Citation: | XING Mengdao, XIE Yiyuan, GAO Yuexin, et al. Electromagnetic scattering characteristic extraction and imaging recognition algorithm: a review[J]. Journal of Radars, 2022, 11(6): 921–942. doi: 10.12000/JR22232 |
[1] |
保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.
BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005.
|
[2] |
MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301
|
[3] |
黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005.
HUANG Peikang, YIN Hongcheng, and XU Xiaojian. Radar Target Characteristics[M]. Beijing: Publishing House of Electronics Industry, 2005.
|
[4] |
孙真真. 基于光学区雷达目标二维像的目标散射特征提取的理论及方法研究[D]. [博士论文], 中国人民解放军国防科学技术大学, 2001.
SUN Zhenzhen. Target scattering characteristic extraction method for radar 2-D image in optical region[D]. [Ph. D. dissertation], National University of Defense Technology, 2001.
|
[5] |
OLIVER C and QUEGAN S. Understanding Synthetic Aperture Radar Images[M]. Raleigh: SciTech Publishing, 2004.
|
[6] |
EL-DARYMLI K, GILL E W, MCGUIRE P, et al. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review[J]. IEEE Access, 2016, 4: 6014–6058. doi: 10.1109/ACCESS.2016.2611492
|
[7] |
NOVAK L M, OWIRKA G J, BROWER W S, et al. The automatic target-recognition system in SAIP[J]. The Lincoln Laboratory Journal, 1997, 10(2): 187–202.
|
[8] |
DIEMUNSCH J R and WISSINGER J. Moving and stationary target acquisition and recognition (MSTAR) model-based automatic target recognition: Search technology for a robust ATR[C]. Algorithms for Synthetic Aperture Radar Imagery V, Orlando, United States, 1998: 481–492.
|
[9] |
文贡坚, 朱国强, 殷红成, 等. 基于三维电磁散射参数化模型的 SAR 目标识别方法[J]. 雷达学报, 2017, 6(2): 115–135. doi: 10.12000/JR17034
WEN Gongjian, ZHU Guoqiang, YIN Hongcheng, et al. SAR ATR based on 3D parametric electromagnetic scattering model[J]. Journal of Radars, 2017, 6(2): 115–135. doi: 10.12000/JR17034
|
[10] |
HE Yang, HE Siyuan, ZHANG Yuehua, et al. A forward approach to establish parametric scattering center models for known complex radar targets applied to SAR ATR[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6192–6205. doi: 10.1109/TAP.2014.2360700
|
[11] |
代大海. 极化雷达成像及目标特征提取研究[D]. [博士论文], 国防科技大学, 2008.
DAI Dahai. Study on polarimetric radar imaging and target feature extraction[D]. [Ph. D. dissertation], National University of Defense Technology, 2008.
|
[12] |
LING Hao, CHOU R C, and LEE S W. Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(2): 194–205. doi: 10.1109/8.18706
|
[13] |
BHALLA R, LING Hao, MOORE J, et al. 3D scattering center representation of complex targets using the shooting and bouncing ray technique: A review[J]. IEEE Antennas and Propagation Magazine, 1998, 40(5): 30–39. doi: 10.1109/74.735963
|
[14] |
BHALLA R, MOORE J, and LING Hao. A global scattering center representation of complex targets using the shooting and bouncing ray technique[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(12): 1850–1856. doi: 10.1109/8.650204
|
[15] |
BHALLA R and LING Hao. Three-dimensional scattering center extraction using the shooting and bouncing ray technique[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(11): 1445–1453. doi: 10.1109/8.542068
|
[16] |
JACKSON J A. Three-dimensional feature models for synthetic aperture radar and experiments in feature extraction[D]. [Ph. D. dissertation], The Ohio State University, 2009.
|
[17] |
JACKSON J A, RIGLING B D, and MOSES R L. Canonical scattering feature models for 3D and bistatic SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 525–541. doi: 10.1109/TAES.2010.5461639
|
[18] |
JACKSON J A, RIGLING B D, and MOSES R L. Parametric scattering models for bistatic synthetic aperture radar[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–5.
|
[19] |
HURST M and MITTRA R. Scattering center analysis via Prony's method[J]. IEEE Transactions on Antennas and Propagation, 1987, 35(8): 986–988. doi: 10.1109/TAP.1987.1144210
|
[20] |
SACCHINI J J, STEEDLY W M, and MOSES R L. Two-dimensional Prony modeling and parameter estimation[J]. IEEE Transactions on Signal Processing, 1993, 41(11): 3127–3137. doi: 10.1109/78.257242
|
[21] |
POTTER L C, CHIANG D M, CARRIERE R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058–1067. doi: 10.1109/8.467641
|
[22] |
闫华, 张磊, 陆金文, 等. 任意多次散射机理的GTD散射中心模型频率依赖因子表达[J]. 雷达学报, 2021, 10(3): 370–381. doi: 10.12000/JR21005
YAN Hua, ZHANG Lei, LU Jinwen, et al. Frequency-dependent factor expression of the GTD scattering center model for the arbitrary multiple scattering mechanism[J]. Journal of Radars, 2021, 10(3): 370–381. doi: 10.12000/JR21005
|
[23] |
GERRY M J, POTTER L C, GUPTA I J, et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179–1188. doi: 10.1109/8.785750
|
[24] |
李增辉. 稀疏激励的极化逆散射理论研究[D]. [博士论文], 清华大学, 2015.
LI Zenghui. Research on polarimetric inverse scattering through enforcing sparsity[D]. [Ph. D. dissertation], Tsinghua University, 2015.
|
[25] |
STEEDLY W M and MOSES R L. High resolution exponential modeling of fully polarized radar returns[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(3): 459–469. doi: 10.1109/7.81427
|
[26] |
代大海, 王雪松, 肖顺平, 等. 高分辨相干极化 GTD 散射模型及其应用[J]. 电波科学学报, 2008, 23(1): 55–61. doi: 10.3969/j.issn.1005-0388.2008.01.009
DAI Dahai, WANG Xuesong, XIAO Shunping, et al. High-resolution coherent polarization GTD model and its application[J]. Chinese Journal Of Radio Science, 2008, 23(1): 55–61. doi: 10.3969/j.issn.1005-0388.2008.01.009
|
[27] |
段佳. SAR/ISAR目标电磁特征提取及应用研究[D]. [博士论文], 西安电子科技大学, 2015.
DUAN Jia. Study on electro-magnetic feature extraction of SAR/ISAR and its applications[D]. [Ph. D. dissertation], Xidian University, 2015.
|
[28] |
STEER D G, DEWDNEY P E, and ITO M R. Enhancements to the deconvolution algorithm 'CLEAN'[J]. Astronomy and Astrophysics, 1984, 137(2): 159–165.
|
[29] |
CLARK B G. An efficient implementation of the algorithm 'CLEAN'[J]. Astronomy and Astrophysics, 1980, 89(3): 377–378.
|
[30] |
GERRY M J. Two-Dimensional Inverse Scattering Based on the GTD Model[M]. The Ohio State University, 1997.
|
[31] |
KOETS M A and MOSES R L. Image domain feature extraction from synthetic aperture imagery[C]. 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, USA, 1999: 2319–2322.
|
[32] |
STACH J and LEBARON E. Enhanced image editing by peak region segmentation[C]. 18th Annual Meeting & Symposium of the Antenna Measurement Techniques Association, 1996: 303–307.
|
[33] |
KOETS M A. Automated algorithms for extraction of physically relevant features from synthetic aperture radar imagery[D]. Ohio State University, 1998.
|
[34] |
MOSES R L, POTTER L C, and GUPTA I J. Feature extraction using attributed scattering center models for model-based automatic target recognition (ATR)[R]. AFRL-SN-WP-TR-2006-1004, 2005.
|
[35] |
AKYILDIZ Y and MOSES R L. Scattering center model for SAR imagery[C]. SAR Image Analysis, Modeling, and Techniques II, Florence, Italy, 1999: 76–85.
|
[36] |
DING Baiyuan and WEN Gongjian. Target reconstruction based on 3-D scattering center model for robust SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 3772–3785. doi: 10.1109/TGRS.2018.2810181
|
[37] |
DING Baiyuan, WEN Gongjian, HUANG Xiaohong, et al. Data augmentation by multilevel reconstruction using attributed scattering center for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 979–983. doi: 10.1109/LGRS.2017.2692386
|
[38] |
丁柏圆. 针对扩展操作条件的合成孔径雷达图像目标识别方法研究[D]. [博士论文], 国防科技大学, 2018.
DING Baiyuan. Research on automatic target recognition of synthetic aperture radar images under extened operating conditions[D]. [Ph. D. dissertation], National University of Defense Technology, 2018.
|
[39] |
JACKSON J A and MOSES R L. Synthetic aperture radar 3D feature extraction for arbitrary flight paths[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2065–2084. doi: 10.1109/TAES.2012.6237579
|
[40] |
AKYILDIZ Y. Feature extraction from synthetic aperture radar imagery[D]. [Ph. D. dissertation], The Ohio State University, 2000.
|
[41] |
XU Feng, JIN Yaqiu, and MOREIRA A. A preliminary study on SAR advanced information retrieval and scene reconstruction[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1443–1447. doi: 10.1109/LGRS.2016.2590878
|
[42] |
段佳, 张磊, 盛佳恋, 等. 独立属性散射中心参数降耦合估计方法[J]. 电子与信息学报, 2012, 34(8): 1853–1859. doi: 10.3724/SP.J.1146.2011.01302
DUAN Jia, ZHANG Lei, SHENG Jialian, et al. Parameters decouple and estimation of independent attributed scattering centers[J]. Journal of Electronics &Information Technology, 2012, 34(8): 1853–1859. doi: 10.3724/SP.J.1146.2011.01302
|
[43] |
计科峰, 匡纲要, 粟毅, 等. 基于SAR图像的目标散射中心特征提取方法研究[J]. 国防科技大学学报, 2003, 25(1): 45–50. doi: 10.3969/j.issn.1001-2486.2003.01.010
JI Kefeng, KUANG Gangyao, SU Yi, et al. Research on the extracting method of the scattering center feature from SAR imagery[J]. Journal of National University of Defense Technology, 2003, 25(1): 45–50. doi: 10.3969/j.issn.1001-2486.2003.01.010
|
[44] |
蒋文, 李王哲. 基于幅相分离的属性散射中心参数估计新方法[J]. 雷达学报, 2019, 8(5): 606–615. doi: 10.12000/JR18097
JIANG Wen and LI Wangzhe. A new method for parameter estimation of attributed scattering centers based on amplitude-phase separation[J]. Journal of Radars, 2019, 8(5): 606–615. doi: 10.12000/JR18097
|
[45] |
谢意远, 高悦欣, 邢孟道, 等. 跨谱段SAR散射中心多维参数解耦和估计方法[J]. 电子与信息学报, 2021, 43(3): 632–639. doi: 10.11999/JEIT200319
XIE Yiyuan, GAO Yuexin, XING Mengdao, et al. A Decoupling and dimension dividing multi-parameter estimation method for cross-band SAR scattering centers[J]. Journal of Electronics &Information Technology, 2021, 43(3): 632–639. doi: 10.11999/JEIT200319
|
[46] |
YANG Dongwen, NI Wei, DU Lan, et al. Efficient attributed scatter center extraction based on image-domain sparse representation[J]. IEEE Transactions on Signal Processing, 2020, 68: 4368–4381. doi: 10.1109/TSP.2020.3011332
|
[47] |
XIE Yiyuan, XING Mengdao, GAO Yuexin, et al. Attributed scattering center extraction method for microwave photonic signals using DSM-PMM-regularized optimization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5230016. doi: 10.1109/TGRS.2022.3183855
|
[48] |
周剑雄. 光学区雷达目标三维散射中心重构理论与技术[D]. [博士论文], 国防科学技术大学, 2006.
ZHOU Jianxiong. Theory and technology on reconstructing 3D scattering centers of radar targets in optical region[D]. [Ph. D. dissertation], National University of Defense Technology, 2006.
|
[49] |
石志广, 周剑雄, 赵宏钟, 等. 基于协同粒子群优化的GTD模型参数估计方法[J]. 电子学报, 2007, 35(6): 1102–1107. doi: 10.3321/j.issn:0372-2112.2007.06.020
SHI Zhiguang, ZHOU Jianxiong, ZHAO Hongzhong, et al. A GTD scattering center model parameter estimation method based on CPSO[J]. Acta Electronica Sinica, 2007, 35(6): 1102–1107. doi: 10.3321/j.issn:0372-2112.2007.06.020
|
[50] |
孙真真, 陈曾平, 庄钊文, 等. 一种高频区复杂雷达目标二维散射的参数模型[J]. 国防科技大学学报, 2001, 23(4): 113–119. doi: 10.3969/j.issn.1001-2486.2001.04.025
SUN Zhenzhen, CHEN Zengping, ZHUANG Zhaowen, et al. A parametric model for high frequency complex 2-D radar scattering[J]. Journal of National University of Defense Technology, 2001, 23(4): 113–119. doi: 10.3969/j.issn.1001-2486.2001.04.025
|
[51] |
段佳, 张磊, 邢孟道, 等. 合成孔径雷达目标特征提取新方法[J]. 西安电子科技大学学报:自然科学版, 2014, 41(4): 13–19. doi: 10.3969/j.issn.1001-2400.2014.04.003
DUAN Jia, ZHANG Lei, XING Mengdao, et al. Novel feature extraction method for synthetic aperture radar targets[J]. Journal of Xidian University, 2014, 41(4): 13–19. doi: 10.3969/j.issn.1001-2400.2014.04.003
|
[52] |
占荣辉, 胡杰民, 张军. 基于压缩感知的二维GTD模型参数估计方法[J]. 电子与信息学报, 2013, 35(2): 419–425. doi: 10.3724/SP.J.1146.2012.00780
ZHAN Ronghui, HU Jiemin, and ZHANG Jun. A novel method for parametric estimation of 2D geometrical theory of diffraction model based on compressed sensing[J]. Journal of Electronics &Information Technology, 2013, 35(2): 419–425. doi: 10.3724/SP.J.1146.2012.00780
|
[53] |
HAMMOND G B and JACKSON J A. SAR canonical feature extraction using molecule dictionaries[C]. 2013 IEEE Radar Conference (RadarCon13), Ottawa, Canada, 2013: 1–6.
|
[54] |
WU Min, XING Mengdao, ZHANG Lei, et al. Super-resolution imaging algorithm based on attributed scattering center model[C]. 2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP), Xi'an, China, 2014: 271–275.
|
[55] |
LIU Hongwei, JIU Bo, LI Fei, et al. Attributed scattering center extraction algorithm based on sparse representation with dictionary refinement[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2604–2614. doi: 10.1109/TAP.2017.2673764
|
[56] |
李飞. 雷达图像目标特征提取方法研究[D]. [博士论文], 西安电子科技大学, 2014.
LI Fei. Study on target feature extraction based on radar image[D]. [Ph. D. dissertation], Xidian University, 2014.
|
[57] |
李飞, 纠博, 刘宏伟, 等. 基于稀疏表示的SAR图像属性散射中心参数估计算法[J]. 电子与信息学报, 2014, 36(4): 931–937. doi: 10.3724/SP.J.1146.2013.00576
LI Fei, JIU Bo, LIU Hongwei, et al. Sparse representation based algorithm for estimation of attributed scattering center parameter on SAR imagery[J]. Journal of Electronics &Information Technology, 2014, 36(4): 931–937. doi: 10.3724/SP.J.1146.2013.00576
|
[58] |
CONG Yulai, CHEN Bo, LIU Hongwei, et al. Nonparametric bayesian attributed scattering center extraction for synthetic aperture radar targets[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4723–4736. doi: 10.1109/TSP.2016.2569463
|
[59] |
丛玉来. 基于深层贝叶斯生成网络的层次特征学习[D]. [博士论文], 西安电子科技大学, 2017.
CONG Yulai. Hierarchical feature learning based on deep bayesian generative networks[D]. [Ph. D. dissertation], Xidian University, 2017.
|
[60] |
LI Zenghui, JIN Kan, XU Bin, et al. An improved attributed scattering model optimized by incremental sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2973–2987. doi: 10.1109/TGRS.2015.2509539
|
[61] |
KIM K T and KIM H T. Two-dimensional scattering center extraction based on multiple elastic modules network[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(4): 848–861. doi: 10.1109/TAP.2003.811107
|
[62] |
吕玉增, 曹敏, 贾宇平, 等. 基于遗传算法的二维散射中心提取研究[J]. 现代雷达, 2006, 28(11): 64–68. doi: 10.3969/j.issn.1004-7859.2006.11.019
LV Yuzeng, CAO Min, JIA Yuping, et al. 2-D scattering center extraction technique based on genetic algorithm[J]. Modern Radar, 2006, 28(11): 64–68. doi: 10.3969/j.issn.1004-7859.2006.11.019
|
[63] |
JING Maoqiang and ZHANG Guo. Attributed scattering center extraction with genetic algorithm[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2810–2819. doi: 10.1109/TAP.2020.3027630
|
[64] |
FENG Sijia, JI Kefeng, WANG Fulai, et al. Electromagnetic scattering feature (ESF) module embedded network based on ASC model for robust and interpretable SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235415. doi: 10.1109/TGRS.2022.3208333
|
[65] |
张磊, 何思远, 朱国强, 等. 雷达目标三维散射中心位置正向推导和分析[J]. 电子与信息学报, 2018, 40(12): 2854–2860. doi: 10.11999/JEIT180115
ZHANG Lei, HE Siyuan, ZHU Guoqiang, et al. Forward derivation and analysis for 3-D scattering center position of radar target[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2854–2860. doi: 10.11999/JEIT180115
|
[66] |
HU Jiemin, WANG Wei, ZHAI Qinglin, et al. Global scattering center extraction for radar targets using a modified RANSAC method[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(8): 3573–3586. doi: 10.1109/TAP.2016.2574880
|
[67] |
刘晓明, 文贡坚, 钟金荣. 基于SAR数据的三维散射中心模型位置重构方法[J]. 雷达学报, 2013, 2(2): 187–194. doi: 10.3724/SP.J.1300.2013.20080
LIU Xiaoming, WEN Gongjian, and ZHONG Jinrong. Methods for parametrically reconstructing position of 3D scattering center model of targets from SAR images[J]. Journal of Radars, 2013, 2(2): 187–194. doi: 10.3724/SP.J.1300.2013.20080
|
[68] |
MA Conghui, WEN Gongjian, DING Boyuan, et al. Three-dimensional electromagnetic model–based scattering center matching method for synthetic aperture radar automatic target recognition by combining spatial and attributed information[J]. Journal of Applied Remote Sensing, 2016, 10(1): 016025. doi: 10.1117/1.JRS.10.016025
|
[69] |
马聪慧. 基于三维电磁散射部件模型的SAR目标识别方法研究[D]. [博士论文], 国防科技大学, 2017.
MA Conghui. Research on SAR target recognition with three dimensional electromagnetic part model[D]. [Ph. D. dissertation], National University of Defense Technology, 2017.
|
[70] |
代大海, 王雪松, 肖顺平, 等. 全极化散射中心提取与参数估计: P-MUSIC方法[J]. 信号处理, 2007, 23(6): 818–822. doi: 10.3969/j.issn.1003-0530.2007.06.005
DAI Dahai, WANG Xuesong, XIAO Shunping, et al. Fully polarized scattering center extraction and parameter estimation: P-MUSIC algorithm[J]. Signal Processing, 2007, 23(6): 818–822. doi: 10.3969/j.issn.1003-0530.2007.06.005
|
[71] |
DAI Dahai, WANG Xuesong, CHANG Yuliang, et al. Fully-polarized scattering center extraction and parameter estimation: P-SPRIT algorithm[C]. 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4.
|
[72] |
代大海, 王雪松, 肖顺平. 基于相干极化GTD模型的散射中心提取新方法[J]. 系统工程与电子技术, 2007, 29(7): 1057–1061. doi: 10.3321/j.issn:1001-506X.2007.07.010
DAI Dahai, WANG Xuesong, and XIAO Shunping. Novel method for scattering center extraction based on coherent polarization GTD model[J]. Systems Engineering and Electronics, 2007, 29(7): 1057–1061. doi: 10.3321/j.issn:1001-506X.2007.07.010
|
[73] |
DAI Dahai, ZHANG Jingke, WANG Xuesong, et al. Superresolution polarimetric ISAR imaging based on 2D CP-GTD model[J]. Journal of Sensors, 2015, 2015: 293141. doi: 10.1155/2015/293141
|
[74] |
安文韬. 基于极化SAR的目标极化分解与散射特征提取研究[D]. [博士论文], 清华大学, 2010.
AN Wentao. The polarimetric decomposition and scattering characteristic extraction of polarimetric SAR[D]. [Ph. D. dissertation], Tsinghua University, 2010.
|
[75] |
CLOUDE S R and POTTIER E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498–518. doi: 10.1109/36.485127
|
[76] |
KROGAGER E. New decomposition of the radar target scattering matrix[J]. Electronics Letters, 1990, 26(18): 1525–1527. doi: 10.1049/el:19900979
|
[77] |
CAMERON W L and LEUNG L K. Feature motivated polarization scattering matrix decomposition[C]. IEEE International Conference on Radar, Arlington, USA, 1990: 549-557.
|
[78] |
徐丰. 全极化合成孔径雷达的正向与逆向遥感理论[D]. [博士论文], 复旦大学, 2007.
XU Feng. Direct and inverse remote sensing theories of polarimetric synthetic aperture radar[D]. [Ph. D. dissertation], Fudan University, 2007.
|
[79] |
FULLER D F and SAVILLE M A. A high-frequency multipeak model for wide-angle SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4279–4291. doi: 10.1109/TGRS.2012.2226732
|
[80] |
DUAN Jia, ZHANG Lei, XING Mengdao, et al. Polarimetric target decomposition based on attributed scattering center model for synthetic aperture radar targets[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2095–2099. doi: 10.1109/LGRS.2014.2320053
|
[81] |
高悦欣. ISAR高分辨成像与目标参数估计算法研究[D]. [博士论文], 西安电子科技大学, 2018.
GAO Yuexin. Study of ISAR high resolution imaging and target parameter estimation algorithms[D]. [Ph. D. dissertation], Xidian University, 2018.
|
[82] |
XU Feng, LI Yongchen, and JIN Yaqiu. Polarimetric–anisotropic decomposition and anisotropic entropies of high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5467–5482. doi: 10.1109/TGRS.2016.2565693
|
[83] |
高悦欣, 李震宇, 盛佳恋, 等. 一种大转角SAR图像散射中心各向异性提取方法[J]. 电子与信息学报, 2016, 38(8): 1956–1961. doi: 10.11999/JEIT151261
GAO Yuexin, LI Zhenyu, SHENG Jialian, et al. Extraction method for anisotropy characteristic of scattering center in wide-angle SAR imagery[J]. Journal of Electronics &Information Technology, 2016, 38(8): 1956–1961. doi: 10.11999/JEIT151261
|
[84] |
盛佳恋. ISAR高分辨成像和参数估计算法研究[D]. [博士论文], 西安电子科技大学, 2016.
SHENG Jialian. Study on ISAR high resolution imaging and parameter estimation techniques[D]. [Ph. D. dissertation], Xidian University, 2016.
|
[85] |
CARRARA W G, GOODMAN R S, and MAJEWSKI R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995.
|
[86] |
ÇETIN M, STOJANOVIĆ I, ÖNHON N Ö, et al. Sparsity-driven synthetic aperture radar imaging: Reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4): 27–40. doi: 10.1109/MSP.2014.2312834
|
[87] |
VARSHNEY K R, ÇETIN M, FISHER III J W, et al. Joint image formation and anisotropy characterization in wide-angle SAR[C]. Algorithms for Synthetic Aperture Radar Imagery XIII, Orlando, USA, 2006: 95–106.
|
[88] |
VARSHNEY K R, ÇETIN M, FISHER J W, et al. Sparse representation in structured dictionaries with application to synthetic aperture radar[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3548–3561. doi: 10.1109/TSP.2008.919392
|
[89] |
ASH J, ERTIN E, POTTER L C, et al. Wide-angle synthetic aperture radar imaging: Models and algorithms for anisotropic scattering[J]. IEEE Signal Processing Magazine, 2014, 31(4): 16–26. doi: 10.1109/MSP.2014.2311828
|
[90] |
MOSES R L and ASH J N. An autoregressive formulation for SAR backprojection imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2860–2873. doi: 10.1109/TAES.2011.6034669
|
[91] |
TRINTINALIA L C, BHALLA R, and LING Hao. Scattering center parameterization of wide-angle backscattered data using adaptive Gaussian representation[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(11): 1664–1668. doi: 10.1109/8.650078
|
[92] |
STOJANOVIC I, CETIN M, and KARL W C. Joint space aspect reconstruction of wide-angle SAR exploiting sparsity[C]. Algorithms for Synthetic Aperture Radar Imagery XV, Orlando, USA, 2008: 37–48.
|
[93] |
ZINIEL J and SCHNITER P. Dynamic compressive sensing of time-varying signals via approximate message passing[J]. IEEE Transactions on Signal Processing, 2013, 61(21): 5270–5284. doi: 10.1109/TSP.2013.2273196
|
[94] |
JIANG Wen, LIU Jianwei, YANG Jiyao, et al. A novel multiband fusion method based on a modified RELAX algorithm for high-resolution and anti-non-gaussian colored clutter microwave imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5105312. doi: 10.1109/TGRS.2021.3109724
|
[95] |
吴敏. 逆合成孔径雷达提高分辨率成像方法研究[D]. [博士论文], 西安电子科技大学, 2016.
WU Min. Study on high resolution ISAR imaging techniques[D]. [Ph. D. dissertation], Xidian University, 2016.
|
[96] |
吴敏, 张磊, 段佳, 等. 基于属性散射中心模型的SAR超分辨成像算法[J]. 宇航学报, 2014, 35(9): 1058–1064. doi: 10.3873/j.issn.1000-1328.2014.09.011
WU Min, ZHANG Lei, DUAN Jia, et al. Super-resolution SAR imaging algorithm based on attribute scattering center model[J]. Journal of Astronautics, 2014, 35(9): 1058–1064. doi: 10.3873/j.issn.1000-1328.2014.09.011
|
[97] |
HUANG Lanqing, LIU Bin, LI Boying, et al. OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195–208. doi: 10.1109/JSTARS.2017.2755672
|
[98] |
计科峰, 匡纲要, 粟毅, 等. SAR图像目标峰值特征提取与方位角估计方法研究[J]. 宇航学报, 2004, 25(1): 102–108,113. doi: 10.3321/j.issn:1000-1328.2004.01.018
JI Kefeng, KUANG Gangyao, SU Yi, et al. Methods of target’s peak extraction and azimuth estimation from SAR imagery[J]. Journal of Astronautics, 2004, 25(1): 102–108,113. doi: 10.3321/j.issn:1000-1328.2004.01.018
|
[99] |
张翠, 郦苏丹, 邹涛, 等. 一种应用峰值特征匹配的SAR图象自动目标识别方法[J]. 中国图象图形学报, 2002, 7(7): 729–734. doi: 10.3969/j.issn.1006-8961.2002.07.020
ZHANG Cui, LI Sudan, ZOU Tao, et al. An automatic target recognition method in SAR imagery using peak feature matching[J]. Journal of Image and Graphics, 2002, 7(7): 729–734. doi: 10.3969/j.issn.1006-8961.2002.07.020
|
[100] |
CHIANG H C, MOSES R L, and POTTER L C. Model-based classification of radar images[J]. IEEE Transactions on Information Theory, 2000, 46(5): 1842–1854. doi: 10.1109/18.857795
|
[101] |
DUNGAN K E and POTTER L C. Classifying transformation-variant attributed point patterns[J]. Pattern Recognition, 2010, 43(11): 3805–3816. doi: 10.1016/j.patcog.2010.05.033
|
[102] |
LI Tingli and DU Lan. Target discrimination for SAR ATR based on scattering center feature and K-center one-class classification[J]. IEEE Sensors Journal, 2018, 18(6): 2453–2461. doi: 10.1109/JSEN.2018.2791947
|
[103] |
LIN Yuesong, ZHANG Le, XUE Anke, et al. SAR imagery scattering center extraction and target recognition based on scattering center model[C]. 2006 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006: 9631–9636.
|
[104] |
文贡坚, 马聪慧, 丁柏圆, 等. 基于部件级三维参数化电磁模型的SAR目标物理可解释识别方法[J]. 雷达学报, 2020, 9(4): 608–621. doi: 10.12000/JR20099
WEN Gongjian, MA Conghui, DING Baiyuan, et al. SAR target physics interpretable recognition method based on three dimensional parametric electromagnetic part model[J]. Journal of Radars, 2020, 9(4): 608–621. doi: 10.12000/JR20099
|
[105] |
丁柏圆, 文贡坚, 余连生, 等. 属性散射中心匹配及其在SAR目标识别中的应用[J]. 雷达学报, 2017, 6(2): 157–166. doi: 10.12000/JR16104
DING Baiyuan, WEN Gongjian, YU Liansheng, et al. Matching of attributed scattering center and its application to synthetic aperture radar automatic target recognition[J]. Journal of Radars, 2017, 6(2): 157–166. doi: 10.12000/JR16104
|
[106] |
DING Baiyuan, WEN Gongjian, MA Conghui, et al. Decision fusion based on physically relevant features for SAR ATR[J]. IET Radar, Sonar & Navigation, 2017, 11(4): 682–690. doi: 10.1049/iet-rsn.2016.0357
|
[107] |
DING Baiyuan, WEN Gongjian, HUANG Xiaohong, et al. Target recognition in synthetic aperture radar images via matching of attributed scattering centers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(7): 3334–3347. doi: 10.1109/JSTARS.2017.2671919
|
[108] |
CHIANG H C, MOSES R L, and POTTER L C. Model-based Bayesian feature matching with application to synthetic aperture radar target recognition[J]. Pattern Recognition, 2001, 34(8): 1539–1553. doi: 10.1016/S0031-3203(00)00089-3
|
[109] |
ZHANG Lamei, SUN Liangjie, ZOU Bin, et al. Fully polarimetric SAR image classification via sparse representation and polarimetric features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3923–3932. doi: 10.1109/JSTARS.2014.2359459
|
[110] |
CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720
|
[111] |
DING Baiyuan, WEN Gongjian, MA Conghui, et al. An efficient and robust framework for SAR target recognition by hierarchically fusing global and local features[J]. IEEE Transactions on Image Processing, 2018, 27(12): 5983–5995. doi: 10.1109/TIP.2018.2863046
|
[112] |
LI Tingli and DU Lan. SAR automatic target recognition based on attribute scattering center model and discriminative dictionary learning[J]. IEEE Sensors Journal, 2019, 19(12): 4598–4611. doi: 10.1109/JSEN.2019.2901050
|
[113] |
LI Yi, DU Lan, and WEI Di. Multiscale CNN based on component analysis for SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5211212. doi: 10.1109/TGRS.2021.3100137
|
[114] |
ZHANG Jinsong, XING Mengdao, SUN Guangcai, et al. Integrating the reconstructed scattering center feature maps with deep CNN feature maps for automatic SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4009605. doi: 10.1109/LGRS.2021.3054747
|
[115] |
ZHANG Jinsong, XING Mengdao, and XIE Yiyuan. FEC: A feature fusion framework for SAR target recognition based on electromagnetic scattering features and deep CNN features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2174–2187. doi: 10.1109/TGRS.2020.3003264
|
[116] |
LIU Jiaming, XING Mengdao, YU Hanwen, et al. EFTL: Complex convolutional networks with electromagnetic feature transfer learning for sar target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5209811. doi: 10.1109/TGRS.2021.3083261
|
[117] |
YANG Lichao, XING Mengdao, ZHANG Lei, et al. Integration of rotation estimation and high-order compensation for ultrahigh-resolution microwave photonic ISAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2095–2115. doi: 10.1109/TGRS.2020.2994337
|
[118] |
DENG Yuhui, XING Mengdao, SUN Guangcai, et al. A processing framework for airborne microwave photonic SAR with resolution up to 0.03 m: motion estimation and compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022.
|