Zhou Yu, Wang Hai-peng, Chen Si-zhe. SAR Automatic Target Recognition Based on Numerical Scattering Simulation and Model-based Matching[J]. Journal of Radars, 2015, 4(6): 666-673. doi: 10.12000/JR15080
Citation: WAQI Riti, LI Gang, ZHAO Zhichun, et al. Feature selection method of radar-based road target recognition via histogram analysis and adaptive genetics[J]. Journal of Radars, 2023, 12(5): 1014–1030. doi: 10.12000/JR22245

Feature Selection Method of Radar-based Road Target Recognition via Histogram Analysis and Adaptive Genetics

DOI: 10.12000/JR22245
Funds:  The National Natural Science Foundation of China (62101304, 61925106), Research and development project commissioned by Huawei Technologies Co. LTD
More Information
  • Corresponding author: ZHAO Zhichun, zzc@smbu.edu.cn
  • Received Date: 2022-12-31
  • Rev Recd Date: 2023-02-22
  • Available Online: 2023-02-28
  • Publish Date: 2023-03-13
  • In radar-based road target recognition, the increase in target feature dimension is a common technique to improve recognition performance when targets become diverse, but their characteristics are similar. However, the increase in feature dimension leads to feature redundancy and dimension disasters. Therefore, it is necessary to optimize the extracted high-dimensional feature set. The Adaptive Genetic Algorithm (AGA) based on random search is an effective feature optimization method. To improve the efficiency and accuracy of the AGA, the existing improved AGA methods generally utilize the prior correlation between features and targets for pre-dimensionality reduction of high-dimensional feature sets. However, such algorithms only consider the correlation between a single feature and a target, neglecting the correlation between feature combinations and targets. The selected feature set may not be the best recognition combination for the target. Thus, to address this issue, this study proposes an improved AGA via pre-dimensionality reduction based on Histogram Analysis (HA) of the correlation between different feature combinations and targets. The proposed method can simultaneously improve the efficiency and accuracy of feature selection and target recognition performance. Comparative experiments based on a real dataset of the millimeter-wave radar showed that the average accuracy of target recognition of the proposed HA-AGA method could reach 95.7%, which is 1.9%, 2.4%, and 10.1% higher than that of IG-GA, ReliefF-IAGA, and improved RetinaNet methods, respectively. Comparative experiments based on the CARRADA dataset showed that the average accuracy of target recognition of the proposed HA-AGA method could reach 93.0%, which is 1.2% and 1.5% higher than that of IG-GA and ReliefF-IAGA methods, respectively. These results verify the effectiveness and superiority of the proposed method compared with existing methods. In addition, the performance of different feature optimization methods coupled with the integrated bagging tree, fine tree, and K-Nearest Neighbor (KNN) classifier was compared. The experimental results showed that the proposed method exhibits evident advantages when coupled with different classifiers and has broad applicability.

     

  • [1]
    PATOLE S M, TORLAK M, WANG Dan, et al. Automotive radars: A review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34(2): 22–35. doi: 10.1109/MSP.2016.2628914
    [2]
    周刚, 吴杰. 汽车防撞毫米波雷达系统参数优化设计[J]. 电讯技术, 2011, 51(7): 77–80. doi: 10.3969/j.issn.1001-893x.2011.07.016

    ZHOU Gang and WU Jie. Parameters optimized design of automobile anti-collision millimeter wave radar system[J]. Telecommunication Engineering, 2011, 51(7): 77–80. doi: 10.3969/j.issn.1001-893x.2011.07.016
    [3]
    元志安, 周笑宇, 刘心溥, 等. 基于RDSNet的毫米波雷达人体跌倒检测方法[J]. 雷达学报, 2021, 10(4): 656–664. doi: 10.12000/JR21015

    YUAN Zhian, ZHOU Xiaoyu, LIU Xinpu, et al. Human fall detection method using millimeter-wave radar based on RDSNet[J]. Journal of Radars, 2021, 10(4): 656–664. doi: 10.12000/JR21015
    [4]
    ZHAO Yan, ZHAO Lingjun, XIONG Boli, et al. Attention receptive pyramid network for ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2738–2756. doi: 10.1109/JSTARS.2020.2997081
    [5]
    MIAO Tian, ZENG Hongcheng, YANG Wei, et al. An improved lightweight RetinaNet for ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4667–4679. doi: 10.1109/JSTARS.2022.3180159
    [6]
    WANG Chenxi, CHEN Zhichao, CHEN Xin, et al. Detection of MMW radar target based on Doppler characteristics and deep learning[C]. IEEE International Conference on Artificial Intelligence and Industrial Design, Guangzhou, China, 2021: 266–271.
    [7]
    ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. HOG-ShipCLSNet: A novel deep learning network with HOG feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210322. doi: 10.1109/TGRS.2021.3082759
    [8]
    SOROWKA P and ROHLING H. Pedestrian classification with 24 GHz chirp sequence radar[C]. 2015 16th International Radar Symposium, Munich, Germany, 2015: 167–173.
    [9]
    余月琴. 车载毫米波雷达行人识别算法研究[D]. [硕士论文], 电子科技大学, 2020: 11–15.

    YU Yueqin. Research on pedestrian recognition algorithm of automobile millimeter wave radar[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020: 11–15.
    [10]
    HEUEL S and ROHLING H. Pedestrian classification in automotive radar systems[C]. 2012 13th International Radar Symposium, Warsaw, Poland, 2012: 39–44.
    [11]
    LANDGREBE D A. Signal Theory Methods in Multispectral Remote Sensing[M]. Hoboken, USA: Wiley, 2003.
    [12]
    EL AKADI A, AMINE A, EL OUARDIGHI A E, et al. A two-stage gene selection scheme utilizing MRMR filter and GA wrapper[J]. Knowledge and Information Systems, 2011, 26(3): 487–500. doi: 10.1007/s10115-010-0288-x
    [13]
    TEKELI B, GURBUZ S Z, and YUKSEL M. Information-theoretic feature selection for human Micro-Doppler signature classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2749–2762. doi: 10.1109/TGRS.2015.2505409
    [14]
    JOLLIFFE I T. Principal Component Analysis[M]. 2nd ed. New York, USA: Springer, 2002: 1–9.
    [15]
    WANG Zigeng, XIAO Xia, and RAJASEKARAN S. Novel and efficient randomized algorithms for feature selection[J]. Big Data Mining and Analytics, 2020, 3(3): 208–224. doi: 10.26599/BDMA.2020.9020005
    [16]
    GÜRBÜZ S Z, TEKELI B, KARABACAK C, et al. Feature selection for classification of human Micro-Doppler[C]. IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, Tel Aviv, Israel, 2013: 1–5.
    [17]
    WU Yanwei, JIANG Mian, PEI Xiaoshuai, et al. Feature selection and decision fusion methods in target recognition[C]. IET International Radar Conference, Chongqing, China, 2021: 687–690.
    [18]
    XIAO Peng, WANG Zigeng, and RAJASEKARAN S. Novel speedup techniques for parallel singular value decomposition[C]. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems, Exeter, UK, 2018: 188–195.
    [19]
    CHANDRASHEKAR G and SAHIN F. A survey on feature selection methods[J]. Computers & Electrical Engineering, 2014, 40(1): 16–28. doi: 10.1016/j.compeleceng.2013.11.024
    [20]
    WANG Yunyan, ZHUO Tong, ZHANG Yu, et al. Hierarchical polarimetric SAR image classification based on feature selection and Genetic algorithm[C]. 2014 12th International Conference on Signal Processing (ICSP), Hangzhou, China, 2014: 764–768.
    [21]
    BHANU B and LIN Yingqiang. Genetic algorithm based feature selection for target detection in SAR images[J]. Image and Vision Computing, 2003, 21(7): 591–608. doi: 10.1016/S0262-8856(03)00057-X
    [22]
    SENTHILNATH J, OMKAR S N, MANI V, et al. Multi-sensor satellite remote sensing images for flood assessment using swarm intelligence[C]. 2015 International Conference on Cognitive Computing and Information Processing, Noida, India, 2015: 1–5.
    [23]
    LIANG Kui, DAI Wei, and DU Rui. A feature selection method based on improved genetic algorithm[C]. 2020 Global Reliability and Prognostics and Health Management (PHM-Shanghai), Shanghai, China, 2020: 1–5.
    [24]
    LI Yinghao, SHI Kai, QIAO Fuqiang, et al. A feature subset selection method based on the combination of PCA and improved GA[C]. 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 2020: 191–194.
    [25]
    YANG B S, HAN Tian, and YIN Zhongjun. Fault diagnosis system of induction motors using feature extraction, feature selection and classification algorithm[J]. JSME International Journal Series C:Mechanical Systems, Machine Elements and Manufacturing, 2006, 49(3): 734–741. doi: 10.1299/jsmec.49.734
    [26]
    LIU Ming, DING Xiangqian, YU Shusong, et al. Research on feature selection in near-infrared spectroscopy classification based on improved adaptive genetic algorithm combined with ReliefF[C]. 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 2017: 403–406.
    [27]
    YANG Jianyong and YAN Ruqiang. A multidimensional feature extraction and selection method for ECG arrhythmias classification[J]. IEEE Sensors Journal, 2021, 21(13): 14180–14190. doi: 10.1109/JSEN.2020.3047962
    [28]
    THEJASWEE M, SRILAKSHMI P, KARUNA G, et al. Hybrid IG and GA based feature selection approach for text categorization[C]. 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2020, 1606–1613.
    [29]
    DELON J, DESOLNEUX A, LISANI J L, et al. A nonparametric approach for histogram segmentation[J]. IEEE Transactions on Image Processing, 2007, 16(1): 253–261. doi: 10.1109/TIP.2006.884951
    [30]
    OUAKNINE A, NEWSON A, REBUT J, et al. CARRADA dataset: Camera and automotive Radar with range- angle- Doppler annotations[C]. 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 2021: 5068–5075.
    [31]
    WHITLEY D. A genetic algorithm tutorial[J]. Statistics and Computing, 1994, 4(2): 65–85. doi: 10.1007/BF00175354
    [32]
    SAITO T and REHMSMEIER M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets[J]. PLoS One, 2015, 10(3): e0118432. doi: 10.1371/journal.pone.0118432
  • Relative Articles

    [1]LI Miaoge, CHEN Bo, WANG Dongsheng, LIU Hongwei. CNN Model Visualization Method for SAR Image Target Classification[J]. Journal of Radars, 2024, 13(2): 359-373. doi: 10.12000/JR23107
    [2]CHEN Xiaolong, HE Xiaoyang, DENG Zhenhua, GUAN Jian, DU Xiaolin, XUE Wei, SU Ningyuan, WANG Jinhao. Radar Intelligent Processing Technology and Application for Weak Target[J]. Journal of Radars, 2024, 13(3): 501-524. doi: 10.12000/JR23160
    [3]WANG Canyu, JIANG Libing, REN Xiaoyuan, WANG Zhuang. Primitive-based 3D Abstraction Method for Spacecraft ISAR Images[J]. Journal of Radars, 2024, 13(3): 682-695. doi: 10.12000/JR23241
    [4]LIU Qi, YU Weidong, HONG Wen. Vehicle Detection in Multi-aspect SAR Images Based on Improved GOFRO[J]. Journal of Radars, 2023, 12(5): 1081-1096. doi: 10.12000/JR23042
    [5]ZHANG Fan, LU Shengtao, XIANG Deliang, YUAN Xinzhe. An Improved Superpixel-based CFAR Method for High-resolution SAR Image Ship Target Detection[J]. Journal of Radars, 2023, 12(1): 120-139. doi: 10.12000/JR22067
    [6]LI Yi, DU Lan, DU Yuang. Convolutional Neural Network Based on Feature Decomposition for Target Detection in SAR Images[J]. Journal of Radars, 2023, 12(5): 1069-1080. doi: 10.12000/JR23004
    [7]YAN Linjie, HAO Chengpeng, YIN Chaoran, SUN Weixuan, HOU Chaohuan. Modified Generalized Likelihood Ratio Test Detection Based on a Symmetrically Spaced Linear Array in Partially Homogeneous Environments[J]. Journal of Radars, 2021, 10(3): 443-452. doi: 10.12000/JR20140
    [8]GUO Weiwei, ZHANG Zenghui, YU Wenxian, SUN Xiaohua. Perspective on Explainable SAR Target Recognition[J]. Journal of Radars, 2020, 9(3): 462-476. doi: 10.12000/JR20059
    [9]GUO Qian, WANG Haipeng, XU Feng. Research Progress on Aircraft Detection and Recognition in SAR Imagery[J]. Journal of Radars, 2020, 9(3): 497-513. doi: 10.12000/JR20020
    [10]DAI Muchen, LENG Xiangguang, XIONG Boli, JI Kefeng. Sea-land Segmentation Method for SAR Images Based on Improved BiSeNet[J]. Journal of Radars, 2020, 9(5): 886-897. doi: 10.12000/JR20089
    [11]ZUO Lei, CHAN Xiuxiu, LU Xiaofei, LI Ming. A Weak Target Detection Method in Sea Clutter Based on Joint Space-time-frequency Decomposition[J]. Journal of Radars, 2019, 8(3): 335-343. doi: 10.12000/JR19035
    [12]Yu Lingjuan, Wang Yadong, Xie Xiaochun, Lin Yun, Hong Wen. SAR ATR Based on FCNN and ICAE[J]. Journal of Radars, 2018, 7(5): 622-631. doi: 10.12000/JR18066
    [13]Zhou Chunhui, Li Fei, Li Ning, Zheng Huifang, Wang Xiangyu. Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image[J]. Journal of Radars, 2018, 7(2): 235-243. doi: 10.12000/JR17025
    [14]Liu Zeyu, Liu Bin, Guo Weiwei, Zhang Zenghui, Zhang Bo, Zhou Yueheng, Ma Gao, Yu Wenxian. Ship Detection in GF-3 NSC Mode SAR Images[J]. Journal of Radars, 2017, 6(5): 473-482. doi: 10.12000/JR17059
    [15]Wu Yiquan, Wang Zhilai. SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation[J]. Journal of Radars, 2017, 6(4): 349-358. doi: 10.12000/JR17019
    [16]Kang Miao, Ji Kefeng, Leng Xiangguang, Xing Xiangwei, Zou Huanxin. SAR Target Recognition with Feature Fusion Based on Stacked Autoencoder[J]. Journal of Radars, 2017, 6(2): 167-176. doi: 10.12000/JR16112
    [17]Zhang Xinzheng, Tan Zhiying, Wang Yijian. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion[J]. Journal of Radars, 2017, 6(5): 492-502. doi: 10.12000/JR17078
    [18]Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, Zhang Jun. SAR ATR Based on Convolutional Neural Network[J]. Journal of Radars, 2016, 5(3): 320-325. doi: 10.12000/JR16037
    [19]Lin Chunfeng, Huang Chunlin, Su Yi. Target Integration and Detection with the Radon-Fourier Transform for Bistatic Radar[J]. Journal of Radars, 2016, 5(5): 526-530. doi: 10.12000/JR16049
    [20]Ding Hao, Xue Yong-hua, Huang Yong, Guan Jian. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter[J]. Journal of Radars, 2015, 4(4): 418-430. doi: 10.12000/JR14133
  • Cited by

    Periodical cited type(7)

    1. 赵梓桐,谢军,陈丽. 基于改进PSO的分布式信号合成功率分配方法. 计算机测量与控制. 2025(01): 121-130 .
    2. 张世超,朱玉权,刘志永. 基于时延差和相位差结合的分布式相参参数在线精确估计方法. 舰船电子对抗. 2025(01): 82-88+92 .
    3. 贲德. 机载有源相控阵火控雷达技术发展. 现代雷达. 2024(02): 1-15 .
    4. 欧阳晓凤,芮梓轩,曾芳玲,唐希雯. 稀疏节点直接序列扩频信号空间能量合成研究. 信息对抗技术. 2024(05): 62-73 .
    5. 蔡兴雨,王亚军,王旭,臧会凯,怀园园,朱思桥. 一种基于云边端架构的雷达组网协同系统设计方案. 现代雷达. 2024(09): 37-48 .
    6. 王元昊,王宏强,杨琪. 动平台分布孔径雷达相参合成探测方法与试验验证. 雷达学报. 2024(06): 1279-1297 . 本站查看
    7. 赵开发,宋虎,刘溶,王鑫海. 一种基于阵列构型与阵元数量联合优化的分布式雷达主瓣干扰抑制方法. 雷达学报. 2024(06): 1355-1369 . 本站查看

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1050) PDF downloads(217) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint