-189 . ![]() | |
68. | 蔡德饶,宋愈珍. 带鉴别分析的多视角SAR图像联合决策及目标识别. 中国电子科学研究院学报. 2019(01): 37-41+54 . ![]() | |
69. | 段芃芃,刘锂. 基于相关性分析的SAR图像目标方位角估计. 中国电子科学研究院学报. 2019(01): 42-46 . ![]() | |
70. | 靳黎忠,陈俊杰,彭新光. 决策可靠性分析及在SAR图像目标识别中的应用. 电讯技术. 2019(04): 409-414 . ![]() | |
71. | 王鑑航,张广宇,李艳. 基于协同编码分类器的SAR目标识别方法. 中国电子科学研究院学报. 2019(03): 290-295 . ![]() | |
72. | 陈岭. 基于随机加权的SAR图像多特征联合目标分类. 电子测量与仪器学报. 2019(05): 187-192 . ![]() | |
73. | 张婷,蔡德饶. 基于属性散射中心匹配的噪声稳健SAR目标识别方法. 中国电子科学研究院学报. 2019(06): 557-562+567 . ![]() | |
74. | 郭敦,吴志军. 基于局部字典块稀疏表示的SAR图像目标识别方法. 中国电子科学研究院学报. 2019(08): 813-817+829 . ![]() | |
75. | 张克,牛鹏涛. 稀疏表示分类在SAR图像目标识别中的应用分析. 信息技术. 2019(09): 39-43 . ![]() | |
76. | 张华,张素莉,何树吉. 基于幅相分离和动态粒子群算法的SAR图像属性散射中心参数估计. 中国电子科学研究院学报. 2019(09): 993-1000 . ![]() | |
77. | 王源源. 基于单演信号多重集典型相关分析的SAR目标识别方法. 电光与控制. 2019(10): 7-11+29 . ![]() | |
78. | 夏朋举. 目标区域和阴影联合决策的SAR图像目标识别方法. 中国电子科学研究院学报. 2019(10): 1062-1067+1087 . ![]() | |
79. | 陈惠红,刘世明. 基于多重集典型相关的深度特征融合及SAR目标识别方法. 电子测量与仪器学报. 2019(09): 57-63 . ![]() | |
80. | 冯冬艳,王海晖. 相关性约束下SAR图像动态重构的目标识别方法. 电子测量与仪器学报. 2019(09): 100-106 . ![]() | |
81. | 陈宏. 结合多视角-多特征的SAR图像目标识别方法. 电子测量与仪器学报. 2019(09): 87-92 . ![]() | |
82. | 刘阳. 基于属性散射中心多层次匹配的SAR目标识别方法. 电子测量与仪器学报. 2019(11): 192-198 . ![]() | |
83. | 李辉. 基于峰值特征高斯混合建模的SAR目标识别. 电子测量与仪器学报. 2018(08): 103-108 . ![]() | |
84. | 赵鹏举,甘凯. 基于互补特征层次决策融合的SAR目标识别方法. 电光与控制. 2018(10): 28-32 . ![]() | |
85. | 谢晴,张洪. SAR图像多层次正则化增强及在目标识别中的应用. 电子测量与仪器学报. 2018(09): 157-162 . ![]() | |
86. | 王立梅,李金凤,张亚峰. 联合多层次散射区域的SAR目标识别方法. 中国电子科学研究院学报. 2018(06): 690-694 . ![]() | |
87. | 蔡德饶,张婷. 联合多分辨表示的SAR图像目标识别方法. 电子测量与仪器学报. 2018(12): 71-77 . ![]() | |
88. | 董平,林嘉宇,刘莹. 一种基于峰值匹配的SAR目标识别方法. 无线互联科技. 2017(22): 112-114+121 . ![]() |