Volume 8 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
DING Hao, LIU Ningbo, DONG Yunlong, et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8(3): 281–302. doi: 10.12000/JR19006
Citation: DING Hao, LIU Ningbo, DONG Yunlong, et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8(3): 281–302. doi: 10.12000/JR19006

Overview and Prospects of Radar Sea Clutter Measurement Experiments

DOI: 10.12000/JR19006
Funds:  The National Natural Science Foundation of China (61871391, 61871392, U1633122, 61531020)
More Information
  • In complex marine environments, sea clutter greatly affects the detection performance of maritime targets. Because the influencing factors of sea clutter are numerous and the mechanism is complex, there are great difficulties in feature description and sea clutter suppression, and it is necessary to carry out long-term, systematic, continuous, and in-depth research. Carrying out sea clutter measurement experiments and obtaining measurement data under the influence of different parameters is an important prerequisite for supporting this research. This paper mainly focuses on the sea clutter measurements that have been carried out. First, typical experiments in various countries such as Canada, South Africa, Australia, the United States, Spain, and Germany are categorized and summarized from the aspects of shore-based experiment and airborne experiment. Then, sea clutter measurement experiments with wave tank conducted by the United States and Japan are reviewed, and domestic sea clutter measurement experiments as well as the construction of the maritime target detection experimental center in Yantai are briefly introduced. Finally, the future research directions that should be emphasized are projected: more systematic and continuous sea clutter measurement experiments need to be conducted; experiment and data analysis under explicit task background need to be strengthened; and sea clutter and target datasets that meet the requirement of intelligent radar applications need to be urgently constructed.

     

  • loading
  • [1]
    WARD K, TOUGH R, and WATTS S. Sea Clutter: Scattering, the K Distribution and Radar Performance[M]. 2nd ed., London: The Institution of Engineering and Technology, 2013.
    [2]
    WARD K D and WATTS S. Use of sea clutter models in radar design and development[J]. IET Radar, Sonar & Navigation, 2010, 4(2): 146–157. doi: 10.1049/iet-rsn.2009.0132
    [3]
    SKOLNIK M I. Radar Handbook[M]. 3rd ed., New York: The McGraw-Hill Companies Inc., 2008.
    [4]
    何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001

    HE You, HUANG Yong, GUAN Jian, et al. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001
    [5]
    丁昊. 雷达海杂波特性与目标检测方法研究[D]. [博士论文], 海军航空工程学院, 2016.

    DING Hao. Research on radar sea clutter property and target detection algorithms[D]. [Ph.D. dissertation], Naval Aeronautical and Astronautical University, 2016.
    [6]
    丁昊, 董云龙, 刘宁波, 等. 海杂波特性认知研究进展与展望[J]. 雷达学报, 2016, 5(5): 499–516. doi: 10.12000/JR16069

    DING Hao, DONG Yunlong, LIU Ningbo, et al. Overview and prospects of research on sea clutter property cognition[J]. Journal of Radars, 2016, 5(5): 499–516. doi: 10.12000/JR16069
    [7]
    DROSOPOULOS A. Description of the OHGR database[R]. Technical Note 94–14, 1994.
    [8]
    DE WIND H J, CILLIERS J C, and HERSELMAN P L. DataWare: Sea clutter and small boat radar reflectivity databases[J]. IEEE Signal Processing Magazine, 2010, 27(2): 145–148. doi: 10.1109/MSP.2009.935415
    [9]
    ANTIPOV I. Analysis of sea clutter data[R]. Technical Report DSTO-TR-0647, 1998.
    [10]
    DONG Yunhan and MERRETT D. Statistical measures of S-band sea clutter and targets[R]. Technical Report DSTO-TR-2221, 2008.
    [11]
    DONG Yunhan and MERRETT D. Analysis of L-band multi-channel sea clutter[R]. Technical Report DSTO-TR-2455, 2010.
    [12]
    POSNER F L. Spiky sea clutter at high range resolutions and very low grazing angles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 58–73. doi: 10.1109/7.993229
    [13]
    CARRETERO-MOYA J, GISMERO-MENOYO J, BLANCO-DEL-CAMPO Á, et al. Statistical analysis of a high-resolution sea-clutter database[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2024–2037. doi: 10.1109/TGRS.2009.2033193
    [14]
    SIEGEL A, OCHADLICK A, DAVIS JR J, et al. Spatial and temporal correlation of LOGAN-1 high-resolution radar sea clutter data[C]. Proceedings of 1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 1994: 818–821. doi: 10.1109/IGARSS.1994.399273.
    [15]
    RINO C L, ECKERT E, SIEGEL A, et al. X-band low-grazing-angle ocean backscatter obtained during LOGAN 1993[J]. IEEE Journal of Oceanic Engineering, 1997, 22(1): 18–26. doi: 10.1109/48.557536
    [16]
    HAIR T, LEE T, and BAKER C J. Statistical properties of multifrequency high-range-resolution sea reflections[J]. IEE Proceedings F-Radar and Signal Processing, 1991, 138(2): 75–79. doi: 10.1049/ip-f-2.1991.0012
    [17]
    ISHII S, SAYAMA S, and MIZUTANI K. Effect of changes in sea-surface state on statistical characteristics of sea clutter with X-band radar[J]. Wireless Engineering and Technology, 2011, 2(3): 5829. doi: 10.4236/wet.2011.23025
    [18]
    FABBRO V, BIEGEL G, FÖRSTER J, et al. Measurements of sea clutter at low grazing angle in Mediterranean coastal environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6379–6389. doi: 10.1109/TGRS.2017.2727057
    [19]
    AL-ASHWAL W A, BAKER C J, BALLERI A, et al. Statistical analysis of simultaneous monostatic and bistatic sea clutter at low grazing angles[J]. Electronics Letters, 2011, 47(10): 621–622. doi: 10.1049/el.2011.0557
    [20]
    AL-ASHWAL W A, WOODBRIDGE K, and GRIFFITHS H D. Analysis of bistatic sea clutter-Part I: Average reflectivity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1283–1292. doi: 10.1109/TAES.2014.120426
    [21]
    AL-ASHWAL W A, WOODBRIDGE K, and GRIFFITHS H D. Analysis of bistatic sea clutter-Part II: Amplitude statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1293–1303. doi: 10.1109/TAES.2014.120434
    [22]
    RITCHIE M, STOVE A, WOODBRIDGE K, et al. NetRAD: Monostatic and bistatic sea clutter texture and Doppler spectra characterization at S-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5533–5543. doi: 10.1109/TGRS.2016.2567598
    [23]
    FIORANELLI F, RITCHIE M, GRIFFITHS H, et al. Analysis of polarimetric bistatic sea clutter using the NetRAD radar system[J]. IET Radar, Sonar & Navigation, 2016, 10(8): 1356–1366. doi: 10.1049/iet-rsn.2015.0416
    [24]
    GRECO M, STINCO P, GINI F, et al. Impact of sea clutter nonstationarity on disturbance covariance matrix estimation and CFAR detector performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1502–1513. doi: 10.1109/TAES.2010.5545205
    [25]
    HERSELMAN P L, BAKER C J, and DE WIND H J. An analysis of X-band calibrated sea clutter and small boat reflectivity at medium-to-low grazing angles[J]. International Journal of Navigation and Observation, 2008, 2008: 347518. doi: 10.1155/2008/347518
    [26]
    HERSELMAN P L and BAKER C J. Analysis of calibrated sea clutter and boat reflectivity data at C- and X-band in South African coastal waters[C]. IET International Conference on Radar Systems, Edinburgh, UK, 2007. doi: 10.1049/cp:20070616.
    [27]
    陈帅. 海杂波背景下的过采样MTD方法研究[D]. [硕士论文], 西安电子科技大学, 2014.

    CHEN Shuai. Oversampling MTD method in sea clutter background[D]. [Master dissertation], Xidian University, 2014.
    [28]
    陈小龙, 关键, 于晓涵, 等. 基于短时稀疏时频分布的雷达目标微动特征提取及检测方法[J]. 电子与信息学报, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040

    CHEN Xiaolong, GUAN Jian, YU Xiaohan, et al. Radar micro-Doppler signature extraction and detection via short-time sparse time-frequency distribution[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040
    [29]
    DALEY J C, RANSONE J T, BURKETT J A, et al. Sea-clutter measurements on four frequencies[R]. Report No. 6806, 1968.
    [30]
    TITI G W and MARSHALL D F. The ARPA/navy mountaintop program: Adaptive signal processing for airborne early warning radar[C]. Proceedings of 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta, GA, USA, 1996: 1165–1168. doi: 10.1109/ICASSP.1996.543572.
    [31]
    LITTLE M O and BERRY W P. Real-time multichannel airborne radar measurements[C]. Proceedings of 1997 IEEE National Radar Conference, Syracuse, NY, USA, 1997: 138–142. doi: 10.1109/NRC.1997.588238.
    [32]
    HIMED B and SOUMEKH M. Synthetic aperture radar-moving target indicator processing of multi-channel airborne radar measurement data[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(6): 532–543. doi: 10.1049/ip-rsn:20050128
    [33]
    STEHWIEN W. Sea clutter measurements using an airborne X-band radar[C]. Proceedings of OCEANS’93, Victoria, BC, Canada, 1993, 1: 125–130. doi: 10.1109/OCEANS.1993.326036.
    [34]
    STEHWIEN W. Statistics and correlation properties of high resolution X-band sea clutter[C]. Proceedings of 1994 IEEE National Radar Conference, Atlanta, GA, USA, 1994: 46–51. doi: 10.1109/NRC.1994.328096.
    [35]
    ANTIPOV I. Statistical analysis of northern Australian coastline sea clutter data[R]. Technical Report DSTO-TR-1236, 2001.
    [36]
    CRISP D J, STACY N J S, and GOH A S. Ingara medium-high incidence angle polarimetric sea clutter measurements and analysis[R]. Technical Report DSTO-TR-1818, 2006.
    [37]
    MCDONALD M, CERUTTI-MAORI D, and DAMINI A. Characterisation and cancellation of medium grazing angle sea clutter[C]. The 7th European Radar Conference, Paris, France, 2010: 172–175.
    [38]
    DAMINI A, MCDONALD M, and HASLAM G E. X-band wideband experimental airborne radar for SAR, GMTI and maritime surveillance[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(4): 305. doi: 10.1049/ip-rsn:20030654
    [39]
    BRENNER A R and ENDER J H G. Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(2): 152–162. doi: 10.1049/ip-rsn:20050044
    [40]
    MCDONALD M K and CERUTTI-MAORI D. Coherent radar processing in sea clutter environments, part 1: Modelling and partially adaptive STAP performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1797–1817. doi: 10.1109/TAES.2016.140897
    [41]
    MCDONALD M K and CERUTTI-MAORI D. Coherent radar processing in sea clutter environments, Part 2: Adaptive normalised matched filter versus adaptive matched filter performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1818–1833. doi: 10.1109/TAES.2016.140898
    [42]
    WATTS S, ROSENBERG L, BOCQUET S, et al. Doppler spectra of medium grazing angle sea clutter; Part 1: Characterisation[J]. IET Radar, Sonar & Navigation, 2016, 10(1): 24–31. doi: 10.1049/iet-rsn.2015.0148
    [43]
    WATTS S, ROSENBERG L, BOCQUET S, et al. Doppler spectra of medium grazing angle sea clutter; Part 2: Model assessment and simulation[J]. IET Radar, Sonar & Navigation, 2016, 10(1): 32–42. doi: 10.1049/iet-rsn.2015.0149
    [44]
    ROSENBERG L. Characterization of high grazing angle X-band sea-clutter Doppler spectra[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 406–417. doi: 10.1109/TAES.2013.120809
    [45]
    DONG Yunhan. High grazing angle and high resolution sea clutter: Correlation and polarization analyses[R]. Technical Report DSTO-TR-1972, 2007.
    [46]
    WEINBERG G V. An investigation of the Pareto distribution as a model for high grazing angle clutter[R]. Technical Report DSTO-TR-2525, 2011.
    [47]
    ROSENBERG L. Sea-spike detection in high grazing angle X-band sea-clutter[R]. Technical Report DSTO-TR-2820, 2013.
    [48]
    LAMONT-SMITH T, WASEDA T, and RHEEM C K. Measurements of the Doppler spectra of breaking waves[J]. IET Radar, Sonar & Navigation, 2007, 1(2): 149–157. doi: 10.1049/iet-rsn:20060109
    [49]
    LAMONT-SMITH T. An empirical model of EM scattering from steepening wave profiles derived from numerical computations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1447–1454. doi: 10.1109/TGRS.2003.811551
    [50]
    LAMONT-SMITH T. Investigation of the variability of Doppler spectra with radar frequency and grazing angle[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(5): 291–298. doi: 10.1049/ip-rsn:20040859
    [51]
    LAMONT-SMITH T. Azimuth dependence of Doppler spectra of sea clutter at low grazing angle[J]. IET Radar, Sonar & Navigation, 2008, 2(2): 97–103. doi: 10.1049/iet-rsn:20070099
    [52]
    LAMONT-SMITH T, MITOMI M, KAWAMURA T, et al. Electromagnetic scattering from wind blown waves and ripples modulated by longer waves under laboratory conditions[J]. IET Radar, Sonar & Navigation, 2010, 4(2): 265–279. doi: 10.1049/iet-rsn.2009.0072
    [53]
    LEE P H Y, BARTER J D, LAKE B M, et al. Lineshape analysis of breaking-wave Doppler spectra[J]. IEE Proceedings-Radar, Sonar and Navigation, 1998, 145(2): 135–139. doi: 10.1049/ip-rsn:19981822
    [54]
    赵海云, 张瑞永, 武楠, 等. 基于实测数据的海杂波特性分析[J]. 雷达科学与技术, 2009, 7(3): 214–218. doi: 10.3969/j.issn.1672-2337.2009.03.011

    ZHAO Haiyun, ZHANG Ruiyong, WU Nan, et al. Analysis of sea clutter characteristics based on measured data[J]. Radar Science and Technology, 2009, 7(3): 214–218. doi: 10.3969/j.issn.1672-2337.2009.03.011
    [55]
    刘志高, 徐向东, 刘斌. 某低空警戒雷达海杂波数据的统计特性分析[J]. 空军雷达学院学报, 2004, 18(4): 1–3, 10. doi: 10.3969/j.issn.1673-8691.2004.04.001

    LIU Zhigao, XU Xiangdong, and LIU Bin. Statistical analysis of sea clutter feature data from a low-altitude surveillance radar[J]. Journal of Air Force Radar Academy, 2004, 18(4): 1–3, 10. doi: 10.3969/j.issn.1673-8691.2004.04.001
    [56]
    张忠, 袁业术, 孟宪德. 舰载超视距雷达背景杂波统计特性分析[J]. 系统工程与电子技术, 2002, 24(9): 19–22. doi: 10.3321/j.issn:1001-506X.2002.09.007

    ZHANG Zhong, YUAN Yeshu, and MENG Xiande. Background clutters statistical characteristics in shipborne radar[J]. Systems Engineering and Electronics, 2002, 24(9): 19–22. doi: 10.3321/j.issn:1001-506X.2002.09.007
    [57]
    周超, 刘泉华. Ku波段实验雷达海杂波实测数据分析[J]. 信号处理, 2015, 31(12): 1573–1578. doi: 10.3969/j.issn.1003-0530.2015.12.005

    ZHOU Chao and LIU Quanhua. Analysis of field sea clutter data of Ku band[J]. Journal of Signal Processing, 2015, 31(12): 1573–1578. doi: 10.3969/j.issn.1003-0530.2015.12.005
    [58]
    杨俊岭, 李大治, 万建伟, 等. 海杂波尖峰特性研究及仿真分析[J]. 系统仿真学报, 2007, 19(8): 1836–1840. doi: 10.3969/j.issn.1004-731X.2007.08.046

    YANG Junling, LI Dazhi, WAN Jianwei, et al. Sea spike characteristics studies and simulation analyses[J]. Journal of System Simulation, 2007, 19(8): 1836–1840. doi: 10.3969/j.issn.1004-731X.2007.08.046
    [59]
    XU Shuwen, SHUI Penglang, and YAN Xueying. Non-coherent detection of radar target in heavy-tailed sea clutter using bi-window non-linear shrinkage map[J]. IET Signal Processing, 2016, 10(9): 1031–1039. doi: 10.1049/iet-spr.2015.0564
    [60]
    康士峰, 葛德彪, 罗贤云, 等. 多波段多极化海杂波特性的实验研究[J]. 微波学报, 2000, 16(5): 463–468. doi: 10.3969/j.issn.1005-6122.2000.z1.003

    KANG Shifeng, GE Debiao, LUO Xianyun, et al. Experimental study on multi-band and multi-polarization characteristics of sea clutter[J]. Journal of Microwaves, 2000, 16(5): 463–468. doi: 10.3969/j.issn.1005-6122.2000.z1.003
    [61]
    张金鹏, 张玉石, 李清亮, 等. 基于不同散射机制特征的海杂波时变多普勒谱模型[J]. 物理学报, 2018, 67(3): 034101. doi: 10.7498/aps.67.20171612

    ZHANG Jinpeng, ZHANG Yushi, LI Qingliang, et al. A time-varying Doppler spectrum model of radar sea clutter based on different scattering mechanisms[J]. Acta Physica Sinica, 2018, 67(3): 034101. doi: 10.7498/aps.67.20171612
    [62]
    夏晓云, 黎鑫, 张玉石, 等. 基于相位的岸基雷达地海杂波分割方法[J]. 系统工程与电子技术, 2018, 40(3): 552–556. doi: 10.3969/j.issn.1001-506X.2018.03.10

    XIA Xiaoyun, LI Xin, ZHANG Yushi, et al. Sea-land clutter segmentation method of shore-based radar based on phase information[J]. Systems Engineering and Electronics, 2018, 40(3): 552–556. doi: 10.3969/j.issn.1001-506X.2018.03.10
    [63]
    许心瑜, 张玉石, 黎鑫, 等. UHF波段海杂波时间相关性的海浪状态影响分析[J]. 系统工程与电子技术, 2017, 39(6): 1203–1207. doi: 10.3969/j.issn.1001-506X.2017.06.03

    XU Xinyu, ZHANG Yushi, LI Xin, et al. Influence of sea condition on the temporal correlation properties of UHF band sea clutter[J]. Systems Engineering and Electronics, 2017, 39(6): 1203–1207. doi: 10.3969/j.issn.1001-506X.2017.06.03
    [64]
    张玉石, 许心瑜, 吴振森, 等. L波段小擦地角海杂波幅度均值与风速关系建模[J]. 电波科学学报, 2015, 30(2): 289–294. doi: 10.13443/j.cjors.2014042001

    ZHANG Yushi, XU Xinyu, WU Zhensen, et al. Modeling windspeed behavior of L-band sea clutter average reflectivity at low grazing angles[J]. Chinese Journal of Radio Science, 2015, 30(2): 289–294. doi: 10.13443/j.cjors.2014042001
    [65]
    张玉石, 尹雅磊, 许心瑜, 等. 海杂波测量定标的姿态修正数据处理方法[J]. 电子与信息学报, 2015, 37(3): 607–612. doi: 10.11999/JEIT140659

    ZHANG Yushi, YIN Yalei, XU Xinyu, et al. Data processing method of posture correction for calibration of sea clutter measurement[J]. Journal of Electronics &Information Technology, 2015, 37(3): 607–612. doi: 10.11999/JEIT140659
    [66]
    许心瑜, 张玉石, 黎鑫, 等. L波段小擦地角海杂波KK分布建模[J]. 系统工程与电子技术, 2014, 36(7): 1304–1308. doi: 10.3969/j.issn.1001-506X.2014.07.13

    XU Xinyu, ZHANG Yushi, LI Xin, et al. KK distribution modeling with L band low grazing sea clutter[J]. Systems Engineering and Electronics, 2014, 36(7): 1304–1308. doi: 10.3969/j.issn.1001-506X.2014.07.13
    [67]
    张玉石, 许心瑜, 尹雅磊, 等. L波段小擦地角海杂波幅度统计特性研究[J]. 电子与信息学报, 2014, 36(5): 1044–1048. doi: 10.3724/SP.J.1146.2013.01139

    ZHANG Yushi, XU Xinyu, YIN Yalei, et al. Research on amplitude statistics of L-band low grazing angle sea clutter[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1044–1048. doi: 10.3724/SP.J.1146.2013.01139
    [68]
    DING Hao, GUAN Jian, LIU Ningbo, et al. New spatial correlation models for sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1833–1837. doi: 10.1109/LGRS.2015.2430371
    [69]
    DING Hao, GUAN Jian, LIU Ningbo, et al. Modeling of heavy tailed sea clutter based on the generalized central limit theory[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1591–1595. doi: 10.1109/LGRS.2016.2596322
    [70]
    GUAN J, LIU N B, HUANG Y, et al. Fractal characteristic in frequency domain for target detection within sea clutter[J]. IET Radar, Sonar & Navigation, 2012, 6(5): 293–306. doi: 10.1049/iet-rsn.2011.0250
    [71]
    GUAN Jian, LIU Ningbo, HUANG Yong, et al. Fractal Poisson model for target detection within spiky sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 411–415. doi: 10.1109/LGRS.2012.2203578
    [72]
    CHEN Xiaolong, GUAN Jian, HE You, et al. Detection of low observable moving target in sea clutter via fractal characteristics in fractional Fourier transform domain[J]. IET Radar, Sonar & Navigation, 2013, 7(6): 635–651. doi: 10.1049/iet-rsn.2012.0116
    [73]
    CHEN Xiaolong, GUAN Jian, BAO Zhonghua, et al. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1002–1018. doi: 10.1109/TGRS.2013.2246574
    [74]
    CHEN Xiaolong, GUAN Jian, Liu Ningbo, et al. Maneuvering target detection via Radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 939–953. doi: 10.1109/TSP.2013.2297682
    [75]
    CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2225–2240. doi: 10.1109/TGRS.2014.2358456
    [76]
    CHEN Xiaolong, HUANG Yong, LIU Ningbo, et al. Radon-fractional ambiguity function-based detection method of low-observable maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 815–833. doi: 10.1109/TAES.2014.130791
    [77]
    黄勇, 陈小龙, 关键. 实测海尖峰特性分析及抑制方法[J]. 雷达学报, 2015, 4(3): 334–342. doi: 10.12000/JR14108

    HUANG Yong, CHEN Xiaolong, and GUAN Jian. Property analysis and suppression method of real measured sea spikes[J]. Journal of Radars, 2015, 4(3): 334–342. doi: 10.12000/JR14108
    [78]
    苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7(5): 565–574. doi: 10.12000/JR18077

    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7(5): 565–574. doi: 10.12000/JR18077
    [79]
    丁昊, 薛永华, 黄勇, 等. 均匀和部分均匀杂波中子空间目标的斜对称自适应检测方法[J]. 雷达学报, 2015, 4(4): 418–430. doi: 10.12000/JR14133

    DING Hao, XUE Yonghua, HUANG Yong, et al. Persymmetric adaptive detectors of subspace signals in homogeneous and partially homogeneous clutter[J]. Journal Radars, 2015, 4(4): 418–430. doi: 10.12000/JR14133
    [80]
    丁昊, 王国庆, 刘宁波, 等. 逆Gamma纹理背景下两类子空间目标的自适应检测方法[J]. 雷达学报, 2017, 6(3): 275–284. doi: 10.12000/JR16088

    DING Hao, WANG Guoqing, LIU Ningbo, et al. Adaptive detectors for two types of subspace targets in an inverse Gamma textured background[J]. Journal Radars, 2017, 6(3): 275–284. doi: 10.12000/JR16088
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(6616) PDF downloads(686) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint