Zhang Lei, Dong Chun-zhu, Hou Zhao-guo, Wang Chao, Yin Hong-cheng. Transmission Line Equivalent Plane Model and Phase Correction Algorithm for Multilayered Dielectric Slab Structure[J]. Journal of Radars, 2015, 4(3): 317-325. doi: 10.12000/JR15038
Citation: Tian He, Li Daojing, Qi Chunchao. Millimeter-wave Human Security Imaging Based on Frequency-domain Sparsity and Rapid Imaging Sparse Array Architecture[J]. Journal of Radars, 2018, 7(3): 376-386. doi: 10.12000/JR17082

Millimeter-wave Human Security Imaging Based on Frequency-domain Sparsity and Rapid Imaging Sparse Array Architecture

DOI: 10.12000/JR17082
Funds:  The National Natural Science Foundation of China (61271422)
  • Received Date: 2017-09-08
  • Rev Recd Date: 2017-11-17
  • Publish Date: 2018-06-28
  • This paper examines the processing of millimeter-wave imaging data based on sparse sampling and sparse array design for the rapid imaging of human security data. First, based on the cylindrical scanning imaging model, the Barker code-based randomly sparse sampling method is employed to reduce the scanning time. Then, a three-dimensional imaging algorithm based on interferometry and compressed sensing in the frequency domain is proposed, with sparse representation of the image in the frequency domain after interferometry and Compressed Sensing measurement model, to recover the image frequency spectrum, thereby implementing human security image reconstruction via sparse sampling. Real data processing results indicated that the proposed method could obtain image resolution and performance similar to those of complete samples and that the image correlation coefficients before and after sparse sampling were better than 0.9, with 50% time/data reduction. Furthermore, based on the Barker codes and multistatic work mode, a sparse array architecture for rapid imaging was designed with a sparse rate of 94.6% and the guarantee of imaging quality. The proposed method was found to considerably increase the passage rate and reduce the amount of radiation unit and system complexity, marking its application significance and market prospect in security clearance.

     

  • [1]
    McMillan R W, Currie N C, Ferris D D, et al.. Concealed weapon detection using microwave and millimeter wave sensors[C]. Proceedings of 1998 International Conference on Microwave and Millimeter Wave Technology Proceedings, Beijing, 1998: 1–4. DOI: 10.1109/ICMMT.1998.768213.
    [2]
    温鑫, 黄培康, 年丰, 等. 主动式毫米波近距离圆柱扫描三维成像系统[J]. 系统工程与电子技术, 2014, 36(6): 1044–1049. DOI: 10.3969/j.issn.1001-506X.2014.06.05

    Wen Xin, Huang Pei-kang, Nian Feng, et al. Active millimeter-wave near-field cylindrical scanning three-dimensional imaging system[J]. Systems Engineering and Electronics, 2014, 36(6): 1044–1049. DOI: 10.3969/j.issn.1001-506X.2014.06.05
    [3]
    Farhat N H and Guard W R. Millimeter wave holographic imaging of concealed weapons[J]. Proceedings of the IEEE, 1971, 59(9): 1383–1384. DOI: 10.1109/PROC.1971.8441
    [4]
    Gomez-Maqueda I, Almorox-Gonzalez P, Callejero-Andres C, et al. A millimeter-wave imager using an illuminating source[J]. IEEE Microwave Magazine, 2013, 14(4): 132–138. DOI: 10.1109/MMM.2013.2248652
    [5]
    Ahmed S S, Genghammer A, Schiessl A, et al. Fully electronic E-band personnel imager of 2 m2 aperture based on a multistatic architecture[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1): 651–657. DOI: 10.1109/TMTT.2012.2228221
    [6]
    Ahmed S S, Genghammer A, Schiessl A, et al.. Fully electronic active E-band personnel imager with 2 m2 aperture[C]. Proceedings of 2012 IEEE MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 2012: 1–3. DOI: 10.1109/MWSYM.2012.6259549.
    [7]
    Li L C, Li D J, and Pan Z H. Compressed sensing application in interferometric synthetic aperture radar[J]. Science China Information Sciences, 2017, 60(10): 102305. DOI: 10.1007/s11432-016-9017-6
    [8]
    Tian H, Li D J, and Li L C. Simulation of signal reconstruction based sparse flight downward-looking 3D imaging SAR[C]. Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015: 3762–3765. DOI: 10.1109/IGARSS.2015.7326642.
    [9]
    Holubnychyi A. Generalized binary barker sequences and their application to radar technology[C]. Proceedings of 2013 Signal Processing Symposium (SPS), Serock, 2013: 1–9. DOI: 10.1109/SPS.2013.6623610.
    [10]
    Detlefsen J, Dallinger A, and Schelkshorn S. Approaches to millimeter-wave imaging of humans[C]. Proceedings of the First European Radar Conference, Amsterdam, the Netherlands, 2004: 279–282.
    [11]
    Rosen P A, Hensley S, Joughin I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333–382. DOI: 10.1109/5.838084
    [12]
    Tian H and Li D J. Sparse flight array SAR downward-looking 3-D imaging based on compressed sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1395–1399. DOI: 10.1109/LGRS.2016.2560238
    [13]
    张清娟, 李道京, 李烈辰. 连续场景的稀疏阵列SAR侧视三维成像研究[J]. 电子与信息学报, 2013, 35(5): 1097–1102. DOI: 10.3724/SP.J.1146.2012.01136

    Zhang Qing-juan, Li Dao-jing, and Li Lie-chen. Research on continuous scene side-looking 3D imaging based on sparse array[J]. Journal of Electronics&Information Technology, 2013, 35(5): 1097–1102. DOI: 10.3724/SP.J.1146.2012.01136
    [14]
    田鹤, 李道京, 潘洁, 等. 基于修正均匀冗余阵列正反编码的稀疏阵列SAR下视三维成像处理[J]. 电子与信息学报, 2017, 39(9): 2203–2211. DOI: 10.11999/JEIT161209

    Tian He, Li Dao-jing, Pan Jie, et al. Downward-looking 3D imaging processing of sparse array SAR based on modified uniformly redundant arrays positive and negative coding[J]. Journal of Electronics&Information Technology, 2017, 39(9): 2203–2211. DOI: 10.11999/JEIT161209
    [15]
    李烈辰, 李道京. 基于压缩感知的连续场景稀疏阵列SAR三维成像[J]. 电子与信息学报, 2014, 36(9): 2166–2172. DOI: 10.3724/SP.J.1146.2013.01645

    Li Lie-chen and Li Dao-jing. Sparse array SAR 3D imaging for continuous scene based on compressed sensing[J]. Journal of Electronics&Information Technology, 2014, 36(9): 2166–2172. DOI: 10.3724/SP.J.1146.2013.01645
    [16]
    Candès E and Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2007, 23(3): 969–985. DOI: 10.1088/0266-5611/23/3/008
    [17]
    Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. DOI: 10.1109/TIT.2006.871582
    [18]
    Baraniuk R and Steeghs P. Compressive radar imaging[C]. Proceedings of 2007 IEEE Radar Conference, Boston, Mass, USA, 2007: 128–133. DOI: 10.1109/RADAR.2007.374203.
    [19]
    Patel V M, Easley G R, Healy jr D M, et al. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244–254. DOI: 10.1109/JSTSP.2009.2039181
    [20]
    Tian H and Li D J. Sparse sampling-based microwave 3D imaging using interferometry and frequency-domain principal component analysis[J]. IET Radar,Sonar&Navigation, 2017, 11(12): 1886–1891. DOI: 10.1049/iet-rsn.2017.0087
    [21]
    Schiessl A, Ahmed S S, Genghammer A, et al.. A technology demonstrator for a 0.5 m x 0.5 m fully electronic digital beamforming mm-Wave imaging system[C]. Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, 2011: 2606–2609.
    [22]
    Tian H, Li D J, and Hu X. Microwave three-dimensional imaging under sparse sampling based on MURA code[C]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016: 7411–7414. DOI: 10.1109/IGARSS.2016.7730933.
  • Relative Articles

    [1]WANG Zhirui, ZHAO Liangjin, WANG Yuelei, ZENG Xuan, KANG Jian, YANG Jian, SUN Xian. AIR-PolSAR-Seg-2.0: Polarimetric SAR Ground Terrain Classification Dataset for Large-scale Complex Scenes[J]. Journal of Radars, 2025, 14(2): 353-365. doi: 10.12000/JR24237
    [2]YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198
    [3]HU Zhanyi. A Note on Visual Semantics in SAR 3D Imaging[J]. Journal of Radars, 2022, 11(1): 20-26. doi: 10.12000/JR21149
    [4]DENG Likang, ZHANG Shuanghui, ZHANG Chi, LIU Yongxiang. A Multiple-Input Multiple-Output Inverse Synthetic Aperture Radar Imaging Method Based on Multidimensional Alternating Direction Method of Multipliers[J]. Journal of Radars, 2021, 10(3): 416-431. doi: 10.12000/JR20132
    [5]CUI Xingchao, SU Yi, CHEN Siwei. Polarimetric SAR Ship Detection Based on Polarimetric Rotation Domain Features and Superpixel Technique[J]. Journal of Radars, 2021, 10(1): 35-48. doi: 10.12000/JR20147
    [6]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [7]ZENG Zheng, ZHANG Fubo, CHEN Longyong, BU Xiangxi, ZHOU Siyan. A Two-dimensional Mixed Baseline Method Based on MIMO-SAR for Countering Deceptive Jamming[J]. Journal of Radars, 2019, 8(1): 90-99. doi: 10.12000/JR18118
    [8]HU Cheng, DENG Yunkai, TIAN Weiming, ZENG Tao. A Compensation Method of Nonlinear Atmospheric Phase Applied for GB-InSAR Images[J]. Journal of Radars, 2019, 8(6): 831-840. doi: 10.12000/JR19073
    [9]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [10]Chen Siwei, Li Yongzhen, Wang Xuesong, Xiao Shunping. Polarimetric SAR Target Scattering Interpretation in Rotation Domain: Theory and Application[J]. Journal of Radars, 2017, 6(5): 442-455. doi: 10.12000/JR17033
    [11]Tao Chensong, Chen Siwei, Li Yongzhen, Xiao Shunping. Polarimetric SAR Terrain Classification Using Polarimetric Features Derived from Rotation Domain[J]. Journal of Radars, 2017, 6(5): 524-532. doi: 10.12000/JR16131
    [12]Zhong Neng, Yang Wen, Yang Xiangli, Guo Wei. Unsupervised Classification for Polarimetric Synthetic Aperture Radar Images Based on Wishart Mixture Models[J]. Journal of Radars, 2017, 6(5): 533-540. doi: 10.12000/JR16133
    [13]Xing Yanxiao, Zhang Yi, Li Ning, Wang Yu, Hu Guixiang. Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues[J]. Journal of Radars, 2016, 5(2): 217-227. doi: 10.12000/JR16019
    [14]Huang Xiaojing, Yang Xiangli, Huang Pingping, Yang Wen. Prototype Theory Based Feature Representation for PolSAR Images[J]. Journal of Radars, 2016, 5(2): 208-216. doi: 10.12000/JR15071
    [15]Sun Xun, Huang Pingping, Tu Shangtan, Yang Xiangli. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. Journal of Radars, 2016, 5(6): 692-700. doi: 10.12000/JR15132
    [16]Yang Ruliang, Dai Bowei, Li Haiying. Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar[J]. Journal of Radars, 2016, 5(2): 132-142. doi: 10.12000/JR16013
    [17]Zhan Xue-li, Wang Yan-fei, Wang Chao, Li He-ping. A Digital Dechirp Approach for Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(4): 474-480. doi: 10.12000/JR14117
    [18]Hua Wen-qiang, Wang Shuang, Hou Biao. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart[J]. Journal of Radars, 2015, 4(1): 93-98. doi: 10.12000/JR14138
    [19]Zhang Wen-bin, Deng Yun-kai, Wang Yu. A Fast Back Projection Algorithm for Spotlight Mode Bi-SAR Imaging[J]. Journal of Radars, 2013, 2(3): 357-366. doi: 10.3724/SP.J.1300.2013.13031
    [20]Llin Shi-bin, Li Yue-li, Yan Shao-shi, Zhou Zhi-min. Study of Effects of Flat Surface Assumption to Synthetic Aperture Radar Time-domain Algorithms Imaging Quality[J]. Journal of Radars, 2012, 1(3): 309-313. doi: 10.3724/SP.J.1300.2012.20035
  • Cited by

    Periodical cited type(88)

    1. 肜瑶,张洋洋. 重构目标和多层次BVMD特征融合的SAR图像目标识别方法. 探测与控制学报. 2025(01): 94-101 .
    2. 杨慧娉,赖小龙,刘丹. 一种基于区域特征的SAR图像目标识别方法. 电光与控制. 2025(03): 76-81 .
    3. 吕虎. 基于属性散射中心目标重构加权决策融合的SAR目标识别方法. 电光与控制. 2024(02): 112-117+124 .
    4. 李振汕,丁柏圆. 联合核稀疏表示和增强字典的SAR目标识别方法. 电光与控制. 2024(08): 44-49 .
    5. 罗曼,李新. 改进卷积神经网络的SAR图像识别方法. 空天预警研究学报. 2024(03): 162-166+172 .
    6. 赵琰,赵凌君,张思乾,计科峰,匡纲要. 自监督解耦动态分类器的小样本类增量SAR图像目标识别. 电子与信息学报. 2024(10): 3936-3948 .
    7. 何洁,李文娟,陈欣. NCIE在多特征选择及SAR目标识别中的应用. 太赫兹科学与电子信息学报. 2023(02): 183-188 .
    8. 王源源. 联合变分模态分解和卷积神经网络的SAR图像目标分类方法. 电光与控制. 2023(06): 41-46 .
    9. 陈婕,潘洁,杨小英. 结合非采样剪切波和MCCA的SAR目标识别方法. 探测与控制学报. 2023(03): 89-94 .
    10. 李鹏,冯存前,胡晓伟. 一种改进的可解释SAR图像识别网络. 空军工程大学学报. 2023(04): 49-55 .
    11. 王源源. 基于改进稀疏表示的SAR图像目标识别方法. 电光与控制. 2023(09): 42-46 .
    12. 许延龙,潘昊,丁柏圆. 基于深度信念网络的属性散射中心匹配及在SAR图像目标识别中的应用. 液晶与显示. 2023(11): 1511-1520 .
    13. 李昆,赵鹏,张帝,尹广举. 基于结构相似性的多模态筛选及在SAR目标识别中的应用研究. 中国电子科学研究院学报. 2023(11): 996-1002+1028 .
    14. 陆建华. 融合CNN和SRC决策的SAR图像目标识别方法. 红外与激光工程. 2022(03): 520-526 .
    15. 游丽. 基于块稀疏贝叶斯学习的SAR图像目标方位角估计方法. 红外与激光工程. 2022(04): 399-404 .
    16. 赵高丽,宋军平. 联合多特征的MSTAR数据集SAR目标识别方法. 武汉大学学报(工学版). 2022(07): 732-739 .
    17. 周志洪,陈秀真,马进,夏正敏. 烟花算法在SAR图像属性散射中心参数估计中的应用. 红外与激光工程. 2022(08): 481-487 .
    18. 李正伟,黄孝斌,胡尧. 基于二维随机投影特征典型相关分析融合的SAR ATR方法. 红外与激光工程. 2022(10): 366-373 .
    19. 王源源,王小芳. 结合多特征联合表征和自适应加权的SAR图像目标识别方法. 电光与控制. 2022(11): 97-101+117 .
    20. 莫海宁,钟友坤. 基于BVMD特征决策融合的SAR目标识别方法. 电子信息对抗技术. 2022(05): 40-44+50 .
    21. 邢孟道,谢意远,高悦欣,张金松,刘嘉铭,吴之鑫. 电磁散射特征提取与成像识别算法综述. 雷达学报. 2022(06): 921-942 . 本站查看
    22. 来雨. 基于属性散射中心的SAR图像重构及在目标识别中的应用. 火力与指挥控制. 2021(02): 46-52 .
    23. 刘飞,高红艳,卫泽刚,刘亚军,钱郁. 基于Res-Net深度特征的SAR图像目标识别方法. 液晶与显示. 2021(04): 624-631 .
    24. 伍友龙. 多元经验模态分解及在SAR图像目标识别中的应用. 红外与激光工程. 2021(04): 251-257 .
    25. 陈丛. 基于狼群算法的SAR图像属性散射中心参数估计. 红外与激光工程. 2021(04): 258-264 .
    26. 辛海燕,童有为. 结合多源特征与高斯过程模型的SAR图像目标识别. 电讯技术. 2021(04): 454-460 .
    27. 毛舒宇,岳凤英. 二维变分模态分解在SAR图像特征提取及目标识别中的应用. 电光与控制. 2021(03): 98-101+106 .
    28. 唐吉深,覃少华. 稀疏表示系数下局部最优重构的SAR图像目标识别算法. 探测与控制学报. 2021(02): 69-75+80 .
    29. 张楚笛,唐涛,计科峰. SAR图像车辆目标多模态联合协同表示分类方法. 信号处理. 2021(05): 681-689 .
    30. 刘志超,屈百达. 复数二维经验模态分解在SAR目标识别中的应用. 红外与激光工程. 2021(05): 245-252 .
    31. 刘志超,屈百达. 结合BM3D去噪与极限学习机的SAR目标分类方法. 电光与控制. 2021(06): 29-32 .
    32. 吴剑波,陆正武,关玉蓉,王庆东,姜国松. 二维压缩感知多投影矩阵特征融合的SAR目标识别方法. 红外与激光工程. 2021(06): 314-320 .
    33. 尚珊珊,余子开,范涛,金利民. 高斯过程模型在SAR图像目标识别中的应用. 红外与激光工程. 2021(07): 151-157 .
    34. 胡媛媛,韩彦龙. 快速自适应二维经验模态分解在SAR目标识别中的应用研究. 电光与控制. 2021(08): 40-43+87 .
    35. 张振中. 基于更新分类器的合成孔径雷达图像目标识别. 激光与光电子学进展. 2021(14): 234-241 .
    36. 李亚娟. 结合多决策准则稀疏表示的SAR图像目标识别方法. 红外与激光工程. 2021(08): 353-360 .
    37. 唐波,刘钢,谢黄海,黄力,代朝阳,李枫航. 基于多视角属性散射中心的风电机动态叶片雷达回波模拟. 中国电机工程学报. 2021(18): 6449-6461 .
    38. 马丹丹. 图像分块匹配的SAR目标识别方法. 红外与激光工程. 2021(10): 290-297 .
    39. 陈禾,张心怡,李灿,庄胤. 基于多尺度注意力CNN的SAR遥感目标识别. 雷达科学与技术. 2021(05): 517-525+533 .
    40. 李笑雪,黄煜峰,李忠智. 嵌入特征预提取和注意力机制的SAR图像目标检测. 江西科学. 2021(06): 1103-1109 .
    41. 陈婕,潘洁,杨小英,陈海媚,廖志平. 一种多视角SAR图像目标识别方法. 电讯技术. 2021(12): 1547-1553 .
    42. 李宁,王军敏,司文杰,耿则勋. 基于最大熵准则的多视角SAR目标分类方法. 红外与激光工程. 2021(12): 572-578 .
    43. 陈欣,陈明逊. 基于增强数据集卷积神经网络的SAR目标识别方法. 重庆理工大学学报(自然科学). 2020(01): 86-93 .
    44. 张婷,蔡德饶. 联合多层次深度特征的SAR图像目标识别方法. 火力与指挥控制. 2020(02): 135-140 .
    45. 陈婕. 考察独立性和相关性的多视角SAR图像目标识别方法. 电光与控制. 2020(03): 89-93+114 .
    46. 丁慧洁. 基于非下采样剪切波特征提取的SAR图像目标识别方法. 探测与控制学报. 2020(01): 75-80 .
    47. 柳小文,雷军程,伍雁鹏. 基于二维经验模态分解的合成孔径雷达目标识别方法. 激光与光电子学进展. 2020(04): 76-83 .
    48. 张宏武,康凯. 结合二维内蕴模函数和贝叶斯多任务学习的SAR目标识别. 电讯技术. 2020(04): 372-377 .
    49. 李亚娟. 结合全局和局部稀疏表示的SAR图像目标识别方法. 电子测量与仪器学报. 2020(02): 165-171 .
    50. 兰文宝,车畅,陶成云. 基于斯皮尔曼等级相关的单演谱成分选择及其在SAR目标识别中的应用. 电波科学学报. 2020(03): 414-421 .
    51. 周光宇,刘邦权,张亶. 基于变分模态分解的SAR图像目标识别方法. 国土资源遥感. 2020(02): 33-39 .
    52. 郭炜炜,张增辉,郁文贤,孙效华. SAR图像目标识别的可解释性问题探讨. 雷达学报. 2020(03): 462-476 . 本站查看
    53. 陈婕,廖志平. 基于增强字典稀疏表示分类的SAR目标识别方法. 探测与控制学报. 2020(03): 75-81 .
    54. 吴天宝,夏靖波,黄玉燕. 基于SVM和SRC级联决策融合的SAR图像目标识别方法. 河南理工大学学报(自然科学版). 2020(04): 118-124 .
    55. 丛培贤,赵永彬,邸卓,刘雪松,徐静. 基于内蕴判别分析的SAR目标识别方法. 自动化技术与应用. 2020(09): 103-107 .
    56. 张伟昌,王文政,代作松. 结合NSCT和TPCA的SAR图像目标识别. 火力与指挥控制. 2020(09): 41-46 .
    57. 王源源. 一种基于多分辨率表示的SAR图像识别方法. 电光与控制. 2020(10): 31-36 .
    58. 申伟,石平. 单演信号随机加权融合的SAR图像目标识别方法. 电子测量与仪器学报. 2020(09): 181-187 .
    59. 陈潜,刘金清. 结合属性散射中心模型和空间变迹法的SAR图像旁瓣抑制方法. 电子测量与仪器学报. 2020(10): 57-64 .
    60. 张虹,左鑫兰,黄瑶. 基于稀疏表示系数相关性的特征选择及SAR目标识别方法. 激光与光电子学进展. 2020(14): 271-278 .
    61. 徐永士,贲可荣,王天雨,刘斯杰. DCGAN模型改进与SAR图像生成研究. 计算机科学. 2020(12): 93-99 .
    62. 涂豫. 基于贝叶斯卷积神经网络与数据增强的SAR图像目标分类方法. 探测与控制学报. 2020(06): 43-48 .
    63. 马梓元,龚华军,王新华,刘禹. 典型多特征决策融合方法及在无人机SAR图像目标识别中的应用. 舰船电子工程. 2020(12): 96-99 .
    64. 何洁,陈欣. 基于非线性相关信息熵的SAR图像多分辨率选择及目标识别. 激光与光电子学进展. 2020(22): 215-222 .
    65. 王骏,陈艳平,江立辉. 结合稀疏表示和协同表示的SAR图像目标方位角估计. 电子测量与仪器学报. 2020(12): 165-171 .
    66. 乔良才. 结合多分辨率表示和复数域CNN的SAR图像目标识别方法. 激光与光电子学进展. 2020(24): 98-106 .
    67. 王旭,蒋书波,张秀梅. SAR目标轮廓匹配及其在目标识别中的运用. 计算机工程与设计. 2019(01): 184-189 .
    68. 蔡德饶,宋愈珍. 带鉴别分析的多视角SAR图像联合决策及目标识别. 中国电子科学研究院学报. 2019(01): 37-41+54 .
    69. 段芃芃,刘锂. 基于相关性分析的SAR图像目标方位角估计. 中国电子科学研究院学报. 2019(01): 42-46 .
    70. 靳黎忠,陈俊杰,彭新光. 决策可靠性分析及在SAR图像目标识别中的应用. 电讯技术. 2019(04): 409-414 .
    71. 王鑑航,张广宇,李艳. 基于协同编码分类器的SAR目标识别方法. 中国电子科学研究院学报. 2019(03): 290-295 .
    72. 陈岭. 基于随机加权的SAR图像多特征联合目标分类. 电子测量与仪器学报. 2019(05): 187-192 .
    73. 张婷,蔡德饶. 基于属性散射中心匹配的噪声稳健SAR目标识别方法. 中国电子科学研究院学报. 2019(06): 557-562+567 .
    74. 郭敦,吴志军. 基于局部字典块稀疏表示的SAR图像目标识别方法. 中国电子科学研究院学报. 2019(08): 813-817+829 .
    75. 张克,牛鹏涛. 稀疏表示分类在SAR图像目标识别中的应用分析. 信息技术. 2019(09): 39-43 .
    76. 张华,张素莉,何树吉. 基于幅相分离和动态粒子群算法的SAR图像属性散射中心参数估计. 中国电子科学研究院学报. 2019(09): 993-1000 .
    77. 王源源. 基于单演信号多重集典型相关分析的SAR目标识别方法. 电光与控制. 2019(10): 7-11+29 .
    78. 夏朋举. 目标区域和阴影联合决策的SAR图像目标识别方法. 中国电子科学研究院学报. 2019(10): 1062-1067+1087 .
    79. 陈惠红,刘世明. 基于多重集典型相关的深度特征融合及SAR目标识别方法. 电子测量与仪器学报. 2019(09): 57-63 .
    80. 冯冬艳,王海晖. 相关性约束下SAR图像动态重构的目标识别方法. 电子测量与仪器学报. 2019(09): 100-106 .
    81. 陈宏. 结合多视角-多特征的SAR图像目标识别方法. 电子测量与仪器学报. 2019(09): 87-92 .
    82. 刘阳. 基于属性散射中心多层次匹配的SAR目标识别方法. 电子测量与仪器学报. 2019(11): 192-198 .
    83. 李辉. 基于峰值特征高斯混合建模的SAR目标识别. 电子测量与仪器学报. 2018(08): 103-108 .
    84. 赵鹏举,甘凯. 基于互补特征层次决策融合的SAR目标识别方法. 电光与控制. 2018(10): 28-32 .
    85. 谢晴,张洪. SAR图像多层次正则化增强及在目标识别中的应用. 电子测量与仪器学报. 2018(09): 157-162 .
    86. 王立梅,李金凤,张亚峰. 联合多层次散射区域的SAR目标识别方法. 中国电子科学研究院学报. 2018(06): 690-694 .
    87. 蔡德饶,张婷. 联合多分辨表示的SAR图像目标识别方法. 电子测量与仪器学报. 2018(12): 71-77 .
    88. 董平,林嘉宇,刘莹. 一种基于峰值匹配的SAR目标识别方法. 无线互联科技. 2017(22): 112-114+121 .

    Other cited types(11)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.8 %FULLTEXT: 22.8 %META: 63.7 %META: 63.7 %PDF: 13.4 %PDF: 13.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 21.7 %其他: 21.7 %其他: 0.1 %其他: 0.1 %Canada: 0.0 %Canada: 0.0 %China: 1.1 %China: 1.1 %India: 0.0 %India: 0.0 %Italy: 0.1 %Italy: 0.1 %Osaka: 0.0 %Osaka: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.6 %[]: 0.6 %上海: 0.9 %上海: 0.9 %上饶: 0.0 %上饶: 0.0 %中卫: 0.0 %中卫: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %乌海: 0.0 %乌海: 0.0 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %伊犁: 0.1 %伊犁: 0.1 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.1 %兰辛: 0.1 %内蒙古自治区: 0.0 %内蒙古自治区: 0.0 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %包头: 0.0 %包头: 0.0 %北京: 12.4 %北京: 12.4 %十堰: 0.0 %十堰: 0.0 %南京: 0.4 %南京: 0.4 %南宁: 0.1 %南宁: 0.1 %南通: 0.1 %南通: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %合肥: 0.1 %合肥: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.2 %天津: 0.2 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.2 %宣城: 0.2 %岳阳: 0.1 %岳阳: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.1 %常州: 0.1 %平顶山: 0.0 %平顶山: 0.0 %广安: 0.0 %广安: 0.0 %广州: 0.4 %广州: 0.4 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %弗吉: 0.0 %弗吉: 0.0 %张家口: 1.3 %张家口: 1.3 %徐州: 0.0 %徐州: 0.0 %恩施: 0.0 %恩施: 0.0 %成都: 0.3 %成都: 0.3 %扬州: 0.0 %扬州: 0.0 %抚州: 0.0 %抚州: 0.0 %新乡: 0.0 %新乡: 0.0 %无锡: 0.2 %无锡: 0.2 %昆明: 0.6 %昆明: 0.6 %昌吉: 0.0 %昌吉: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.7 %杭州: 1.7 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.1 %济南: 0.1 %淮南: 0.0 %淮南: 0.0 %深圳: 0.5 %深圳: 0.5 %温州: 0.2 %温州: 0.2 %湖州: 0.2 %湖州: 0.2 %湛江: 0.0 %湛江: 0.0 %漯河: 0.4 %漯河: 0.4 %濮阳: 0.0 %濮阳: 0.0 %焦作: 0.0 %焦作: 0.0 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.4 %石家庄: 0.4 %石家庄市: 0.1 %石家庄市: 0.1 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.0 %秦皇岛: 0.0 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.0 %绵阳: 0.0 %美国伊利诺斯芝加哥: 0.2 %美国伊利诺斯芝加哥: 0.2 %聊城: 0.1 %聊城: 0.1 %芒廷维尤: 16.3 %芒廷维尤: 16.3 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %蚌埠: 0.0 %蚌埠: 0.0 %衢州: 0.0 %衢州: 0.0 %襄阳: 0.0 %襄阳: 0.0 %西宁: 32.0 %西宁: 32.0 %西安: 0.8 %西安: 0.8 %西雅图: 0.0 %西雅图: 0.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.0 %贵阳: 0.0 %赣州: 0.1 %赣州: 0.1 %运城: 0.5 %运城: 0.5 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.3 %郑州: 0.3 %金华: 0.1 %金华: 0.1 %银川: 0.1 %银川: 0.1 %长沙: 0.7 %长沙: 0.7 %长治: 0.0 %长治: 0.0 %阿穆达巴: 0.2 %阿穆达巴: 0.2 %阿菲永卡拉希萨尔: 0.1 %阿菲永卡拉希萨尔: 0.1 %青岛: 0.1 %青岛: 0.1 %鞍山: 0.0 %鞍山: 0.0 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %鹰潭: 0.0 %鹰潭: 0.0 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %龙岩: 0.0 %龙岩: 0.0 %其他其他CanadaChinaIndiaItalyOsakaTaiwan, ChinaUnited States[]上海上饶中卫临汾丹东丽水乌海乌鲁木齐伊犁佛山保定兰州兰辛内蒙古自治区加利福尼亚州包头北京十堰南京南宁南通台北台州合肥哥伦布嘉兴大连天津宝鸡宣城岳阳巴彦淖尔常州平顶山广安广州库比蒂诺弗吉张家口徐州恩施成都扬州抚州新乡无锡昆明昌吉朝阳杭州武汉沈阳洛阳济南淮南深圳温州湖州湛江漯河濮阳焦作珠海石家庄石家庄市福州秦皇岛纽约绵阳美国伊利诺斯芝加哥聊城芒廷维尤芝加哥苏州蚌埠衢州襄阳西宁西安西雅图诺沃克贵阳赣州运城邯郸郑州金华银川长沙长治阿穆达巴阿菲永卡拉希萨尔青岛鞍山香港特别行政区鹰潭齐齐哈尔龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4848) PDF downloads(652) Cited by(99)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint