Si Qi, Wang Yu, Deng Yunkai, Li Ning, Zhang Heng. A Novel Cluster-Analysis Algorithm Based on MAP Framework for Multi-baseline InSAR Height Reconstruction[J]. Journal of Radars, 2017, 6(6): 640-652. doi: 10.12000/JR17043
Citation: CHEN Hui, TIAN Xiang, LI Zihao, et al. Reduced-dimension target parameter estimation for conformal FDA-MIMO radar[J]. Journal of Radars, 2021, 10(6): 811–821. DOI: 10.12000/JR21197

Reduced-dimension Target Parameter Estimation For Conformal FDA-MIMO Radar

DOI: 10.12000/JR21197
Funds:  The National Natural Science Foundation of China (61571081), Sichuan Science and Technology Program (18ZDYF2551), Fundamental Research Funds for the Central Universities (ZYGX2018J005)
More Information
  • Author Bio:

    CHEN Hui received the Ph.D. degree in the department of electronic engineering from the University of Electronic Science and Technology of China (UESTC), Chengdu, China, in 2013. Since January 2014, she has been with the School of Information Engineering and Communication, UESTC, where she is currently an Associate Professor. From November 2011 to May 2013, she was a visiting scholar at Columbia University, NY, USA. Her research interests include array signal processing, wireless communication and artificial intelligence

    TIAN Xiang was born in Sichuan, China in 1998. She received the Bachelor Degree in 2020 from Chengdu University of Information Technology. She is pursuing the Master Degree in University of Electronic Science and Technology of China. Her major interests are conformal array and frequency inverse array

    LI Zihao was born in Sichuan, China in 1996. He received the Master Degree in 2021 from University of Electronic Science and Technology of China. His major interests are conformal array and frequency diverse array radar

    JIANG Xinrui was born in Shanxi, China in 1996. She received the Master Degree in 2021 from University of Electronic Science and Technology of China. She specializes in signal recognition, coding recognition and signal processing

  • Corresponding author: CHEN Hui, huichen0929@uestc.edu.cn
  • Received Date: 2021-12-05
  • Accepted Date: 2021-12-20
  • Rev Recd Date: 2021-12-17
  • Available Online: 2021-12-22
  • Publish Date: 2021-12-28
  • Frequency Diverse Array (FDA) Multiple-Input Multiple-Output (MIMO) radar equipped with a FDA can possess beam patterns that are dependent on range, angle, and time, and it can increase the degree of freedom. This paper introduces a conformal array attached to the surface of the carrier, the array can reduce the aerodynamic impact on the carrier and reduce the cross section of the FDA-MIMO radar. First, the conformal FDA-MIMO measurement model is formulated, and a Cramér-Rao Lower Bound (CRLB) is derived to evaluate the parameter estimation performance. To avoid the three-dimensional search of the traditional three-dimensional MUltiple SIgnal Classification (3D-MUSIC) algorithm, a Reduced-Dimension MUltiple SIgnal Classification (RD-MUSIC) algorithm is proposed for parameter estimation. The simulation results demonstrate that the proposed algorithm has a slightly lower estimation accuracy than the 3D-MUSIC algorithm but a much lower computational complexity. In addition, the proposed algorithm has better range estimation performance for multiple targets than the 3D-MUSIC algorithm.

     

  • [1]
    ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Frequency diverse array radars[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 215–216. doi: 10.1109/RADAR.2006.1631800.
    [2]
    WANG Wenqin, SHAO Huaizong, and CAI Jingye. Range-angle-dependent beamforming by frequency diverse array antenna[J]. International Journal of Antennas and Propagation, 2012, 2012: 760489. doi: 10.1155/2012/760489
    [3]
    SAMMARTINO P F, BAKER C J, and GRIFFITHS H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. doi: 10.1109/TAES.2013.6404099
    [4]
    LI Shengyuan, ZHANG Linrang, LIU Nan, et al. Range-angle dependent detection for FDA-MIMO radar[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 6629–6632. doi: 10.1109/IGARSS.2016.7730731.
    [5]
    CHENG Jie, CHEN Hui, GUI Ronghua, et al. Persymmetric adaptive detector for FDA-MIMO radar[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–5. doi: 10.1109/RadarConf2043947.2020.9266641.
    [6]
    ZHU Yu, LIU Lei, LU Zheng, et al. Target detection performance analysis of FDA-MIMO radar[J]. IEEE Access, 2019, 7: 164276–164285. doi: 10.1109/ACCESS.2019.2943082
    [7]
    LAN Lan, MARINO A, AUBRY A, et al. GLRT-based adaptive target detection in FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 597–613. doi: 10.1109/TAES.2020.3028485
    [8]
    LAN Lan, XU Jingwei, LIAO Guisheng, et al. Suppression of mainbeam deceptive jammer with FDA-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11584–11598. doi: 10.1109/TVT.2020.3014689
    [9]
    LAN Lan, ROSAMILIA M, AUBRY A, et al. Single-snapshot angle and incremental range estimation for FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3705–3718. doi: 10.1109/TAES.2021.3083591
    [10]
    CHEN Hui and SHAO Huaizong. Sparse reconstruction based target localization with frequency diverse array MIMO radar[C]. 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), Chengdu, China, 2015: 94–98. doi: 10.1109/ChinaSIP.2015.7230369.
    [11]
    XU Jingwei, LIAO Guisheng, ZHU Shengqi, et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3396–3410. doi: 10.1109/TSP.2015.2422680
    [12]
    XIONG Jie, WANG Wenqin, and GAO Kuandong. FDA-MIMO radar range-angle estimation: CRLB, MSE, and resolution analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 284–294. doi: 10.1109/TAES.2017.2756498
    [13]
    CUI Can, YAN Yisheng, WANG Wenqin, et al. Resolution threshold of music algorithm for FDA-MIMO radar[C]. 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, USA, 2018: 230–234. doi: 10.1109/RADAR.2018.8378562.
    [14]
    CHEN Xiaolong, CHEN Baoxin, XUE Yonghua, et al. Space-range-Doppler focus processing: A novel solution for moving target integration and estimation using FDA-MIMO radar[C]. 2018 International Conference on Radar (RADAR), Brisbane, Australia, 2018: 1–4. doi: 10.1109/RADAR.2018.8557297.
    [15]
    CUI Can, XU Jian, GUI Ronghua, et al. Search-free DOD, DOA and range estimation for bistatic FDA-MIMO radar[J]. IEEE Access, 2018, 6: 15431–15445. doi: 10.1109/ACCESS.2018.2816780
    [16]
    LIU Yi, YANG Hu, JIN Zusheng, et al. A multibeam cylindrically conformal slot array antenna based on a modified rotman lens[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3441–3452. doi: 10.1109/TAP.2018.2829816
    [17]
    DOHMEN C, ODENDAAL J W, and JOUBERT J. Synthesis of conformal arrays with optimized polarization[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(10): 2922–2925. doi: 10.1109/TAP.2007.905501
    [18]
    XIAO Shiwei, YANG Shiwen, ZHANG Hangyu, et al. Practical implementation of wideband and wide-scanning cylindrically conformal phased array[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(8): 5729–5733. doi: 10.1109/TAP.2019.2922760
    [19]
    COSTA M, RICHTER A, and KOIVUNEN V. DoA and polarization estimation for arbitrary array configurations[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2330–2343. doi: 10.1109/TSP.2012.2187519
    [20]
    MOHAMMADI S, GHANI A, and SEDIGHY S H. Direction-of-arrival estimation in conformal microstrip patch array antenna[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 511–515. doi: 10.1109/TAP.2017.2772085
    [21]
    NECHAEV Y B, ALGAZINOV E K, and PESHKOV I W. Estimation of the Cramer-Rao bound for radio direction-finding on the azimuth and elevation of the cylindical antenna arrays[C]. 2018 41st International Conference on Telecommunications and Signal Processing (TSP), Athens, Greece, 2018: 1–4. doi: 10.1109/TSP.2018.8441419.
    [22]
    LI Wentao, CUI Can, YE Xiutiao, et al. Quasi-time-invariant 3-D focusing beampattern synthesis for conformal frequency diverse array[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 2684–2697. doi: 10.1109/TAP.2019.2955199
    [23]
    FENG Maoyuan, CUI Zhongma, YANG Yunxiu, et al. A reduced-dimension MUSIC algorithm for monostatic FDA-MIMO radar[J]. IEEE Communications Letters, 2021, 25(4): 1279–1282. doi: 10.1109/LCOMM.2020.3045440
    [24]
    ZHANG Xiaofei, CHEN Weiyang, ZHENG Wang, et al. Localization of near-field sources: A reduced-dimension MUSIC algorithm[J]. IEEE Communications Letters, 2018, 22(7): 1422–1425. doi: 10.1109/LCOMM.2018.2837049
    [25]
    BURGER H A. Use of Euler-rotation angles for generating antenna patterns[J]. IEEE Antennas and Propagation Magazine, 1995, 37(2): 56–63. doi: 10.1109/74.382344
    [26]
    MILLIGAN T. More applications of Euler rotation angles[J]. IEEE Antennas and Propagation Magazine, 1999, 41(4): 78–83. doi: 10.1109/74.789738
    [27]
    STOICA P and NEHORAI A. MUSIC, maximum likelihood and Cramer-Rao bound[C]. International Conference on Acoustics, Speech, and Signal Processing, New York, USA, 1988: 2296–2299. doi: 10.1109/ICASSP.1988.197097.
    [28]
    STOICA P and NEHORAI A. MUSIC, maximum likelihood and Cramer-Rao bound: Further results and comparisons[C]. International Conference on Acoustics, Speech, and Signal Processing, Glasgow, UK, 1989: 2605–2608. doi: 10.1109/ICASSP.1989.267001.
  • Relative Articles

    [1]WU Yun, ZHANG Dongheng, ZHANG Ganlin, XIE Xuecheng, ZHAN Fengquan, CHEN Yan. WiFi-based Respiration Detection Aided by Intelligent Reflecting Surfaces[J]. Journal of Radars, 2025, 14(1): 189-203. doi: 10.12000/JR24105
    [2]SHAO Hui, ZHANG Hulong, DAI Hui, CHEN Yuwei, SUN Long, XU Heng, LI Xingyun. Fast Reflectance Spectral Profile Reconstruction Method for Full-waveform Hyperspectral LiDAR[J]. Journal of Radars. doi: 10.12000/JR24214
    [3]XU Heng, XU Hong, QUAN Yinghui, PAN Qin, SHA Minghui, CHEN Hui, CHENG Qiang, ZHOU Xiaoyang. A Radar Jamming Method Based on Time Domain Coding Metasurface Intrapulse and Interpulse Coding Optimization[J]. Journal of Radars, 2024, 13(1): 215-226. doi: 10.12000/JR23186
    [4]LI Haoliang, CHEN Siwei. Electromagnetic Scattering Characteristics and Radar Identification of Sea Corner Reflectors: Advances and Prospects[J]. Journal of Radars, 2023, 12(4): 738-761. doi: 10.12000/JR23100
    [5]TIAN Tuanwei, DENG Hao, LU Jianhua, DU Xiaolin. Multicarrier Waveform Optimization Method for an Intelligent Reflecting Surface-assisted Dual-function Radar-communication System[J]. Journal of Radars, 2022, 11(2): 240-254. doi: 10.12000/JR21138
    [6]WANG Fulai, PANG Chen, YIN Jiapeng, LI Nanjun, LI Yongzhen, WANG Xuesong. Joint Design of Doppler-tolerant Complementary Sequences and Receiving Filters Against Interrupted Sampling Repeater Jamming[J]. Journal of Radars, 2022, 11(2): 278-288. doi: 10.12000/JR22020
    [7]WAN Huan, YU Xianxiang, QUAN Zhi, LIAO Bin. Constant Modulus Waveform Design for Low-resolution Quantization MIMO Radar Based on an Alternating Direction Penalty Method[J]. Journal of Radars, 2022, 11(4): 557-569. doi: 10.12000/JR22072
    [8]SHI Hongyu, LI Guoqiang, LIU Kang, LI Bolin, YI Jianjia, ZHANG Anxue, XU Zhuo. Deflective Vortex Beam Generation Based on Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2021, 10(5): 785-793. doi: 10.12000/JR21070
    [9]FANG Zuqi, CHENG Qiang, CUI Tiejun. Nonlinear Quasi-Bessel Beam Generation Based on the Time-domain Digital-Coding Metasurface[J]. Journal of Radars, 2021, 10(2): 267-273. doi: 10.12000/JR21043
    [10]WANG Zhihao, LI Gang, JIANG Xiao. Flooded Area Detection Method Based on Fusion of Optical and SAR Remote Sensing Images[J]. Journal of Radars, 2020, 9(3): 539-553. doi: 10.12000/JR19095
    [11]LI Daojing, ZHU Yu, HU Xuan, YU Haifeng, ZHOU Kai, ZHANG Running, LIU Lei. Laser Application and Sparse Imaging Analysis of Diffractive Optical System[J]. Journal of Radars, 2020, 9(1): 195-203. doi: 10.12000/JR19081
    [12]Li Daojing, Hu Xuan. Optical System and Detection Range Analysis of Synthetic Aperture Ladar[J]. Journal of Radars, 2018, 7(2): 263-274. doi: 10.12000/JR18017
    [13]Yin De, Ye Shengbo, Liu Jinwei, Ji Yicai, Liu Xiaojun, Fang Guangyou. Novel Time-domain Ultra-wide Band TEM Horn Antenna for Highway GPR Applications[J]. Journal of Radars, 2017, 6(6): 611-618. doi: 10.12000/JR17004
    [14]Du Lan, Li Lin-sen, Li Wei-lu, Wang Bao-shuai, Shi Hui-ruo. Aircraft Target Classification Based on Correlation Features from Time-domain Echoes[J]. Journal of Radars, 2015, 4(6): 621-629. doi: 10.12000/JR15117
    [15]Wu Bing-heng, Ji Yi-cai, Fang Guang-you. Design and Analysis of the Distributed Resistor-loading GPR Antenna with Reflected Cavity[J]. Journal of Radars, 2015, 4(5): 538-544. doi: 10.12000/JR15070
    [16]Wei Ming-gui, Liang Da-chuan, Gu Jian-qiang, Min Rui, Li Jin, Ouyang Chun-mei, Tian Zhen, He Ming-xia, Han Jia-guang, Zhang Wei-li. Terahertz Radar Imaging Based on Time-domain Spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229. doi: 10.12000/JR14125
    [17]Huang Zhi-rong, Zheng Shi-kun, Zhu Jia-long, Chen Guo-ding. Design Optimization of Expansion Driven Components for the HJ-1-C Satellite[J]. Journal of Radars, 2014, 3(3): 282-287. doi: 10.3724/SP.J.1300.2014.14016
    [18]Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157
    [19]You Hong-jian, Hu Yan-feng. Investigation on Fine Registration for SAR and Optical Image[J]. Journal of Radars, 2014, 3(1): 78-84. doi: 10.3724/SP.J.1300.2014.13154
    [20]Llin Shi-bin, Li Yue-li, Yan Shao-shi, Zhou Zhi-min. Study of Effects of Flat Surface Assumption to Synthetic Aperture Radar Time-domain Algorithms Imaging Quality[J]. Journal of Radars, 2012, 1(3): 309-313. doi: 10.3724/SP.J.1300.2012.20035
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.4 %FULLTEXT: 20.4 %META: 69.8 %META: 69.8 %PDF: 9.7 %PDF: 9.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.6 %其他: 15.6 %其他: 0.3 %其他: 0.3 %China: 1.2 %China: 1.2 %India: 0.0 %India: 0.0 %Keelung: 0.0 %Keelung: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United States: 0.1 %United States: 0.1 %[]: 1.0 %[]: 1.0 %三亚: 0.0 %三亚: 0.0 %三明: 0.0 %三明: 0.0 %上海: 0.4 %上海: 0.4 %东莞: 0.1 %东莞: 0.1 %中卫: 0.2 %中卫: 0.2 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.1 %保定: 0.1 %包头: 0.0 %包头: 0.0 %北京: 14.7 %北京: 14.7 %北京市: 0.0 %北京市: 0.0 %十堰: 0.0 %十堰: 0.0 %南京: 0.2 %南京: 0.2 %南宁: 0.0 %南宁: 0.0 %南昌: 0.0 %南昌: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.2 %合肥: 0.2 %吉安: 0.0 %吉安: 0.0 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.0 %咸阳: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %嘉义: 0.1 %嘉义: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %圣地亚哥库特拉尔潘: 0.1 %圣地亚哥库特拉尔潘: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.2 %天津: 0.2 %太原: 0.0 %太原: 0.0 %宁波: 0.2 %宁波: 0.2 %安康: 0.1 %安康: 0.1 %安阳: 0.1 %安阳: 0.1 %宜春: 0.0 %宜春: 0.0 %宣城: 0.0 %宣城: 0.0 %密蘇里城: 0.0 %密蘇里城: 0.0 %巴中: 0.2 %巴中: 0.2 %巴中市巴州区: 0.0 %巴中市巴州区: 0.0 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %广州: 0.3 %广州: 0.3 %张家口: 1.0 %张家口: 1.0 %张家口市: 0.0 %张家口市: 0.0 %德宏: 0.0 %德宏: 0.0 %成都: 0.5 %成都: 0.5 %成都市新都区: 0.0 %成都市新都区: 0.0 %扬州: 0.2 %扬州: 0.2 %新加坡: 0.0 %新加坡: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 1.5 %杭州: 1.5 %枣庄: 0.0 %枣庄: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.0 %桂林: 0.0 %梅州: 0.0 %梅州: 0.0 %武汉: 0.3 %武汉: 0.3 %永州: 0.0 %永州: 0.0 %汉中: 0.1 %汉中: 0.1 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.2 %沈阳: 0.2 %洛杉矶: 0.0 %洛杉矶: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.2 %济南: 0.2 %海口: 0.1 %海口: 0.1 %淄博: 0.1 %淄博: 0.1 %淮南: 0.0 %淮南: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.2 %漯河: 0.2 %漳州: 0.0 %漳州: 0.0 %烟台: 0.0 %烟台: 0.0 %焦作: 0.0 %焦作: 0.0 %牡丹江: 0.0 %牡丹江: 0.0 %玉林: 0.2 %玉林: 0.2 %白银: 0.2 %白银: 0.2 %盐城: 0.1 %盐城: 0.1 %盘锦: 0.0 %盘锦: 0.0 %石家庄: 0.9 %石家庄: 0.9 %石家庄市: 0.2 %石家庄市: 0.2 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.0 %绍兴: 0.0 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %芝加哥: 0.6 %芝加哥: 0.6 %芬兰赫尔辛基: 0.1 %芬兰赫尔辛基: 0.1 %苏州: 0.1 %苏州: 0.1 %荆州: 0.1 %荆州: 0.1 %莆田: 0.0 %莆田: 0.0 %萍乡: 0.0 %萍乡: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %襄阳: 0.0 %襄阳: 0.0 %西宁: 34.2 %西宁: 34.2 %西安: 0.3 %西安: 0.3 %诺沃克: 0.1 %诺沃克: 0.1 %贵港: 0.2 %贵港: 0.2 %赤峰: 0.0 %赤峰: 0.0 %达州: 0.0 %达州: 0.0 %运城: 0.4 %运城: 0.4 %遵义: 0.0 %遵义: 0.0 %郑州: 0.1 %郑州: 0.1 %重庆: 0.3 %重庆: 0.3 %重庆市: 0.0 %重庆市: 0.0 %银川: 0.0 %银川: 0.0 %长春: 0.2 %长春: 0.2 %长沙: 0.4 %长沙: 0.4 %长治: 0.0 %长治: 0.0 %青岛: 0.2 %青岛: 0.2 %韶关: 0.0 %韶关: 0.0 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %鹤岗: 0.0 %鹤岗: 0.0 %龙岩: 0.1 %龙岩: 0.1 %其他其他ChinaIndiaKeelungTaiwan, ChinaUnited States[]三亚三明上海东莞中卫中山临汾丹东佛山保定包头北京北京市十堰南京南宁南昌厦门台北台州台湾省合肥吉安呼和浩特咸阳哥伦布嘉义嘉兴圣地亚哥库特拉尔潘大连天津太原宁波安康安阳宜春宣城密蘇里城巴中巴中市巴州区巴彦淖尔巴音郭楞广州张家口张家口市德宏成都成都市新都区扬州新加坡无锡昆明晋城普洱杭州枣庄格兰特县桂林梅州武汉永州汉中汕头沈阳洛杉矶洛阳济南海口淄博淮南淮安深圳温州湖州湘潭滨州漯河漳州烟台焦作牡丹江玉林白银盐城盘锦石家庄石家庄市纽约绍兴美国伊利诺斯芝加哥芒廷维尤芝加哥芬兰赫尔辛基苏州荆州莆田萍乡蚌埠襄阳西宁西安诺沃克贵港赤峰达州运城遵义郑州重庆重庆市银川长春长沙长治青岛韶关香港香港特别行政区鹤岗龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1531) PDF downloads(165) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint